用户名: 密码: 验证码:
内蒙古东部霍林河煤田早白垩世古火灾研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
古火灾(paleowildfire)研究是古生态学一个新的研究领域,我国在该领域研究较少。本文首次运用煤岩学、古植物学、孢粉学、地层学以及地球化学等多种学科交叉的综合性研究方法,首次对内蒙古东部霍林河煤田早白垩世霍林河古火灾事件进行了研究,选择霍林河煤田下含煤段中的木炭作为古火灾研究的主要对象,取得以下进展。
     1、首次分析研究了以木炭化石为代表的霍林河古火灾事件的燃烧植物的组成成分。确认霍林河煤田木炭主要为松柏类植物,包括叶枝杉型木、紫杉型木、原始雪松型木及异木等。
     2、确定了霍林河古火灾事件的类型及各种古火灾指示标志;确认霍林河煤田古火灾类型为松柏类森林火。与此同时,开展了霍林河煤田火灾与全球早白垩世古火灾的对比。
     3、确定了霍林河古火灾事件各类木炭的燃烧温度。木炭煤木炭的形成温度最高(475~550℃);泥煤木炭相对最低(360~370℃);褐煤木炭居中,形成温度约为442~520℃。由此推断霍林河森林树冠火温度为442~550℃,局部地表火温度为360~370℃。
     4、开展了生物标志物(biomarker)的研究,由于芳香二萜类可能源于针叶树的树脂,确认芳香萜类是陆源植物输入的生物标志物;根据木炭煤中芳香二萜类惹稀的丰度值断定森林火燃烧温度较高,霍林河古火灾主要源于松柏类植物的燃烧。
     5、进一步确认了霍林河植物群主要由裸子植物和蕨类植物构成,其中裸子植物以松柏类、银杏类植物组成,它们是霍林河煤田主要成煤植物。新描述木材植物化石4属4种,孢粉化石38属62种,丰富了霍林河植物群的组成内容。综上所述,本文首次运用木材化石(木炭)与煤岩学等综合研究的方法深入研究了霍林河煤田早白垩世古火灾事件及其相关古生态环境。对深入探讨早白垩世我国东北部地区的成煤机制、古火灾侵蚀对成煤环境的影响、以及东北亚地区含煤地层对比等研究,具有一定的学术价值。对深入开展内蒙古-我国东北煤田地质研究具有一定的指导意义。在学科交叉和综合性研究方法等方面,也是一个较好的尝试。
The study of paleowildfire is a new field in paleoecological research, and has still been rare in China. The present thesis applies the integrated method including of the coal petrology, paleobotany, palynology, stratigraphy, and geochemistry, for the study of the paleowildfire event occurred in Huolinhe during the Early Cretaceous which was recorded in the coal-bearing strata of Huolinhe Coal-Field. The study focuses on the charcoal from the Lower Coal-bearing Member of the Huolinhe Formation in the Huolinhe Coal-Field as the main object of the study, and gained the following achievements.
     1. The author analyzed the composition of the burned plant charcoal fossils representing the Huolinhe paleowildfire event for the first time, and confirmed conifers as the main charcoal in floral composition, including Phyllocladoxylon, Taxoxylon, Protocedroxylon, and Xenoxylon.
     2. The author confirmed the types of the paleowildfire events in Huolinhe and the symbols of the various paleowildfires, and confirmed the conifer forest was the main type of the Huolinhe paleowildfires. Meanwhile, a global correlation on the Early Cretaceous paleowildfires has been made.
     3. The burn temperatures of various types of paleowildfires in Huolinhe are made, including the temperature of charcoal in charcoal-coal is higher (475~550℃), and the temperature of charcoal in peat coal is lower (360~370℃), and charcoal of lignite is between 442℃and 520℃. Based these data, it is suggested that the temperature of the forest crown fire is 442~550℃with the temperature of surface fire in some areas is 360~370℃.
     4. Taking the biomark research for this study, confirmed the diterpenoid compounds were as the biomark of the terrestrial plants input, which is based on the fact that the presence of the diterpenoid compounds re?ect the terrestrial higher plants wax origin;and the paleofires were mainly caused by the woody conifers firing . The high content of retene in charcoal indicates a high degree of aromatization, which in turn infers that pyrolysis process at different temperatures with organic molecules changes their structures accordingly.
     5. Further confirmed the Early Cretaceous Huolinhe flora mainly composed of gymnosperms and ferns, in which the gymnosperms mainly consist of conifers and gingkoales, being both the major coal-forming plants. Fossil wood of 4 genera and 4 species, and spores-pollen of 38 genera and 62 species are newly described, which enriched the recognizing the composition of Early Cretaceous Huolinhe flora.
     In sum, this thesis used the method of integrated study on wood fossils (charcoals) and coal petrology on the Huolinhe paleowildfire event and its related paleoecological environment. This work is significant for better understanding the coal-forming mechanism and impact of paleowildfire erosion to the coal-forming environment in NE China, and coal-bearing strata correlations in NE Asia. On the other hand, it also benefits the coal-geology study in Inner Mongolia and NE China. The method of interdisciplinary and integrated study in this thesis appears to be a good attempt.
引文
[1] Abram N J, Gagan M K, McCulloch M T, et al. Coral reef death during the 1997 Indian ocean dipole linked to Indonesian wildfires [J]. Science,2003, 301: 952–955.
    [2] Albini, F.A. Dynamics and modelling vegetation fires:observations. In: Crutzen P J, Goldammer J G. (Eds.),Fire in the Environment: the Ecological, Atmospheric and Climatic Importance of Vegetation Fires[M]. Wiley, Chichester,1993: 39–52
    [3] Alger R. Pyrolysis and combustion of cellulosic materials. In: The Mechanisms of Pyrolysis, Oxidation, and Burning of Organic Materials[M]. National Bureau of Standards Special Publication,1972,357: 171–183
    [4] Ascough P L, Bird M I, Scott A C, et al. Charcoal re?ectance measurements: implications for structural characterization and assessment of diagenetic alteration [J]. J. Archaeol. Sci, 2010, 37:1590–1599.
    [5] Bailey R W, Copeland O L. Vegetation and engineering structures in flood and erosion control. Proceedings 13th Congress [C]. International Union of Forest Research Organization, Vienna, Austria,1961: 11-1. 23.
    [6] Batchelder R B. 1967. Spatial and temporal patterns of fire in the tropical world. Proceedings of the Tall Timbers Fire Ecology Conference [C]. 1967, 6:171–208.
    [7] Bateman R, Scott A C. 1990. A reappraisal of the Dinantian ?oras at Oxroad Bay, East Lothian, Scotland [J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1990, 81:161–194.
    [8] Bechtel A, Reischenbacher D, Sachsenhofer R F,et al. Paleogeography and paleoecology of the upper Miocene Zillingdorf lignite deposit (Austria)[J].International Journal of Coal Geology, 2007,69 :119–143
    [9] Bechtel A, Sachsenhofer R F,Markic M,et al. Paleoenvironmental implications from biomarker and stable isotope investigations on the Velenje lignite seam (Slovenia)[J]. Organic Geochemistry,2003, 34:1277–1298.
    [10] Belcher C M, Collinson M E, Scott A C. Constraints on the thermal energy released from the Chicxulub impactor: new evidence from multi-method charcoal analysis [J]. Journal of the Geological Society of London, 2005,162: 591–602.
    [11] Belcher C M, Finch P, Collinson M. E, et al. Geochemical evidence for combustion of hydrocarbons during the K–T impact event [J]. Proc. Natl. Acad. Sci. USA, 2009, 106: 4112–4117.
    [12] Belcher C M, McElwain J C. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic [J]. Science,2008, 321:1197–1200.
    [13] Benavides-Solorio J, MacDonald L H. Post-fire runoff and erosion from simulated rainfall on small plots, Colorado Front Range [J]. Hydrological Processes, 2001, 15: 2931–2952.
    [14] Benda L, Miller D, Bigelow P, et al. Effects of post-wildfire erosion on channel environments, Boise River, Idaho [J].Forest Ecology and Management,2003, 178:105– 119.
    [15] Berner R A. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model [J]. American Journal of Science,2009,309:603–606.
    [16] Berner R A. A combined model for Phanerozoic atmospheric O2 and CO2 [J]. Geochemica et Cosmochimica Acta, 2006, 70: 5653–5664.
    [17] Berner R A. Examination of hypotheses for the Permo-Triassic boundaryextinction by carbon cycle modeling [J]. Proceedings of the National Academy of Sciences ,2002,99:4172–4177.
    [18] Berner R A. Modelling atmospheric O2 over Phanerozoic time [J]. Geochimica et Cosmochimica Acta, 2001, 65: 685–694.
    [19] Berner R A. The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic [J]. Geochimica et Cosmochimica Acta,2005,69:3211–3217.
    [20] Blackford J J. Charcoal fragments in surface samples following a fire and the implications for interpretation of subfossil charcoal data [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000,164: 33–42.
    [21] Bowman D M J S, Balch J K, Artaxo P, et al. Fire in the Earth System [J]. Science, 2009, 324: 481–484.
    [22] Brassel S C, Eglinton G, Maxwell J R. The geochbemistry of terpenaids and steroid[J]. Biochem. Soc. Trans, 1983,11:575-586
    [23] Brassel S C, Eglinton G, Maxwell J R. The geochemistry of terpenaids and steroid[J].Biochem.Soc.Trans,1983,11:575-586
    [24] Brown K J , Hebda R J. Coastal rainforest connections disclosed through a Late Quaternary vegetation, climate, and fire history investigation from the Mountain Hemlock Zone on southern Vancouver Island, British Colombia, Canada [J]. Review of Palaeobotany and Palynology, 2003, 123: 247– 269
    [25] Bustin R M, Guo Y. Abrupt changes (Jumps) in reflectance values and chemical compositions of artificial charcoals and inertinite in coals [J]. International Journal of Coal Geology, 1999, 38:237–260.
    [26] Cannon S H, Kirkham R M, Parise M.Wildfire-related debris flow initiation processes, Storm King Mountain, Colorado [J]. Geomorphology, 2001a, 39: 171–188.
    [27] Cao C , Zheng Q. Geological event sequences of the Permian–Triassic transition recorded in the microfacies in Meishan section [J]. Sci. China, Ser. D Earth Sci, 2009, 52:1529–1536.
    [28] Carcaillet C, Bouvier M, Larouche A C,et al. Comparison of pollen-slide and sieving methods in lacustrine charcoal analyses for local and regional fire history [J]. The Holocene, 2001, 11 (4): 467–476.
    [29] Certini G. Effects of fire on properties of forest soils: a review [J]. Oecologia, 2005, 143: 1– 10.
    [30] Chaffee A L, Johns R B. Polycyclic aromatic hydrocarbons in Australian coals. I. Angulary fused pentacyclic tri- and tetraaromatic components of Victoria brown coal[J]. Geochimica et Cosmochimica Acta, 1983, 47: 2141-2155
    [31] Clark J S , Patterson III W A. Background and local charcoal in sediments: scales of fire evidence in the palaeo record. In: Clark, J.S., et al. (Ed.), Sediment Records of Biomass Burning and Global Change [M].: NATOASI Series I, 51. Springer Verlag, Berlin, 1997: 23–48.
    [32] Clark J S, Royall P D. Particle-size evidence for source areas of charcoal accumulation in Late Holocene sediments of eastern North American Lakes [J]. Quaternary Research, 1995,43: 80–89.
    [33] Collinson M E , Steart D C , Scott A C, et al. Episodic fire, runoff and deposition at the Palaeocene–Eocene boundary [J]. Journal of the Geological Society, 2007, 164: 87–97.
    [34] Collinson M E, Featherstone C, Cripps J A, et al. Charcoal-rich plant debris accumulations in the Lower Cretaceous of the Isle of Wight, England [J]. Acta Palaeobotanica (Suppl. 2),2000, 93–105 .
    [35] Cope M J, Chaloner W G. 1985. Wildfire, an interaction of biological and physical processes. In: TiVney, B.H. (Ed.), Geological Factors and the Evolution of Plants[M]. Hartford :Yale University Press,1985, 257–277.
    [36] Cressler, W.L. Evidence of earliest known wildfires [J]. Palaios, 2001, 16: 171–174.
    [37] Crutzen P J, Goldammer J G. (Eds.). Fire in the Environment: the Ecological, Atmospheric and Climatic Importance of Vegetation Fires . Dahlem Workshop Reports [R]. Wiley, Chichester, 1993.
    [38] Daniel Oakley, Howard J, Falcon-Lang. Morphometric analysis of Cretaceous (Cenomanian) angiosperm woods from the Czech Republic [J]. Review of Palaeobotany and Palynology, 2009,153 :375–385
    [39] DeBano L F. Fire-induced water repellency: an erosional factor in wildland environments [C]. United States Department of Agriculture, Forest Service Proceedings, 2000b: 307–310.
    [40] Diessel C F K. The stratigraphic distribution of inertinite [J]. International Journal of Coal Geology, 2010, 81:251–268.
    [41] DiMichele W A, Hook R W, Nelson W J, et al. An unusual Middle Permian ?ora from the Blaine Formation (Pease River group: Leonardian–Guadalupian series) of King County, West Texas [J]. Journal of Paleontology, 2004, 78:765–782.
    [42] Doerr S H, Blake W H, Humphreys G S, et al. Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures [J]. International Journal of Wildland Fire, 2004, 13: 157– 163.
    [43] Dragovich D, Morris R. Fire intensity, slopewash and biotransfer of sediment in eucalypt forest, Australia [J]. Earth Surface Processes and Landforms, 2002, 27: 1309–1319.
    [44] Edwards D, Axe L. Anatomical evidence in the detection of the earliest wildfire [J]. Palaios,2004,19: 113–128.
    [45] Elliott J G, Parker R S. Developing a post-fire chronology and recurrence probability from alluvial stratigraphy in the Buffalo Creek Watershed, Colorado, U.S.A.[J]. Hydrological Processes,2001, 15:3039–3052.
    [46] Falcon-Lang, H J, Kva?ek J, Uli?ny D. Fire-prone plant communities and palaeoclimate of a Late Cretaceous ?uvial to estuarine environment, Pecínov Quarry, Czech Republic [J]. Geological Magazine, 2001. 138, 563–576.
    [47] Falcon-Lang, H J, Scott A C. Upland ecology of some Late Carboniferous Cordaitalean Trees from Eastern Canada [J]. Palaeogeogr. Palaeoclimatol. Palaeoecol, 2000, 156,225–242.
    [48] Falcon-Lang, H J. A new anatomically preserved ginkgoalean genus from the Upper Cretaceous (Cenomanian) of the Czech Republic[J]. Palaeontology, 2004, 47: 349–366.
    [49] Falcon-Lang, H J. Fire ecology of the Carboniferous tropical zone [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164: 339–355.
    [50] Falcon-Lang, H J. The Early Carboniferous (Courceyan–Arundian) monsoonal climate of the British Isles: evidence from growth rings in fossil woods [J]. Geological Magazine, 1999, 136: 177–187.
    [51] Falcon-Lang, H J. The impact of wildfire on an Early Carboniferous coastal system,NorthMayo, Ireland [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1998, 139: 121–138.
    [52] Field T S, Arens N C. The ecophysiology of early angiosperms[C]. Plant, Cell, and Environment. 2007,30:291–309.
    [53] Florsheim J L, Keller E A, Best D W. Fluvial sediment transport in response to moderate storm flows following chaparral wildfire, Ventura County, southern California [J]. Geological Society of America Bulletin, 1991, 103: 504–511.
    [54] Friis E M, Pedersen K R, Crane P R. Cretaceous angiosperm?owers: innovation and evolution in plant reproduction [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2006, 232: 251–293.
    [55] Giovannini G, Lucchesi S, Giachetti M. 1988. Effects of heating on some physical and chemical parameters related to soil aggregation and erodibility [J]. Soil Science, 1988, 146: 255– 261.
    [56] Giovannini G, Lucchesi S. Is the vegetation cover the primary factor controlling erosion in burned soils?. in: Sala M, Rubio J L. (Eds.), Proceedings ESSC Conference on Soil Erosion and Degradation as a Consequenceof Forest Fire[M]. Barcelona and Valencia, Spain, September 1991: 16.
    [57] Given P H, Binder C R, Hill L W. Electron spin resonance of pure macerals [J]. Coal Science, American Chemical Society. Advances in Chemistry Series, 1966, 55: 344–362.
    [58] Glasspool I J , Scott A C. Phanerozoic atmospheric oxygen concentrations reconstructed from sedimentary charcoal [J]. Nat. Geosci, 2010, 3: 270–630.
    [59] Glasspool I J, Edwards D, Axe L. Charcoal in the Early Devonian: awildfire-derived Konservat-Lagerstatte [J]. Review of Palaeobotany and Palynology, 2006, 142: 131–136.
    [60] Glasspool I J, Edwards D, Axe L. Charcoal in the Silurian as evidence for the earliest wildfire [J]. Geology, 2004, 32:381–383.
    [61] Glasspool I J. A major fire event recorded in the mesofossils and petrology of the late Permian, lower Whybrow coal seam, Sydney Basin, Australia [J]. Palaeogeography Palaeoclimatology Palaeoecology, 2000, 164: 373–396.
    [62] Glasspool I J. Hypautochtonous-allochtonous coal deposition in the Permian, South African, Witbank Basin No. 2 seam; a combined approach using sedimentology, coal petrology and palaeontology [J]. International Journal of Geology, 2003, 53: 81–135.
    [63] Grice K, Nabbefeld B, Maslen E. Source and significance of selected polycyclic aromatic hydrocarbons in sediments (Hovea-3 well, Perth Basin, Western Australia) spanning the Permian–Triassic boundary [J]. Org. Geochem, 2007, 38:1795–1803.
    [64] Guo Y , Bustin R M. FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals [J]. International Journal of Coal Geology, 1998, 37: 29–53.
    [65] Haberle S G, Ledru M P. Correlations among charcoal records of fires from the past 16,000 years in Indonesia, Papua New Guinea, and Central and South America [J]. Quaternary Research, 2001, 55: 97–104.
    [66] Harris T M. Forest fire in the Mesozoic [J]. J. Ecol, 1958, 46: 447–453.
    [67] Hayatsu R, Winans R E, Scott R G,et al. Trapped organic compounds and aromatic units in coals[J]. Fuel, 1978,57:541– 548
    [68] Hazai I, Alexander G, Szekely T, et al. Investigation of hydrocarbon constituents of a young sub-bituminous coal by gas chromatography-mass spectrometry[J]. Journal of Chromatography, 1986,367:117–133
    [69] Heppenheimer H, Ste?ens K, Püettmann W, et al. Comparison of resinite-related aromatic biomarker distributions in Cretaceous–Tertiary coals from Canada and Germany[J]. Organic Geochemistry ,1992,18: 273–287
    [70] Herendeen P S, Magallon-Puebla Lupia R, Crane P R, et al. A preliminary conspectus of the Allon Flora from the Late Cretaceous (Late Santonian) of Central Georgia, U.S.A [J]. Annals of the Missouri Botanical Garden, 1999, 86: 407–471.
    [71] Huang C C, Pang J, Chen S, et al. Charcoal records of fire history in the Holocene loess–soil sequences over the southern Loess Plateau of China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239 :28–44
    [72] Huang C C, Pang J, Huang P, et al. High-resolution studies of the oldest cultivated soils in the southern Loess Plateau of China [J]. Catena , 2002, 47: 29–42.
    [73] Huber U M, Markgraf V, Sch?bitz F. Geographical and temporal trends in late Quaternary fire histories of Fuego-Patagonia, South America [J]. Quaternary Science Reviews, 2004, 23:1079–1097.
    [74] Huey R B , Ward P D. Hypoxia, global warming, and terrestrial late Permian extinctions [J]. Science, 2005,308, 398–401.
    [75] Imeson A C, Verstraten J M, van Mulligen E J, Sevink J. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest [J]. Catena, 1992, 19: 345– 361.
    [76] Inbar M, Tamir M, Wittenberg L.Runoff and erosion processes after a forest fire in Mount Carmel, a Mediterranean area [J]. Geomorphology,1998, 24:17–33.
    [77] Johansen M P, Hakonson T E, Breshears D D. Post-fire runoff and erosion from rainfall simulation: contrasting forests with shrublands and grasslands [J]. Hydrological Processes, 2001, 15: 2953–2965.
    [78] Jones T P , Lim B. Extraterrestrial impacts and wildfires [J]. Paleogeogr. Paleoclimatol. Paleoecol, 2000, 164: 57–66.
    [79] Jones T P, Ash S, Figueiral I. Late Triassic charcoal from Petrified Forest National Park,Arizona,USA [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 188: 127–139.
    [80] Komarek E V. Ancient fires. Proceedings of the Annual Tall Timbers Fire Ecology Conference[C]. 1973:219–240.
    [81] Kutiel P, Inbar M. Fire impact on soil nutrients and soil erosion in a Mediterranean pine forest plantation [J]. Catena, 1993, 20: 129–139.
    [82] Kva?ek J, Falcon-Lang, H J,et al. A new Late Cretaceous Ginkgolean reproductive structure Nehvizdyella gen. nov. from the Czech Republic and it's whole plant reconstruction [J]. American Journal of Botany, 2005,92:1958–1969.
    [83] LehmanT M, Wheeler E A. A fossil dicotyledonous woodland/forest from the Upper Cretaceous of Big Bend National Park, Texas[J]. Palaios ,2001,16:102–108.
    [84] Livingstone-Smith A. Bonfire II: the return of pottery firing temperature [J]. Journal of Archaeological Science,2001, 28: 991–1003.
    [85] Loaiciga H A, Pedreros D, Roberts D. Wildfire–streamflow interactions in a chaparral watershed [J]. Advances in Environmental Research, 2001, 5:295–305.
    [86] Marlon J R, Bartlein P J, Carcaillet C, et al. Climate and human in?uences on global biomass burning over the past two millennia [J]. Nature Geoscience, 2008, 1: 607–702.
    [87] Marlon J R, Bartlein P J, Walsh M K, et al. Wildfire responses to abrupt climate change in North America. Proceedings of the National Academy of Sciences of the United States of America[C]. 2009, 106: 2519–2524.
    [88] Martin D A, Moody J A. The flux and particle size distribution of sediment collected in hillslope traps after a Colorado wildfire [C]. Proceedings of the Seventh Federal Interagency Sedimentation Conference, Reno, Nevada, 2001b:111-47.
    [89] Martin D A, Moody J A.Comparison of soil infiltration rates in burned and unburned mountainous watersheds [J]. Hydrological Processes, 2001a,15: 2893– 2903.
    [90] Marynowski L, Simoneit B R T. Widespread Upper Triassic to Lower Jurassic wildfire records fromPoland: evidence fromcharcoal and pyrolitic polycyclic aromatic hydrocarbons [J]. Palaios, 2009, 24: 785–798.
    [91] McNabb D H, Swanson F J, Effects of fire on soil erosion. in: Walstad, J.D., Radosevich, S.R., Sandberg D V .(Eds.), Natural and Prescribed Fire in Pacific Northwest Forest [M]. Oregon State University Press, Corvallis, OR, USA, 1990, 159– 176.
    [92] McParland L C, Hazell Z, Campbell G, et al. How the Romans got themselves into hot water: temperatures and fuel types used in firing a hypocaust [J]. Environmental Archaeology, 2009a, 14:176–183.
    [93] McParland L C, Scott A C, Collinson M E, et al. The use of re?ectance values for the interpretation of natural and anthropogenic charcoal assemblages [J]. Archaeological and Anthropological Sciences, 2009b, 1: 249–261.
    [94] Mersereau R C, Dyrness C T.Accelerated mass wasting after logging and slash burning in western Oregon [J]. Journal of Soil and Water Conservation, 1972, 27: 112–114.
    [95] Meyer G A, Pierce J L, Wood S H, et al. Fire, storms,and erosional events in the Idaho batholith [J]. Hydrological Processes,2001,15: 3025– 3038.
    [96] Meyer G A, Wells S G, Balling Jr, et al. Response of alluvial systems to fire and climate change in Yellowstone National Park [J]. Nature , 1992, 357:147– 149.
    [97] Millspaugh S H, Whitlock C, Bartlein P J. Variations in fire frequency and climate over the past 17,000 years in central Yellowstone National Park [J]. Geology, 2000, 28: 211– 214.
    [98] Moldowan J M & Fago F J. Structure and Significance of a novel rerranged monoaromatio steroid hydrocarbon in petroleum[J]. Geochimica et Cosmochimica Acta, 1985, 50: 343~351.
    [99] Moody J A, Martin D A. Forest fire effects on geomorphic processes. In: Cerdae A, Robichaud P R. (Eds.), Fire Effects on Soils and Restoration Strategies[M]. New Hampshire: Science Publishers Inc, 2009: 41–80.
    [100] Moody J A, Martin D A. Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range [J]. Earth Surface Processes and Landforms, 2001b, 26: 1049–1070.
    [101] Moody J A, Martin D A. Post-fire, rainfall intensity-peak discharge relations for three mountainous watersheds in the western USA [J]. Hydrological Processes, 2001a, 15: 2981–2993.
    [102] Moore P D. No smoke without fire [J]. Nature, 1989, 342: 226–227.
    [103] Nabbefeld B, Grice K, Summons R E, et al. Significance of polycyclic aromatic hydrocarbons (PAHs) in Permian/Triassic boundary sections [J]. Appl. Geochem, 2010, 25:1374–1382.
    [104] Neary D G, Gottfried G J, Ffolliott P F. Post-wildfire watershed flood responses. Second International Fire Ecology and Fire Management Congress[C]. Orlando, Florida, 2003: 1–7.
    [105] Neary D G, Klopatek C C, DeBano L F, et al. Fire effects on belowground sustainability: a review and synthesis [J]. Forest Ecology and Management,1999, 122: 51– 71.
    [106] Nichols G J , Jones T P. Fusain in Carboniferous shallowmarine sediments, Donegal, Ireland: the sedimentological affects of wildfire[J]. Sedimentology, 1992, 39: 487–502.
    [107] Nichols G J, Cripps J, Collinson M E, et al. Experiments in waterlogging and sedimentology of charcoal: results and implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164: 43–56.
    [108] Obermager M, Osadetz K G, Fowler M G, et al.Delineating compositional variabilities among crude oils from central Montana,USA using light hydrocarbon and biomarker characteristics[J].Organic Geochemistry, 2002, 33(12):1343~1359
    [109] Otto A, Wilde V. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers– a review[J]. Bot. Rev,2001,67:141–238.
    [110] Page S. E., Siegert F., Rieley J. O., Boehm H.-D. V., Jaya A. and Limin S. (2002) The amount of carbon released from peat and forest fires in Indonesia during [J]. Nature, 1997, 420, 61–65.
    [111] Parrett C. Fire-related debris flows in the Beaver Creek drainage [C]. Montana, 1987: 57–67.
    [112] Pearson, T , Scott, A.C. Large palynomorphs and debris. In: Jones, T.P., Rowe, N.P.(Eds.), Fossil Plants and Spores: Modern Techniques[M]. London: Geological Society, 1999: 20–25.
    [113] Pflug H D , Proessel K F. Palynostratigraphy and palaeobotanical studies in the pilot hole of the Germancontinental deep drillingprogram: Results and implications [J]. Sci. Dri, 1991, 2: 13–33.
    [114] Philp R P. Fossil fuel biomarker: applications and spectra[J]. Methods in Geochemistry and Geophysics, 1985,23:1-294
    [115] Pierson F B, Carlson D H, Spaethe K E. Impacts of wildfire on soil hydrological properties of steep sagebrush-steppe rangeland [J]. International Journal of Wildfire, 2002, 11:145– 151.
    [116] Prosser I P, Slade C J. Gully formation and the role of valley-floor vegetation, southeastern Australia [J]. Geology, 1994, 22: 1127– 1130.
    [117] Prosser I P. Fire, humans and denudation at Wangrah Creek, Southern Tablelands, N.S.W. [J]. Australian Geographical Studies, 1990, 28: 77–95.
    [118] Püettmann W, Wolf M, Wolff-Fischer E. Chemical characteristics of liptinote macerals in humic and sapropelic coals[J]. Advances in organic geochemisty, 1986, 10: 625–632
    [119] Pyne S J, Andrews P L, Laven R D. Introduction to Wildland Fire [C]. Wiley, New York, 1996.
    [120] Pyne S J. Fire in America: a Cultural History of Wildland and Rural Fire [M]. Princeton: Princeton University Press, 1982.
    [121] Ramdahl T. Retene- a molecular marker of wood combustion in ambient air[J]. Nature ,1983,306: 580–582
    [122] Roberts A F. A review of kinetics data for the pyrolysis of wood and related substances[J]. Combustion and Flame ,1970,14:261–272
    [123] Robichaud P R, Beyers, J L, Neary, D G. Evaluating the effectiveness of postfire rehabilitation treatments[R]. United States Department of Agriculture, Forest Service Rocky Mountain Research Station, 2000.
    [124] Robichaud P R. Wildfire and erosion: when to expect the unexpected. Paper Presented at the Geological Society of America. Denver Annual Meeting. Geomorphic Impacts of Wildfire1[C]. Denver, Colorado, 2002.
    [125] Rosa J M De la,et al.?Use of pyrolysis/GC–MS combined with thermal analysis to monitor C and N changes in soil organic matter from a Mediterranean fire affected forest[J].?Catena,2008 74: 296–303
    [126] Rowe N P , Jones T P. Devonian charcoal [J]. Palaeogeogr. Palaeoclimatol. Palaeoecol, 2000, 164:347–354.
    [127] Rubio J L, Forteza J, Andreu V, et al. Soil profile characteristics influencing runoff and soil erosion after forest fire: a case study (Valencia, Spain) [J] . Soil Technology, 1997, 11: 67– 78.
    [128] Sander P M , Gee C T. Fossil charcoal: techniques and applications [J]. Review of Palaeobotany and Palynolology , 1990, 63: 269–279.
    [129] Sander P M. Taphonomy of the Lower Permian Geraldine bonebed in Archer County, Texas [J]. Palaeogeography Palaeoclimatology Palaeoecology, 1987, 61: 221–236.
    [130] Schopf J M. Modes of fossil preservation [J]. Review of Palaeobotany and Palynolology,1975, 20: 27–53.
    [131] Scott A C , Cope M. Reflectance measurements against temperature of formation for modern charcoals and their implications for the study of fusain [J]. Bulletin of the Geological Society of France, 1991a, 162:193– 200.
    [132] Scott A C , Damblon F. Charcoal: taphonomy and significance in geology, botany and archaeology [J]. Paleogeogr. Paleoclimatol. Paleoecol, 2010, 291: 1–10.
    [133] Scott A C , Glasspool I J. Charcoal re?ectance as a proxy for the emplacement temperature of pyroclastic ?ow deposits [J]. Geology,2005, 33: 589–592.
    [134] Scott A C , Glasspool I J. Observations and experiments on the origin and formation of inertinite group macerals [J]. International Journal of Coal Geology, 2007, 70: 55–66.
    [135] Scott A C , Glasspool I J. The diversification of Paleozoic fire systems and ?uctuation in atmospheric oxygen concentration [J]. Proceedings of the National Academy of Sciences USA, 2006,103 (29):10861–10865.
    [136] Scott A C , Jones T P. Fossil charcoal: a plant fossil record preserved by fire [J]. Geol, 1991b, 7: 214–216.
    [137] Scott A C , Jones T P. Microscopical observations of recent and fossil charcoal [J]. Microscopy and Analysis, 1991c, 24: 13–15.
    [138] Scott A C , Jones T P. The nature and in?uence of fire in Carboniferous ecosystems [J]. Palaeogeogr. Palaeoclimatol. Palaeoecol, 1994, 106: 91–112.
    [139] Scott A C , Stea R. Fires sweep across the Mid-Cretaceous landscape of Nova Scotia [J]. Geoscientist, 2002, 1: 4–6.
    [140] Scott A C, Galtier J, Clayton G. A new late Tournaisian (Lower Carboniferous)?ora fromthe Kilpatrick Hills, Scotland [J]. Review of Palaeobotany and Palynology, 1985, 44: 81–99.
    [141] Scott A C, Kenig F, Plotnick R E,et al. Evidence of multiple late Bashkirian to early Moscovian (Pennsylvanian) fire events preserved in contemporaneous cave fills [J]. Paleogeogr. Paleoclimatol. Paleoecol, 2010, 291:72–84.
    [142] Scott A C, Meyer-Berthaud B, Galtier J, et al. Studies on a new Lower Carboniferous ?ora from Kingswood near Pettycur, Scotland: preliminary report [J]. Review of Palaeobotany and Palynology, 1986, 48: 161–180.
    [143] Scott A C. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis [J]. Paleogeogr. Paleoclimatol. Paleoecol, 2010, 291: 11–39.
    [144] Scott A C. Observations on the nature and origin of fusain [J]. International Journal of Coal Geology ,1989,12:443–475.
    [145] Scott A C. The pre-quaternary history of fire [J]. Palaeogeography Palaeoclimatology Palaeoecololgy, 2000,164: 281–329.
    [146] Scott D F, Van Wyk D B.The effects of wildfire on soil wettability and hydrological behaviour of an afforested catchment [J]. Journal of Hydrology, 1990, 121: 239– 256.
    [147] Sevink J, Imeson A C, Verstraten J M. 1989. Humus form development and management under Mediterranean forest in NE-Spain [J]. Catena, 1989, 16: 461– 475.
    [148] Shafizadeh F. 1984. The chemistry of pyrolysis and combustion. In: Rowell, R. (Ed.), Chemistry of Solid Wood, Adv.Chem[M]. American Chemical Society, Washington,1984, 489–529
    [149] Shakesby R AcDoerr S H. Wildfire as a hydrological and geomorphological agent [J]. Earth-Science Reviews , 2006, 74: 269–307
    [150] Shen W, Lin Y, Sun Y, et al. Black carbon record across the Permian–Triassic boundary section at Mei-shan, Changhsing County, Zhejiang Province and its significance [J]. Acta Petrol. Sin, 2008, 24: 2407–2414.
    [151] Simoneit B R T, Rogge W F, Lang Q, et al.Molecular characterization of smoke from campfire burning of pine wood (Pinus elliottii)[J]. Chemosphere: Global Change Science ,2000,2:107–122
    [152] Simoneit B R T, Rogge W F, Mazurek M A, et al. Lignin pyrolysis products, lignans and resin acids as specific tracers of plant classes in emissions from biomass combustion. Environ[J]. Sci.Technol,1993, 27:2533–2541
    [153] Simoneit B R T, Schauer J J, Nolte C G,et al.1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles[J]. Atmos. Environ,1999, 33: 173–182
    [154] Simoneit B R T. Biomass burning—a review of organic tracers for smoke from incomplete combustion[J]. Applied Geochemistry,2002,17:129–162
    [155] Simoneit B R T. Organic matter in eolian dusts over the Atlantic Ocean, Proceedings of the Symposium on Concepts in Marine Organic Chemistry[J]. Mar. Chem,1977,5: 443–464
    [156] Simoneit B R T.Cyclit terpenoids of the geosphere.In: Biological Markers in the sedimentary Record(ed.Jones R B)[M]. Amsterdam: Elsevier, 1986:43–38
    [157] Smith M, Bend S. Geochemical analysis and familial association of Red River and Winnipeg reservoired oils of the Williston Basin,Canada[J].Org Geochem, 2004, 35(4):443–452
    [158] Soler M, Sala M, Gallart F. Post fire evolution of runoff and erosion during an eighteen month period. in: Sala M, Rubio J L. (Eds.), Soil Erosion and Degradation as a Consequence of Forest Fires [M].1994, 149– 162.
    [159] Standley L J, Simoneit B R T. Resin diterpenoids as tracers for biomass combustion aerosols[J]. J. Atmos. Chem, 1994,18: 1–15
    [160] Steart D, Collinson M E, Scott A C, et al. Palaeobotany as revealed by petrology of two contrasting lignites on either side of the Paleocene–Eocene Thermal Maximum [J]. Acta Palaeobotanica , 2007, 47:109–125.
    [161] Stefanova M, Oros D R, Otto A, et al.. Polar aromatic biomarkers in theMioceneMaritza-East lignite, Bulgaria[J]. Organic Geochemistry. 2002:33, 1079–1091.
    [162] Stinson K J , Wright H A.Temperatures of headfires in the southern mixed Prairie of Texas [J]. Journal of Range Management, 1969, 22: 169–174.
    [163] Stocks B J , KauVman J B. Biomass consumption and behaviour of wildland fires in boreal, temperate and tropical ecosystems: parameters necessary to interpret historic fire regimes and future fire scenarios. In: Clark J S , Cachier H , Goldammer J G, et al. (Eds.), Sediment Records of Biomass Burning and Global Change, NATO ASI Series[M]. Berlin: Springer, 1997: 169–188.
    [164] Stronach N R H , McNaughton S J. Grassland fire dynamics in the Serengeti ecosystem, and a potential method of retrospectively estimating fire energy [J]. Journal of Applied Ecology, 1989, 26: 1025–1033.
    [165] Sun G, Dilcher D.L, Wang H.S,et al. An eudicot of Early angiosperms from China[J]. Nature, 2011,471:625–628
    [166] Sun G, Lydon S.J,Watson J. Sphenobaiera ikorfatensis (Seward)Florin from the Lower Cretcaeous of Huolinhe, eastern Inner Mongolia, China[J]. Palaeontology, 2003,46(2): 423–430
    [167] Sun G. , Dilcher D.L. Early angiosperms from Lower Cretaceous of Jixi, eastern Heilongjiang, China [J]. Rev. Palaeobot. Palyn,2002,121:91–112
    [168] Sun G. Ginkgo coriacea Florin from Lower Cretaceous of Huolinhe, northeastern Nei Monggol, China[J]. Palaeontographica,1993, 230:133–142。
    [169] Sun Y.W, Liu H, Wan C.B et al. In situ spores of Asplenium and their implications for the evolution of the Aspleniaceae: a case study from the lower Cretaceous Changcai Formation in eastern Jilin Province, China [J]. Cretaceous Research,2010,31: 424–432.
    [170] Swanson F J. Fire and geomorphic processes. in: Mooney H A, Bonnicksen T M, Christiansen N L, et al. (Eds.), Fire Regime and Ecosystem Properties [R]. United States Department of Agriculture, United States Government Planning Office, Washington, DC, 1981: 401–421.
    [171] Swift Jr, L W, Elliott K J, Ottmar R D, et al. Site preparation burning to improve southern Appalachian pine-hardwood stands: fire characteristics and soil erosion, moisture, and temperature [J]. Canadian Journal of Forest Research, 1993, 23: 2242–2254.
    [172] Talon B, Payette S, Filion L, et al. Reconstruction of the long-term fire history of an old-growth deciduousforest in Southern Quèbec, Canada, from charred wood in mineral soils [J]. Quaternary Research , 2005, 64:36– 43
    [173] Tanner L H, Lucas SG, Zeigler K E. Rising oxygen levels in the Late Triassic:geological and evolutionary evidence. New Mexico Museum of Natural History and Science Bulletin [C].2006, 37: 5–11.
    [174] Taylor G H , Teichmueller M , Davis A, Diessel C F K ,et al. Organic Petrology[M]. Berlin :Gebrueder Borntraeger, 1998.
    [175] Taylor G H, Liu S Y, Diessel C F K. The cold climate origin of inertinite-rich Gondwana coals [J]. International Journalof Coal Geology, 1989, 11: 1– 22.
    [176] Taylor T N, Taylor E L. The Biology and Evolution of Fossil Plants[M]. New Jersey :Prentice Hall , 1993.
    [177] Teichmüller M. The genesis of coal from the viewpoint of coal petrology [J]. International Journal of Coal Geology,1989, 12: 1–87.
    [178] Thomas B M, Willink R J, Grice K, et al. Unique marine Permian–Triassic boundary section from Western Australia [J]. Aust. J.Earth Sci, 2004, 55: 423–430.
    [179] Tiedemann A R, Conrad C E, Dieterich J H, et al. 1979. Effects of fire on water. A state-of-art review [R]. United States Department of Agriculture, Forest Service, 1979.
    [180] Tinner W, Conedera M, Ammann B, et al. Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920 [J]. The Holocene,1998, 8 (1):31–42.
    [181] Uhl D , Kerp H. Wildfires in the Late Palaeozoic of Central Europe–The Zechstein (Upper Permian) of NW– Hesse (Germany) [J]. Palaeogeography Palaeoclimatology Palaeoecololgy, 2003, 199:1–15.
    [182] Uhl D , Montenari M. Charcoal as evidence of palaeo-wildfires in the Late Triassic of SW Germany [J]. Geol. J, 2010 , 10:1002–1229.
    [183] Uhl D, Hamad A A, Kerp H, et al. Evidence for palaeo-wildfire in the Late Permian palaeotropics charcoalified wood from the Um Irna Formation of Jordan [J]. Review of Palaeobotany and Palynology, 2007, 144, 221–230.
    [184] Uhl D, Lausberg S, Noll R, et al. Wildfires in the Late Palaeozoic of Central Europe– an overview of the Rotliegend (Upper Carboniferous– Lower Permian) of the Saar– Nahe Basin (SW– Germany) [J]. Palaeogeography Palaeoclimatology Palaeoecology , 2004, 207: 23–35.
    [185] Umbanhowar C E. Interactions of climate and fire at two sites in the northern Great Plain [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 208:141–152.
    [186] Van Wagner , C E. Conditions for the start and spread of crown fires [J]. Can. J. For. Res,1997, 7:23–34.
    [187] Vaughan A , Nichols G J. 1995. Controls on the deposition of charcoal: implications for sedimentary accumulations of fusain [J]. Journal of Sedimentary Research, 1995, 65: 129–135.
    [188] Villar H, Püettmann W, Wolf M. Organic geochemistry and petrography of Tertiary coals and carbonaceous shales from Argentina[J]. Organic Geochemistry ,1988,13: 1011– 1021.
    [189] Volkman J K, Maxwell J R. Acyclic isoprenoids as biological markers. In: Johns, R.B. (Ed.), Biological Markers in the Sedimentary Record[M]. Elsevier, Amsterdam, 1986,1–42.
    [190] Wang S , Yin H. Study on terrestrial Permian–Triassic boundary strata in East Yunnan and West Guizhou. Press of China University of Geosciences, 2001,Wuhan.
    [191] Wang Z Q , Chen N S. Traces of arborescent lycopsids and dieback of the forest vegetation in relation to the terminal Permian mass extinction in north China [J]. Review of Palaeobotany and Palynology, 2001, 117:217–243.
    [192] Wheeler E A, Baas P. A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy [J]. International Association of Wood Anatomists Bulletin ,1991. 12: 275–332.
    [193] Whitlock C, Larsen C. Charcoal as a fire proxy. In: Smol J P, Birks H J B Last, W M. (Eds.), Tracking Environmental Changes Using Lake sediments Volume 3: Terrestrial, Algal, and Siliceous Indicators [M]. Kluwer Academi Publishers, Dordrecht, The Netherlands, 2001: 75–96.
    [194] Whitlock C, Millspaugh S H. Testing the assumptions of fire-history studies: an examination of modern charcoal accumulation in Yellowstone National Park, U.S.A. [J]. Holocene ,1996, 6: 7–15.
    [195] Whitlock C, Shafer S L, Marlon J. The role of climate and vegetation change in shaping past and future fire regimes in the northwestern US and the implications for ecosystem management [J]. Forest Ecology and Management, 2003, 178: 5–21.
    [196] Wildman R A, Hickey L J, Dickinson M B, et al. Burning of forest materials under late Paleozoic high atmospheric oxygen levels [J]. Geology, 2004, 32: 457–460.
    [197] Wing S L, Boucher L D. Ecological aspects of Cretaceous ?owering plant radiation [J]. Annual Review of Earth and Planetary Sciences, 1998, 26: 379–421.
    [198] Wondzell S M, King J G. Post-fire erosional processes in the Pacific Northwest and Rocky Mountain regions[J]. Forest Ecology and Management, 2003, 178: 75–87.
    [199] Wooler M J, Street-Perrott F A, Agnew A D Q. Late Quaternary fires and grassland palaeoecology of Mount Kenya, East Africa: evidence from charred grass cuticles in lake sediments [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164: 207–230.
    [200] Zeigler K E. Taphonomic analysis of the Snyder Quarry: a fire-related Upper Triassic vertebrate fossil assemblage from north-central New Mexico[C]. New Mexico Museum of Natural History and Science Bulletin. 2003, 24: 49–62.
    [201] Zhou Zh Y. A heterophyllous cheirolepidaceous conifer from the Cretaceous of East China [J]. Palaeontology, 1983, 26(4): 789–811
    [202]北京矿业学院煤田地质系.中国煤田地质学[M].北京:煤炭工业出版社,1961.
    [203]陈芬,等.辽宁阜新盆地早白垩世植物群[J].地球科学,1981,2:39-54
    [204]陈芬,孟祥营,任守勤,等.辽宁阜新和铁法盆地早白垩世植物群及含煤地层[M].北京:地质出版社, 1988
    [205]陈佩元,孙达三,丁丕训,等.中国煤岩图鉴[M].北京:煤炭工业出版社,1996
    [206]崔金钟.内蒙古霍林河煤田罗汉松科几种丝炭化木化石的研究[J].植物学报, 1995, 37: 636–640 .
    [207]邓胜徽.内蒙古霍林河盆地早白垩世植物群[M ].北京:地质出版社,1995
    [208]傅家谟,刘德汉,盛国英.煤成烃地球化学[M].北京:科学出版社, 1990: 1-6.
    [209]郭椿杰.内蒙古霍林河盆地霍林河组下含煤段孢粉组合及其意义[J].石油勘探与开发,1995,4:37-44
    [210]韩德馨.中国煤岩学[M].长沙:中国矿业大学出版社,1996.
    [211]何德长.大兴安岭地区中生代成煤植物[M].北京:煤炭工业出版社, 1995.
    [212]吉利明,郑建京,孟仟祥.松花粉热降解甾族分子生物标志化合物及其热演化特征[J].沉积学报, 2005, 1:175–182.
    [213]吉林省地质矿产局.吉林省岩石地层[M].北京:中国地质大学出版社,2008.
    [214]李辉,王升忠,冷雪天.泥炭沼泽脂类化合物有机地球化学研究进展[J].矿物岩石地球化学学报,2004,(2),172–178.
    [215]梁斌,谢树成,等.安徽宣城更新世红土正构烷烃分布特征及其古植被意义[J].地球科学,2005,30(2):129–132.
    [216]梅美棠,崔金钟.内蒙古霍林河煤田霍林河组下含煤段成煤植物分析.中国煤田地质.1994, 1: 19–21
    [217]梅美棠,崔金钟.内蒙古霍林河煤田下含煤段植物群研究[J].中国煤田地质,1990,4
    [218]煤田地质与勘探,2007,35(2):1–5.
    [219]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社,2005.
    [220]蒲荣干,吴洪章.兴安岭地区兴安岭群和扎赉诺尔群的孢粉组合及其地层意义[J ] .中国地质科学院沈阳地质矿产研究所所刊,1985,11 :1– 113
    [221]沙金庚.黑龙江东部早白垩世生物地层学研究的主要进展[J].地学前缘,2002,3:95– 101
    [222]深圳市城市管理局.中国木化石[M].北京:中国林业出版社,2006.
    [223]斯行健,李星学.中国中生代植物[M] .北京:科学出版社, 1963 : 12429
    [224]孙柏年,石亚军,张成君,等.植物化石角质层分析及其应用[M] .北京:科学出版社,2005.
    [225]孙革,曹正尧,李浩敏,等.白垩纪植物群.见:李星学(主编),中国地质时期植物群[M].广州:广东科技出版社,1995: 310–341.
    [226]孙革,商平.内蒙古东部霍林河煤田晚侏罗世-早白垩世植物及含煤地层初步研究[J].阜新矿业学院学报,1988, 7(4):69–78.
    [227]孙革,郑少林,姜剑虹,等.1999.黑龙江鸡西煤盆地早白垩世生物地层研究新进展[J].煤田地质与勘探, 1999, 27(6):1–3.
    [228]孙革,郑少林.中国东北中生代地层划分对比之新见[J].地层学杂志,2000, 24(1):60–64.
    [229]孙革,刘风香.黑龙江鸡西含煤盆地早白垩世城子河组特尔姆叶(Tyrmia jixiensis)的发现[J].煤田地质与勘探, 35(2):1–5.
    [230]孙革.追索世界上最早的花.见:沙金庚主编.世纪飞跃——辉煌的中国古生物学[M].北京:科学出版社,2009:352–359.
    [231]孙革.东北、内蒙古几种拟刺葵(Phoenicopsis)及其分类[J].古生物学报,1987, 26(6): 662–688.
    [232]王培荣.生物标志物质量色谱图集[M].北京:石油工油出版社, 1993:57–58.
    [233]王铁冠,Simoneit B R T.广西百色盆地州景矿第三系褐煤有机地球化学与煤岩学研究,多环芳烃的组成特征[ J] .沉积学报, 1991, 9(增刊) : 9–20.
    [234]王铁冠.广西百色盆地州景矿第三系褐煤有机地球化学与煤岩学研究,Ⅵ单化合物碳稳定同位素推断生物标志物起源[J].沉积学报, 1995, 4(增刊):73–81.
    [235]谢树成,赖旭龙,黄咸雨,等.分子地层学的原理、方法及应用实例[J].?地层学杂志,2007,3:209-221
    [236]谢树成,梁斌,郭建秋,易轶.生物标志化合物与相关的全球变化[J].第四纪研究.武汉:2003,2(5):521–528.
    [237]谢树成.泥炭分子化石记录气候变迁和生物演替的信息[J].科学通报,2001,10(46):863 866.
    [238]续颜、董清水、王丽华等.褐煤煤层中成煤植物的研究进展.世界地质,2008,27(3):239–244.
    [239]续颜.霍林河煤田古火灾中几种生物标志化合物特征.中国古生物学会古植物学第七届会员代表大会暨010学术年会论文摘要集, 2010.11.
    [240]杨群.分子古生物学原理与方法[M].北京:科学出版社,2003:96–148.
    [241]殷鸿福,杨逢清,谢树成,等.生物地质学[M].武汉:湖北科学技术出版社,2004,94—130
    [242]曾凡刚,王铁冠,盛国英,等.广西钦州稔子坪矿褐煤有机地球化学特征,饱和烃馏分的生物标志化合物组合[J].地球化学, 1994, 23(3): 300–307
    [243]曾凡刚,程克明.华北地区下古生界海相烃源岩芳烃生物标志物地球化学特征-兼论饱和烃/芳烃生源组合特征[J].地质地球化学,1998,26(3):33–39
    [244]曾凡刚,妥进才,李源,等.广西3种褐煤芳烃生物标志物组合特征[J].北京大学学报(自然科学版) , 1998, 6 : 793–800.
    [245]曾凡刚,王铁冠,盛国英,等.广西三盆地褐煤饱和烃的地球化学特征.石油与天然气地质, 1994, 15( 2)141–150.
    [246]张武,郑少林,张志诚.植物界.见:地质矿产部沈阳地质矿产研究所主编.东北地区古生物图册(二)中新生代分册[M].北京:地质出版社. 1980, 221- 338.
    [247]张泓,沈光隆.煤古植物学:历史、现状与展望[J].地球科学进展, 1995, 10 (2) : 159–163 .
    [248]张慧,李小彦,郝琦,等.中国煤的扫描电子显微镜研究[M].北京:地质出版社,2003.
    [249]张文正,杨华,傅锁堂,等.鄂尔多斯盆地长91湖相优质烃源岩的发育机制探讨[J].中国科学D辑:地球科学,2007,37(增刊Ⅰ):33–38.
    [250]赵孟军,张水昌.17α(H)-重排藿烷在塔里木盆地中指相意义[J].石油勘探与开发,2001,28(1):36–38.
    [251]郑少林,张武.阜新海州组侧羽叶属一新种及其表皮构造[J].植物学报,1984,6:26
    [252]郑少林,张武.黑龙江省勃利盆地早白垩世中晚期植物群[J].中国地质科学院沈阳地质矿产研究所所刊,1983 ,第7号。
    [253]周崟,周笑梅.中国裸子植物材的木材解剖学及超微构造[M].北京:中国林业出版社,1994.
    [254]朱杨明,钟荣春,蔡勋育,等.川中侏罗系原油重排藿烷类化合物组成及成因探讨[J].地球化学, 2007, 36(3):253–260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700