用户名: 密码: 验证码:
深部矿产资源的时频联合电磁探测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国矿产资源经过几十年的大力开采,已造成浅部(<500 m)矿山资源枯竭,后备接替资源匮乏的局面,目前,矿山危机问题已成为重要的经济和社会问题。成矿理论研究和国际找矿经验表明我国存在第二采矿空间,即地下500-1500 m大陆深部蕴藏着潜力巨大的矿产资源。深部矿产资源的开发利用可缓解我国的矿山危机问题。然而,深部矿产资源勘探由于浅部采空、环境噪声严重等特殊情况,给勘探技术提出了巨大挑战。
     频域CSAMT和时域LOTEM电磁方法勘探深度大、场源大小和方向可控、信噪比较高,且对低阻敏感,具有探测深部矿产资源的潜力。为此,本文提出采用时频(CSAMT和LOTEM)联合电磁探测方法进行深部(500-1500 m)矿产资源的探测,缩短与国际探测深度的差距,并解决我国面临的矿产资源危机问题。基于此,本文首先对频域CSAMT法和时域LOTEM法分别进行了数值模拟,研究了单独采用两种方法进行探测时的优势和不足,发现两种方法在单独探测时均存在不可避免的难题。然而,若两种方法联合,则可取长补短,突出优势,从而突破探测深度瓶颈,提高探测的成功率。随后,将两种方法进行联合,并对时联合探测方法的方案设计及数据处理方法等进行了深入研究,证实了采用时频联合电磁探测方法进行深部矿产资源探测的可行性,可为我国深部矿产资源的探测提供有效的解决方案和方法保障。本论文研究过程中主要获得如下研究成果和结论:
     (1)基于麦克斯韦方程组阐述了频域CSAMT法和时域LOTEM法探测深部矿产资源的基本原理,从理论上探讨了时、频两种方法探测深部矿产资源的可行性。采用均匀半空间模型,通过对发射频率和激发场强的研究,发现电偶极子更适合作为两种方法深部探测的发射场源;通过电阻率、接发距和时域电磁场的关系研究,深入探讨了时域信号的特点。
     (2)采用层状大地模型,对CSAMT法的优势和不足进行了数值模拟研究。首先,通过几种方法的仿真结果对比,确定了大收发距下的贝塞尔函数收敛问题的解决方法;随后,通过不同模型电磁场曲线的对比分析,得出高、低阻的电磁场曲线特征及CSAMT法分辨高、低阻的能力;并研究了妨碍CSAMT法深部探测的各种效应(非平面波效应、假极值效应和静态效应)的特征及其对探测结果影响。
     (3)采用层状大地模型,对LOTEM法的优势和不足进行了数值模拟研究。首先,利用Guptasarma数字滤波法稳定、高精度的频一时域电磁场转换优势,解决了大收发距下电偶极LOTEM法电磁场的计算问题;随后,分析了高、低阻在感应电动势和磁(?)曲线上的特征反映以及LOTEM法分辨高、低阻的能力;LOTEM法由于数据量庞大、电磁场及电阻率计算过程复杂、数据反演理论不成熟等问题,直接降低了其深部探测的效率。
     (4) CSAMT和LOTEM法的分别研究表明:LOTEM法相对CSAMT法曲线光滑无假极值效应,且由于其接收磁场或磁场的变化率,因而不存在静态效应和趋势项;其次,CSAMT法横向分辨能力高、穿透高阻能力强,而LOTEM法纵向分辨能力高、且无高阻屏蔽现象;另外,CSAMT法的理论和反演方法成熟,可为LOTEM法的数据反演提供有效借鉴;最后,两种方法的观测装置相近,具备联合应用的条件。因此,两种方法联合可提高CSAMT法深部探测结果的可信度和LOTEM法的反演效率,从而达到深部资源成功探测的目的。
     (5)针对深部矿产资源探测,对时频联合电磁探测方法的观测装置进行了研究。研究结果表明,为提高深部微弱信号的提取能力,可采用电偶极发射并在转折频率前采集信号;其次,不断加密频率并不能无限制提高频域纵向分辨率,但采用基频小于或等于最佳发射频率的3或5频的伪随机发射方式,可在分辨出深部异常的同时,提高工作效率和接收信号幅度(提高了△fmin1.5倍);另一方面,时域可通过发射周期性和双极性方波,并大容量存储原始数据,从而实现双极性阈值叠加压制尖峰和其它噪声的目的;最后,设计了环阵列固体不极化电极,可同时实现高效、高精度的深部资源探测。
     (6)针对深部探测中电极性能低的问题,进行了接收电极极差和稳定性研究。通过对净反应速度、环境浓度、环境温度、扩散速率等电化学因素与极差和稳定性的关系研究,得出了降低极差、提高稳定性的方法;另外,采用电阻网络元模拟法,对接地电阻进行了仿真研究,提出了低接地电阻的电极设计方法和野外施工要求;最后,研究了电极中趋势项电化学噪声对CSAMT法视电阻率值的影响,结果表明该噪声可显著降低CSAMT法对深部矿产资源的探测能力。
     (7)针对时频联合电磁探测的数据处理,进行了时域和频域的全区视电阻率计算、人机联合反演以及联合LOTEM数据校正等方法研究。结果表明全区视电阻率计算结果能够客观反映地下地质信息,尤其是深部地电信息,从而可降低计算的复杂度,提高解释结果的可信度;其次,人机联合反演方法(频域包含自动迭代功能)能快速获取地电模型,并在一定程度上减少LOTEM法的工作量,提高其在深部探测中的效率;另外,LOTEM联合校正对时频转换方法和修正反演法进行了研究,结果表明时频转换方法可以用来识别CSAMT法中存在的假极值、静态效应和趋势项,但由于逼近能力的不同而导致其校正误差大;而修正反演法则可以成功识别并校正CSAMT法中的静态效应和趋势项。
     本论文通过上述研究,主要在如下三个方面取得了突破和创新:
     (1)发现电极中低频趋势项对CSAMT法的深部探测结果存在明显影响,并提出了校正方法。研究表明正值趋势项会导致低频对应的深部电阻率值迅速增大,而负值趋势项则可导致低频对应的深部电阻率值迅速降低,从而屏蔽了深部真实的地质信息;联合LOTEM数据的反演修正法,可成功校正趋势项,还原低频真实信息,提高频域CSAMT和时频联合电磁探测结果的可信度;
     (2)提出环阵列固体不极化电极的设计方法。该方法采用电解法、固体电解质均匀包裹制作成锥形一体化固体不极化电极,并运用环阵列设计电极结构和叠加压噪法处理信号,从而同时实现金属电极的高效和不极化电极的高精度,为深部微弱电场信息的获取提供了技术支持;
     (3)深部矿产资源探测的时频联合电磁探测方法研究。基于CSAMT法和LOTEM法的优势和不足,对联合探测方法的观测方案和数据处理进行了深入研究,论证了联合探测方法可扬长避短,实现深部矿产资源探测的目的。
     综上,本研究表明,时频联合电磁探测方法可突破目前深部矿产资源探测深度的技术瓶颈,为深部矿产资源探测提供了理论基础和方法指导,对缓解我国矿山危机具有重要意义,同时可缩短与国际发达国家深部探测技术的差距。
The results of exhaustion of mineral source, deficiency of substitution source and declination of economy have been produced with the expliotion of several decades. The crisis ore problem brought becomes the economic and social problem. Metallogenic studies and the international exploition experiences ores show that there exists the second exploring space in China, in which large mineral sources deposit below 500~1500 meters depth. This foundation provides basis guarantee for solving the problem of crisis mines. However, the environment in mining area is very unfavorable for the geophysical exploration, so the large improvement of prospecting techniques is needed.
     CSAMT and LOTEM methods have those advantages such as:artificial source, controlled source direction, large signal strength, and sensitive to low resistivity. Thus both methods are the good choices for deep mine resource prospecting. Therefore, on the basis of the numerical modeling of these two time frequency methods, this article proposed the joint time-frequency electromagnetic method, and payed the main attention to the research of observation scheme and data process method. The conclusions are as follows:
     (1) The principles of CSAMT and LOTEM for deep mine prospecting have been introduced based on Maxwell's equations, and the principles confirm the feasibility of those methods. The electric dipole transmitting source is determined by the research of transmitting equency and excited field. The relationship between resistivity, offset and electromagnetic field makes the knowledgement of signal characteristics of time domain.
     (2) In the CSAMT modeling simulation, the precise and fast method for the electromagnetic calculation is determined by analysis and comparision of several methods for the convergence problem of Bessel function under the large offset condition. The different reflections in electromagnetic curve of low and high resistivity provide theoretical knowledge for recognization of geologic characteristics. In addition, the resolution ability for low and high resistivity bodys is drawn from the characteristics of electromagnetic curves. Non-pl ne wave effect, false peak effect and static effect are found in the far-zone and all-zone electromagnetic curves, by the analysis of their characteristics and influences, the conclusions are obtained as follows:the existence of those effects shields the ture geologic information, especially the medi and deep information, adds the interpretation difficulty, lowers the reliability of results, and finially hinders the development of CSAMT in the deep detecting space. This problem lays the foundation for the effects correction by joint LOTEM data.
     (3) Guptasarma digital linear filter method with stability and high precision solves the elelctromagnetic field calculation in time domain using the frequency domain method. In the modeling simulation of LOTEM method, different reflections of high and low resistivity in induced voltage and magnetic curves are enduced. The sensibility of induced voltage to resistivity and offset makes the curve complicated, and non-sensibility of magnetic field make the curve simple and smooth. There are no false peak effect, and no static effect and trends in LOTEM curves because of magnetic field or induced voltage collection. The large storage by long period observation, complex calculation of time domain, overloaded early-late apparent resistivity calculation separately and immature data interpretation problems lower the utilization ratio of LOTEM method directly. Those advantages and disadavantages of LOTEM method further the combination of CSAMT and LOTEM in deep mine resources detection.
     (4) The joint time-frequency electromagnetic method for deep mine resources detection is proposed by the similar observation configuration, complementation of two methods. In frequency domain, the frequency lower than the optimal transmitting frequency can be taken as the minimum transmitting frequency, taking this frequency as the base frequency, and transmitting with 3 or 5 pseudo-random frequency will make the electric field increase byΔfmin1.5. In time domain, in order to improve the data quality by bipolar preset stacking methods, transmitting bipolar period wave, acquiring repeated, and enlarging the storage volume are needed. Combining with the convience of metal electrode and high performance of nonpolarized electrode, the "dumbbell" enclosing solid nonpolized electrode forms taper metal electrode integration construction. The electrode is plated by electrolysis, and then is enclosed by solid electrolyte uniformly, and this method can improve the stability of electrode. The taper electrode is like a needle, can penetrate easily with high efficiency. Several electrode needles forming ring array electrodes can suppress noises using digital signal processing method.
     (5) The stability and precision of electrodes are affected by the volecity of net reaction, circumstance concentration, circumstance temperature, pH, and diffusion potential. The influence to the potential difference of the factors will be lowered if the electrolytic solution is at the saturated or oversaturated situation. At the same time, increasing the length will extend the use life of the electrode. The calculation by resistivity network simulation method has the results as followings:different type, radius, bury and resistivity of soil will have different grounded resistivity. The bigger radius, the deeper bury, the smaller soil resistivity, and the smaller grounded resistivity, and this is good to the collection of weak signal. The potential difference will change by the influence factor, named as trends. The curve characteristic is near linear or nonlinear, and the spectrum focuses on zero or low frequency as the presence of drift. The drift will make the calculated resistivity at low f(?)equency change abruptly, shield the real information at deep depth, and lead to wrong inversion results.
     (6) In the data procession method research, the all-zone apparent resistivities of CSAMT and LOTEM methods are calculated, and the results can reflect the geologic information objectively, reproduce the deep geologic imformation, lower the work load and complexities, and improve the reliability of results. Man-machine combination (auto-iteration for CSAMT method) inversion can obtain the geo-electric model quickly, and thus improves the competitive power of LOTEM method in deep resources prospecting. Besides, the effects of CSAMT method can be revised by the LOTEM data, and the methods are f=186/t time-to- frequency transform and inversion correction method. The static effect and trends can be revised effectively, and the false peak effect can be recognized. Those data processing methods make the reflection of deep information more reality, and improve the interpretation effiency and reliability.
     The innovations of this paper are as followings:
     (1) The influence to CSAMT results by trends of electrode is found, and the correction method is then proposed. The positive trends will make the resistivity in depth increase abruptly, and vice versa. This kind of change can shield the real information in depth. However, the inversion correction with LOTEM data can reveal the true geologic information in depth, and finally improves the reliability of CSAMT and joint time-frequency electromagnetic results.
     (2) The design method of ring array solid non-polarized electrode is proposed. Those methods adopted overcome the problems of low stability in metal electrode and inconvience in non-polarized electrode such as, electrolysis in electrode manufacture, electrode enclosed by solid electrolyte uniformly in solid non-polarized electrode manufacture, ring array and taper design structure, and iteration suppression method. The realization of electrode with high precision and effiency provides technical support for weak electric signal acquisition in deep mine resource detection.
     (3) Joint time-frequency electromagnetic method for deep mine resources is proposed. Those methods such as,3 or 5 pseudo-random transmitting with the base frequency lower than the optimal transmitting frequency, bipole preset iteration method, all-zone apparent resistivity calculation, man-machine joint inversion, time-frequency transform and inversion correction method etc., are used to improve the prospecting ability and effiency of deep resources.
     Those results show that, joint time-frequency electromagnetic method can break the technique bottleneck of deep mine resources prospecting, provide guarantee for the successful detection of deep mine resources, is very important for the solving of mine crisis, and can shorten the gap of deep prospecting level between our country and developed countries.
引文
[1].易晓剑.国内外主要有色金属资源储量及其特点[J].世界有色金属,2005,12:42-43.
    [2]赵鹏大.提高中国地质调查战略地位若干问题的思考[J].地质通报,2003,22(12):860-862.
    [3]杜玉良,汤中立,蔡克勤等.资源矿山危机解困思考[J].西北地质,2005,4(38)60-64.
    [4]吕古贤,郑大瑜,朱裕生等.我国主要金属矿山危机资源潜力战略调查与评价[J].“十五”地质行业获奖成果资料汇编,2006:161-162.
    [5]滕吉文.强化开展地壳内部第二深度空间金属矿产资源地球物理找矿、勘探和开发[J].地质通报,2006,7(25):767-771.
    [6]柳建新.地球物理勘探在矿山危机深边部接替资源勘探中的应用[J].国土资源导刊.2006,3(3):120-124.
    [7]汤井田,何继善.可控源音频大地电磁法及其应用[M].长沙:中南大学出版社,2005.
    [8]Cagniard, L., Basic Theory of the Magnetotelluric Method of Geophysical Prospecting [J]. Geophysics,1953,18 (1):605-636.
    [9]Kaufman, A.A., Keller, G.V., The Magnetotelluric Sounding Method [J]. Elsevier,1981, 595.
    [10]陈乐寿,王光愕.大地电磁测深法[J].北京:地质出版社,1990.
    [11]Vozoff, K., The Magnetotelluric Method in the Exploration of Sediment Basins[J], Geophysics,1972,37:98-141.
    [12]荒木忠次,高杉真司,筝原信男.MT法概论[J].地热技术,1982,7(3):1-52.
    [13]刘国栋,陈乐寿.大地电磁测深法研究[J].北京:地震出版社,1990.
    [14]张木生.大地电磁测深仪器中的几个关键技术[G]//刘国栋,邓前辉编.勘探地球物理专辑(第二集,电磁测深).北京:地质出版社,1989:1-9.
    [15]杨生.大地电磁测深法环境噪声抑制研究及其应用[D].长沙:中南大学,2004.
    [16]Goldstein M. A., Strangway D. W., Audio-Frequency Magnetotellurics with a Grounded Electric Dipole Source[J]. Geophysics,1975,40(1):669-683.
    [17]Zonge, K. L., Ostrander, A. G., Emer, D. F., Controlled source audio-frequency magnetotelluric measurements [C]. The 50th SEG Annual Meeting Soc. Explor. Geophys.,1980,749-763.
    [18]Zonge, K.L., Hughes, I.J., Controlled source audio-frquency magnetotellurics[J]. In: Electromagnetic Methods in Applied Geophysics,1991,2(B):713-809.
    [19]罗延钟,万乐.可控源音频大地电磁法[J].电法勘探新进展,19,28-48.
    [20]Boschetto N. B., Hohmann, G. W., Controlled-source audiofrequency magnetotelluric responses of three-dimensional bodies [J]. Geophysics,1991,56(2):255-264.
    [21]何继善编.可控音频大地电磁法[M].长沙:中南大学出版社,1990.
    [22]石昆法.可控源音频大地电磁法理论与应用[M].北京:科学出版社,1999:10-88.
    [23]Macnae, J., Lay, I., et al., Measurement of Static Shift in MT and CSAMT Surveys[J]. Exploration Geophysics,1998,29:494-498.
    [24]王家映.关于大地电磁的静校正问题[J].地质科技情报,1992,11(1):69-76.
    [25]底青云,王若等.可控音频大地电磁数据正反演及方法应用[M].北京:科学出版社,2008.
    [26]Vozoff, K., et al., An Australian Evaluation of new electromagnetic methods for petroleum exploration[J].1984, in SEG meeting, Melbourne.
    [27]Keller, G. V., et al., Magnasource Time-Domain Electromagnetic Sounding Method[J]. Geophysics,1984,48(7):993-1009.
    [28]Strack, K.M., The Deep Transient Electromagnetic Sounding Technique:First Field Test in Australia[J]. Exploration Geophysics,1984,15(4):251-259.
    [29]Strack, K.M., et al., A Method for the Determination of Thermal Conductivity of Sandstone Using a Variable State Approach[J]. Geophysics prospecting,1982, 30:454-469.
    [30]Strack, K.M., Forward modeling for Time Domain Electromagnetic (TDEM) Sounding Surveys[J].1984,46th EADG meeting in London.
    [31]Stoyer, C.H., Strack, K.M., The deep transient electromagnetic(TDEM) Sounding technique[J].1984,46th EADG meeting in London,401.
    [32]中德瞬变电磁测深合作组.瞬变电磁测深法[J].地震地质,1989,11(1):77-83.
    [33]牛之琏.时间域电磁法原理[M].长沙:中南工业大学出版社,1992.15-20.
    [34]Spies, B.R., Eggers, D.E., The use and misuse of apparent resirivity in electromagnetic methods[J]. Geophysics,1986,51:1462-1471.
    [35]Wilt, M., Stark, M., A simple method for calculating the apparent resistivity from electromagnetic sounding data[J]. Geophysics,1982,47,1100-1105.
    [36]殷长春,朴化荣.时间域和频率域电磁测深法中的视电阻率全区定义[J].物探与化探,1991,15:290-299.
    [37]殷长春,朴化荣.电磁测深法视电阻率定义问题的研究[J].物探与化探,1991,15(4),290-299.
    [38]Wad S. H.,地球物理用电磁场论[M].北京:地质出版社,1978.
    [39]Nabighian N编著,赵经祥等译.勘查地球物理电磁法[M].第一卷,北京:地质出版社,1992.
    [40]Geophysical Recevier[EB/OL]. http://www.zonge.com.
    [41]底青云,王妙月,石昆法,等.V6多功能系统及其在CSAMT勘查应用中的效果[J].地球物理学进展,2002,17(4):663-670.
    [42]ADU-07 manual[EB/OL]. http://www.metronix.de.
    [43]殷长春,朴化荣.三维地磁模拟技术及其在频率测深法中的应用[J].地球物理学报,1994,6(37):820~827.
    [44]Yin, C. C., Piao, H. R., Three-dimensional electromagnetic modeling and its application in frequency-domain electromagnetic sounding methods [J]. Chinese J. Geophysics, 1994,6(37):820~827.
    [45]底青云,Unsworth, M.,王妙月.有限元法2.5维CSAMT数值模拟[J].地球物理学进展,2004,2(19):317-324.
    [46]底青云,Unsworth, M.,王妙月.复杂介质有限元法2.5维可控源音频大地电磁法数值模拟[J].地球物理学报,2004,4(47):723-730.
    [47]安志国,底青云CSAMT法对低阻薄层结构分辨能力的探讨[J].地震地磁观测与研究,2006,2(27):32-38.
    [48]Wannamaker, P. E., Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, United States of America, Part II:Implications for CSAMT methodology [J]. Geophysics,1997,2(62):466-476.
    [49]Unsworth, M. J., Lu, X. Y., Watts M. D., CSAMT exploration at Sellafield: Characterization of a potential radioactive waste disposal site [J]. Geophysics,2000, 4(65):1070-1079.
    [50]Di, Q. Y., Shi, K.F., Li, Y. X., et al., Successful Applications of CSAMT for Deep Geothermal Exploration in Urban Areas [J]. SEG Expanded Abstracts,2006,25:820.
    [51]Carlyle, M., Routh, P., Donaldson, P., et al., Electrical conductivity imaging using controlled source electromagnetics for subsurface fluid flow characterization[J]. SEG Expanded Abstracts,2004,23:1171.
    [52]Ranganayaki, R. P., Fryer, S. M., Bartel, L. C., CSAMT surveys in a heavy oil field to monitor steam-drive enhanced oil recovery process [J]. SEG Expanded Abstracts,1992, 11:1384.
    [54]李金祥,闫小兵,杨建军.可控源音频大地电磁法在采空区探测中的应用[J].山西建筑,2010,36(10):105-106.
    [55]孙林.可控源音频大地电磁法在地热资源勘查中的应用[J].河北煤炭,2010,(01):47-50.
    [56]李勃,李凤芝,闫志勇.可控源音频大地电磁法在肖家营子钼矿普查中的应用[J]. 甘肃冶金,2010,(02)
    [57]张国鸿,李仁和.可控源音频大地电磁法深部找矿实验效果[J].物探与化探2010,(01).
    [58]程云涛CSAMT在厦门杏林湾寻找深部地热中的应用[J].工程地球物理学报2010,(01).
    [59]高勇浩,刘建利,高阳,冯旭辉CSAMT法在深部找矿中的应用[J].西北地质2010,(02).
    [60]张建奎.可控源音频大地电磁测深找铅锌矿的应用[J].物探与化探,2010,(02).
    [61]朴化荣.电磁测深法原理[M].北京:地质出版社,1990.
    [62]陈明生,闫述CSAMT勘探中场区、记录规则、阴影及场源复印效应的解析研究[J].地球物理学报,2005,48(4):951-958.
    [63]姚治龙,王庆乙,胡玉平等.利用TEM测深校正MT静态偏移的技术问题[J].地震地质,2001,23(2):257-263.
    [64]鲁新便,田春来,李豺.瞬变电磁测深法在大地电磁测深曲线静校正中的作用[J].石油物探,1995,34(1):86-95.
    [65]罗志琼.用电磁阵列剖面法压制MT静态效应影响的研究[J].地球科学,1990,15(增刊):13-22.
    [66]孙传文,邓前辉,刘国栋等.电磁阵列剖面法的实施与资料处理初探[J].见刘国栋,邓前辉,主编.电磁方法研究与勘探[M].北京:地震出版社,1993,52-59.
    [67]罗延钟.可控源音频大地电磁法的静态校正[J].物探与化探,1991,15:196-202.
    [68]宋守根,汤井田,何继善.小波分析与电磁测深中静态效应的识别、分离及压制[J].地球物理学报,1995,38:120-128.
    [69]顾锦才.大地电磁测深静校正应用实例[J].见:刘国栋,邓前辉,主编.电磁方法研究与勘探[M].北京,地震出版社,1993,134-141.
    [70]方文藻,李予国.用瞬变电磁测深校正MT静态校正[J].见:刘国栋,邓前辉,主 编.电磁方法研究与勘探[M].北京:地震出版社,1993.111-116.
    [71]何展翔.相权静校正.见刘国栋,邓前辉,主编.电磁方法研究与勘探[M].北京:地震出版社,1993,117-124.
    [72]陈清礼,胡文宝,李金铭等.利用地表电阻率校正大地电磁静态偏移[J].物探与化探,1999,23(4):289-295.
    [73]陆阳泉.固体不极化电极[P].实用新型专利.2004.
    [74]翁爱华,董瑞春.杆状不极化电极[P].实用新型专利.2006.
    [75]陆阳泉,梁子斌.国内外关于不极化电极研究的概况与进展[J].地震科技情报.1998,6:1-6.
    [76]PE4[EB/OL]. http://www.phoenix-geophysics.com.
    [77]EFP-06 Broad Band Electric Field Probe[EB/OL]. http://www.metronix.de.
    [78]LEMI-501[EB/OL]. http://www.metronix.de.
    [79]Petiau, G., Dupis, A., Noise, temperature coefficient and long time stability of electrodes for telluric observations[J]. Geoph. Prospecting,1980,28(5):792-804.
    [80]Petiau, G., Second generation of lead-lead chloride electrodes for geophysical applications[J]. Pure and Appl. Geophysics,2000,157(3):351-382.
    [81]Korepanov, V. E., High precision non-polarized electrodes for field geophysical prospecting[J]. Pure and Appl. Geophysics,2000,157(3):351-382.
    [82]Korepanov, V. E., Volodymyr, G., et al., Super-low noise non-polarized electrode [J]. IAGA WG 1.2 on Electromagnetic Induction in the Earth, Short Abstract 19th Workshop.2008:445.
    [83]武汉地质学院金属物探教研宣.电法勘探教程[M].地质出版社.1981:546-547.
    [84]中华人臣共和国地质矿产部.直流电法工作规范[M].地质出版社.1984:194-195.
    [85]河北省地质局地球物理探矿大队.电法找水[M].水利电力出版社.1974:174-175.
    [86]徐笑民.自制不极化电极[J].物探与化探.1992,16(1):封三转21.
    [87]长寿命不极化电极[EB/OL]. http://www.dianfa.com/nonPol.htm.
    [88]电极[EB/OL]. http://www.orientbeta.com.
    [89]Strack, K.M., Exploration with deep transient electromagnetic[M]. Netherlands,Elsevier, 1992.
    [90]Stephan, A., Schniggenfitting, H., and Strack, K. M., Long-offset transient EM sounding north of the Rhine-Ruhr-Coal-District, F.R. Germany[J], Geophys. Prosp.,39,505-525.
    [91]Strack, K.M., Hanstein, T., Lebrocq, K., et al., Case histories of long-offset transient electromagentics (LOTEM) in hydrocarbon prospective areas[J]. First Break,1989b, 7,467-477.
    [92]Strack, K.M., Luschen, E., Kotz, A.W., Long offset transient electromagentic (LOTEM) soundings applied to deep crustal studies in Southern Germany[J]. Geophysics,1990, 55,834-842.
    [93]Yang, S., A single apparent resistivity expression for long-offset transient electromagnetic [J]. Geophysics,1986,51(6):1291-1297.
    [94]长谷川健.水平葡氛双搔子仁上石居状大地刃只于少尹扁答乏觅褂娜雷率仁沪[J].物理探矿,38(3):1-85.
    [q5]唐新功,胡文宝,严良俊.地堑地形对长偏移距瞬变电磁测深的影响研究[J].工程地球物理学报,2004,1(4):313-317.
    [96]朱苏刘,胡文宝.AB-s方式瞬变电磁测深资料处理方法研究[J].石油地球物理勘探,2002,3(37):262-266,286.
    [97]严良俊,胡文宝,陈清礼等.长偏移距瞬变电磁测深的全区视电阻率求取及快速反演方法[J].石油地球物理勘探,1999,34(5):532-538.
    [98]严良俊,胡文宝.南方碳酸盐岩地区电磁勘探方法试验研究[J].北京:石油工业出版社,2001.
    [99]Dong, W., Zhao, X., et al., The time-frequency electromagnetic method and its application in Western China[J]. Applied Geophysics,2008,5(2):127-135.
    [100]黄力军.电偶源瞬变电磁测深一维全区视电阻率解释方法研究[J].物探与化探, 1995,19(5):391-397.
    [101]王有杰,丛皖平,王继矿,陈万胜.建场法多测站探测系统的研究[J].煤田地质与勘探,33(1),2005:61-64.
    [102]Kaufman, A. A., Keller, G. V., Frequency and transient soundings[M]. New York: Elsevier Science Publishers,1983.
    [103]蒋邦远.实用近区磁源瞬变电磁法勘探[M].北京:地质出版社,1998.
    [104]李金铭.激发极化法方法技术指南[M].北京:地质出版社,2004:20-21.
    [105]傅良魁,李金铭主编.电法勘探教程[M].北京:地质出版社,1986.
    [106]傅良魁主编.激发极化法[M].北京:地质出版社,1982.
    [107]Kong, F.N., Hankel transform filters for dipole antenna radiation in a conductive medium[J]. Geophysical Prospecting,2007,55:83-89.
    [108]Anderson, W. L., Numerical integration of related Hankel transforms of orders 0 and 1by adaptive digital filteing[J]. Geophysics,1979,44(7):1287-1305.
    [109]Chave, A. D., Numerical integration of related Hankel transforms by quadrature and continued fraction expansion[J]. Geophysics,1983,48(12):1671-1686.
    [110]Anderson, W. L., Chave, A. D., Discussion on:"Numerical integration of related Hankle transforms by quadrature and continued fraction expansion" by A.D. Chave (Geophysics,48, P.1617-1686,December,1983)[J]. Geophysics,1983,48:1811-1813.
    [111]Anderson, W. L., Computation of Green's tensor integrals for three-dimensional electromagnetic problems using fast Hankel transforms[J]. Geophysics,1984, 49(10):1754-1759.
    [112]Anderson, W. L., A hybrid fast Hankel transform algorithm for electromagnetic modeling[J]. Geophysics,1989,54(2):263-266.
    [113]Guptasarma, D., Singh, B., New digital linear filters for Hankel JO and Jl transforms[J]. Geophysical Prospecting,1997,45:745-762.
    [1114]Knight, J.H., Raich, A.P., Transient electromagnetic calculations using the Gaver-Stehfest inverse Laplace transform method[J]. Geophysics,1982,47(1):47-50.
    [1115]Guptasarma,D.,Computation of the time-domain response of a polarizable ground[J]. Geophysics,1982,47(11):953-963.
    [116]长谷川健.On the Step Response and the Apparent Conductivity for a Stratified Earth by a Horizontal Electric Dipole[J]物理探矿,1985,38(3):1-85.
    [117]刘继东,方文藻.用线性数字滤波法计算大回线源在地下形成的瞬变电磁场[J].物探化探计算技术,1996,18(3):231-237.
    [118]蒋淑芬,向淑晃.一种正余弦变换的高效算法[J].工程地球物理学报,2007,4(5):512-515.
    [119]阮百尧Guptasaram算法在瞬变电磁正演计算中的应用[J].桂林工学院学报,1996,16(2):167-170.
    [120]李汝传,王书民,孙鸿雁.用混合算法计算电偶源瞬变电磁响应[J].物探与化探2002,26(3):215-217.
    [121]昌彦君,张桂青.电磁场从频率域转换到时间域的几种算法比较[J].物探化探计算技术,1995,17(3):25-29.
    [122]张建平,王再军,李庆武.瞬变电磁响应的延迟谱计算方法[J].河南教育学院学报(自然科学版),1999,8(2):28-39.
    [123]朴化荣,殷长春.利用G-S逆拉氏变换法计算瞬变测深正演问题[J].物化探计算技术,1987,9(4):297-302.
    [124]罗延钟,昌彦君.G-S变换的快速算法[J].地球物理学报,2000,43(5):684-690.
    [125]王华军.正余弦变换的数值滤波算法[J].工程地球物理学报,2004,1(4):329-333.
    [126]刘桂芬.回线源层状大地航空瞬变电磁场的理论计算[C].吉林大学,2007.
    [127]殷长春,李吉松.任意角度瞬变电磁测深正演问题计算方法[J].物探与化探,1994,18(4):297-303.
    [128]何继善,柳建新.伪随机多频相位法及其应用简介[J].中国有色金属学报,2002,2(12):374-376.
    [129]Wang, Y; Lin, J; Zhou, G. H., Analysis of DC offset Influence on Transient Signal[J]. 4th International Symposium on Instrumentation Science and Technology (ISIST' 2006), 2006(48):462-466.
    [130]娄源清,李伟,大地电磁测量中的尖峰干扰抑制问题[J].地球物理学报,1994,37卷,增刊,493-500.
    [131]A Stephan and K M Stracks. A simple approch to improve the S/N ratio for TEM data using multiple receivers[J]. Geophysics,1991 (56):863-869.
    [132]Filloux, J.H.,1967, Oceanic electric currents, geomagnetic variation and the deep electrical conductivity structure of the ocean-continent transition of the central California[C]. PhD Theses, Univ. of Calif. San Diego.
    [133]Ives, D.J., Janz, G.J., Reference Electrodes[J].1961, New York, Academic Press.
    [134]Andreas, J., A New Telluric KC1 Probe Using Filloux's Ag-AgC1 Electrode [J]. PA-GEOPH,1990,134 (4):589-598.
    [135]Mohamed, M. G., Saturation effect on electrical properties of hematitic sandstone in the audio frequency range using non-polarizing electrodes [J]. Geophysical Prospecting, 2009,57,1091-1100.
    [136]Zhang, Y., Wang, Y.S., Song, Y.S., Impedance characteristics for solid Ag/AgCl electrode used as recording electric field generated by vessels in seawater[J]. J Shanghai Univ (Engl Ed),2009,13(1):57-62.
    [137]Steven C. C., Arnold S. O., Hoversten, G. M., and H. Frank Morrison. Marine magnetotellurics for petroleum exploration Part Ⅰ:A sea-floor equipment system [J]. 1998,GEOPHYSICS,63(3):816-825.
    [138]Webb, S. C., Constable, S. C., Cox, C. S., et al., A seafloor electric field instrument[J]: Geomag. Geoelectr.,1985,37:1115-1129.
    [139]邓明,刘志刚,白宜诚.海底电场传感器原理及研制技术[J].地质与勘探,2002,38(6):43-47.
    [140]吴浩青,李永舫.电化学动力学[M].北京:高等教育出版社,1998,39.
    [141]郭鹤桐,覃奇贤.电化学教程[M].天津:天津大学出版社,2000,193.
    [142]杨文治.电化学基础[M].北京:北京大学出版社,1985,154.
    [143]张绍衡,朱艳云,高文秦.电化学分析法[M].重庆:重庆大学出版社,1994,14-15.
    [144]Petiau, G., Second generation of lead-lead chloride electrodes for geophysical applications[J]. Pure and Appl. Geophysics,2000,157(3):351-382.
    [145]Alexis M., Yves B., and Philippe A., Electrical Response of Flow, Diffusion, and Advection in a Laboratory Sand Box[J].2004,Vadose Zone Journal,3:1180-1192.
    [146]田山,郑文俊,张建新.大地电场观测深埋铅电极测量系统试验[J].华北地震科学,2006,24(1)5-9.
    [147]席继楼,赵家骝,王燕琼.地电场观测技术研究[J].地震:2002,22(2):68-73.
    [148]李松,李俊,龚沈光译.电场测量传感器类型选择[J].水雷战与舰船防护,2008,16(1):72-76.
    [149]席继楼,邱颖,刘超.电极极化电位对地电场观测影响研究[J].地震地磁观测与研究,2008,29(6):22-26.
    [150]张燕,王源升,宋玉苏.海洋低频电场传感器敏感电极材料的选择[J].海军工程大学学报,2008,20(5):84-88.
    [151]杨会民,陈君,刘波.影响接地电阻的因素及减小接地电阻的方法[J].中国测试,2009,35(2):106-115.
    [152]田洪宇,余志平,田立林,张文俊.混合信号电路的衬底电阻网络模型[J].电子学,2003,33(1):1-4.
    [153]石林初.电阻网络元模拟算法及其在IC设计中的应用[J].半导体技术,1999,24(2):20-23.
    [154]李高清.长圆柱形接地体接地电阻的计算[J].甘肃高师学报,2003,8(2):36-37.
    [155]徐志强.广东工业大学.两类接地装置接地电阻的计算[J].电器开关,1998,4.
    [156]管绍朋,潘俊峰,能昌信,董路.电法填埋场渗漏检测供电电极接地电阻研究[J].环境科学研究,2008,21(6):39-42.
    [157]邝广.可控源音频大地电磁法的场区校正[J].中国煤田地质,1996,8(3).
    [158]黄皓平,朴化荣.水平多层大地上垂直磁偶源频率测深中的全波视电阻率[J].地球物理学报,1992,35:389-395.
    [159]Umesh, C. D., Apparent resistivity curves in controlled-source electromagnetic sounding directly reflecting true resistivity in layered earth[J]. Geophysics,1995, 60:53-60.
    [160]汤井田,何继善.水平电偶源频率测深中全区视电阻率定义的新方法[J].地球物理学报,1994,37:543-551.
    [161]毛先进,鲍光淑.水平电偶源频率域电磁测深全区视电阻率的直接算法[J].中南工业大学学报,1996,27(3):253-256.
    [162]陈清礼,严良俊,付志红.均匀半空间长偏移距TEM法全区视电阻率的数值计算方法[J].工程地球物理学报,2009,4(6):390-394.
    [163]李吉松,朴化荣.电偶源瞬变测深一维正演及视电阻率响应研究[J].物探与化探计算技术,1993,15(2):108-116.
    [164]Maxwell, M. A., A simple method of transient electromagnetic data analysis J]. Geophysics,1998,63:405-410.
    [165]詹艳,赵国泽,梁竞阁等.PROTEM-37瞬变电磁系统及应用实例[J].地震地质,2001,23(2):264-270.
    [166]郭文波,宋建平,韩俊明等.中心回线瞬变电磁探测的一种快捷解释方法[J].物探与化探,2006,30(2):154-157.
    [167]薛国强,李貅,郭文波等.从瞬变电磁测深数据到平面电磁波场数据的等效转换[J].地球物理学报,2006,,49(5):1539-1545.
    [168]Raiche, A. P., Gallagher, R. G., Apparent resistivity and diffu(?)on velocity[J]. Geophysics,1985,50(10):1628-1633.
    [169]朱苏刘,罗延钟,胡文宝.大地电磁测深“正演修正”一维反演[J].石油地球物理勘探,2002,37(2):138-144.
    [170]何梅兴,胡祥云,陈玉萍,等.CSAMT奥克姆一维反演的应用[J].工程地球物理学报,2008,4(5):439-443.
    [171]顾观文,梁萌,吴文鹂,等CSAMT一维自动迭代和人机联作方式交替反演进行拟二维反演解释[J].物探化探计算技术,2009,3(31):193-196.
    [172]Newman, G. A., et al., Interpretation of transient electromagnetic sounding over three-dimensional structure for the central-loop configuration [J]. Geophys. J. R. Astr, Soe.,1987,89(3):889-914.
    [173]方文藻,李予国,李貅.瞬变电磁测深法原理[M].西安:西北工业大学出版社,1993.9-15.
    [174]杨云见,何展翔,王绪本,罗卫锋.AMT、TEM、VES地层响应特征模拟分析及其联合反演探讨[J].地球物理学进展,2008,5(23):1550-1555.
    [175]Sternberg, B. K., Washburne, J. C., Pellerin, L., Correction for the static shift in magnetotellurics using transient electromagnetic sounding[J]. Geophysics,1988, 53(11):1459-1468.
    [176]Maxwell, A. M., Joint inversion of TEM and distorted MT soundings:Some effective practical considerations [J]. Geophysics,1996,61(1):56-65.
    [177]郑丽萍,严良俊,谢兴兵,等LOTEM与CSAMT联合勘探试验[J].工程地球物理学报,2009,6(6):693-697.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700