用户名: 密码: 验证码:
纹理建模与图切分优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交互式图像分割,是指按照一定的先验知识和相似性准则将图像划分成具有特殊语义的不同区域,从而在复杂的背景环境中将感兴趣的前景目标分离出来。其应用领域非常广泛,是图像分析、模式识别、计算机视觉、乃至图像理解中的一个关键问题。分割质量的好坏和分割效率的高低将直接影响其它相关应用的可用性和实用性。
     由于图像分割问题的重要性和复杂性,近年来关于图切分优化方法的研究受到了国内外学者的广泛关注,并成为了交互式图像分割应用的主流方法之一。它具有很多优良特性,比如多特征/约束融合能力、全局最优、数值鲁棒性强、执行效率高、分割加权图的拓扑结构自由和N-D图像分割能力等。传统图切分优化方法在分割低分辨率简单彩色图像时具有很好的分割效果和实时交互性。然而,当使用该方法进行复杂纹理图像分割、多先验模式特征混合智能分割或者高分辨率图像快速分割时,无论是方法本身的适用性、准确性、鲁棒性、还是实时性,都严重限制了其可用性。针对上述问题,本文通过对传统图像分割方法,特别是基于图切分优化的交互式图像分割方法,以及纹理特征建模的主要方法进行了较为深入的总结、分析和研究,提出了一种用于提取场景结构特征的新型纹理建模方法,并结合信息论、黎曼空问几何学、模式分类、数值解析方法等,利用统计学习方法和先验启发式信息,研究如何高质、高量、高效的对彩色及纹理图像进行解析和交互式分割。具体地,本文的创新性研究成果主要包括以下几个部分。
     首先,通过对传统结构张量的多尺度非线性建模,提出了一种有效的纹理特征建模方法—多尺度非线性结构张量(MSNST)模型。它同时兼顾了结构张量的全方向性压缩描述能力和Gabor小波变换的尺度空问描述能力,并具备不连续保持性滤波特性,为纹理分析的研究提供了一种新的思路。为了保证纹理提取的高效和实用,本文使用了多孔算法和加性算子分裂技术来对模型进行数值实现。另外,本文通过数学分析和实验比较,研究和探讨了关于MSNST特征的距离度量、尺度空间的概率相关性、概率分布模型的空间结构、相似性聚类等概念和方法。
     然后,针对图切分模型框架的诸多环节,给出了一些优化设计。具体包括优化过程加速(基于多种子图切分的快速模型优化求解、基于多层窄带闭合解的快速图切分算法、基于均值漂移预分割及高斯超像素的快速图切分算法);基于高分辨距离度量的n-link设计(L*a*b*彩色空间中的共轭测度、MSNST纹理空间中的信息论测度和黎曼测度);基于高准确性聚类的t-link设计(改进的K-means聚类、谱分解递归聚类、基于分量形式期望最大化的高斯混合聚类);统计前景和背景在各特征空间的高斯混合模型(GMM),并使用GMM间的信息论距离来设计多特征的能量函数自适应融合策略;计算迭代过程中前景和背景在各特征空问的综合GMM信息论差异度,并通过判断其是否趋于稳定来改进迭代收敛准则;增强分割结果的区域一致性(在平滑能量项中引入滤噪常数、形态学后处理滤噪)等。这些优化设计为其他使用图切分框架的方法和应用提供了改进的思路,以提高它们的性能和适用范围。
     最后,基于以上的MSNST纹理建模方法和针对图切分模型的各类优化设计,提出了五种实用的交互式彩色及纹理图像分割方法。解决了传统分割方法中存在的诸多不足,比如模式特征信息单一、空间度量过于简化、统计模型的学习和更新准确性不够、计算复杂度和内存消耗偏高、人机交互量和参数设置过多等,对复杂自然图像的分割提供了更好的支持,具有适用范围广、分辨能力强、统计描述准、计算负担低、用户依赖少等优势特性。
     本文通过大量的仿真实验验证了多尺度非线性结构张量模型、图切分框架的优化和改进方法、彩色及纹理图像的分割技术等的实效性和可用性。这些研究成果不但可以深化纹理分析和图切分优化中的相关研究,而且可以在民用和军用领域扩大图像分割的应用前景。
Interactive image segmentation is often described as the process of separating an image into different regions with special semantics according to some prior knowledge and similarity criterion, and then extracting the foreground objects of interest in the complex background environment. It has found a very wide range of applications, which is a key problem in the research for image analysis, pattern recognition, computer vision, and even image understanding. The quality and efficiency of segmentation will have a direct impact on the usability and practicability of other related applications.
     Due to the significance and complexity of image segmentation, the research about Graph Cuts optimization methods has attracted wide attention by scholars both at home and abroad in recent years, and has become one of the most popular methods used for the application of interactive image segmentation. It has many excellent features, such as ability to fuse a wide range of visual cues and constraints, global optima, numerical robustness, practically efficiency, unrestricted topological properties of weighted graph for segments, and applicability to N-D image segmentation etc. The traditional Graph Cuts optimization methods have good segmentation performance and real-time interaction when segmenting the simple color images with low resolution. However, whether the applicability, accuracy, robustness, or the real-time property of these methods, they all severely limit the usability of these methods when applying them for the complex texture image segmentation, multiple prior pattern features based hybrid intelligent segmentation, or high resolution images based fast segmentation. To address the above problems, this work provides a deeper summarization, analysis and study about the traditional image segmentation methods, especially the Graph Cuts optimization based interactive image segmentation methods, and the main methods used for modeling texture features. Additionally, a new texture modeling method used for extracting the scene structure features is proposed. By combining with the information theory, Riemannian geometry, pattern classification, and numerical analytic method, and making full use of the statistical learning methods and prior heuristic information, this work also researches on how to analyze and interactively segment the color and texture images with high quality, high amount, and high efficiency. In details, the main innovative research achievements of this work can be described as follows.
     Firstly, an effective texture feature modeling method (multi-scale nonlinear structure tensor, MSNST) is proposed based on the multi-scale nonlinear modeling of the traditional structure tensor. MSNST has both the omni-directional compression description ability of structure tensor and the description ability of Gabor wavelet transform in scale space. Meanwhile, it has the property of filtering in maintaining discontinuity, and provides a completely new idea for the research of texture analysis. In order to improve the efficiency and practicability of the texture extraction, this work uses the "a trous" algorithm and additive operator splitting technique to reduce the complexity of the model's numerical implementation. In addition, by means of the mathematical analysis and experimental comparison, this work studies and discusses some concepts and methods of MSNST feature, which includes dissimilarity measure, probability correlation in scale space, space structure of probability distribution model, and similarity clustering, etc.
     Secondly, for several parts of the Graph Cuts model framework, this work presents some optimization designs, which detailly include the acceleration of optimization process (fast optimization and solution of models based on multi-seeds Graph Cuts, fast Graph Cuts algorithm based on multi-level banded closed-form, fast Graph Cuts algorithm based on mean shift pre-segmentation and Gaussian super-pixel);high discrimination dissimilarity measure based n-link design (conjugate measure in L*a*b* color space, information theory measure and Riemannian measure in MSNST texture space); high accuracy clustering based t-link design (improved K-means clustering, spectral decomposition based recursive clustering, component-wise expectation-maximization for Gaussian mixtures clustering); computing the Gaussian mixture model (GMM) statistics of foreground and background in each feature space, and then designing the adaptive integration strategy of energy functions for multiple kinds of features based on the information theory distance between GMMs; computing the comprehensive information theory dissimilarity of foreground GMM and background GMM in each feature space during iterating, and then improving the iteration convergence criterion by estimating whether it is stabilizing; enhancing the regional uniformity of segmentation results (including denoising constant in the smoothing energy term, morphological post-processing based denoising) and so on. These optimization designs provide some ideas for enhancing the other Graph Cuts framework based methods and applications, and help them improve the performance and applicability.
     Finally, based on the above MSNST texture modeling method and all the optimization designs of Graph Cuts model, this work proposes five practical interactive color and texture image segmentation methods, which solve many problems of the traditional segmentation methods. For example, single pattern feature information, simple choices of dissimilarity measure, low accuracy of learning and updating the statistical model, high computational complexity and memory consumption, many user interactions and parameter settings. However, the proposed segmentation methods provide better support for the segmentation of complex real natural scene images, and have the advantages in terms of wide range of applications, powerful discriminative ability, accurate statistical description, low computational burden, and little user dependent.
     In this dissertation, a large number of simulation experiments have been presented to verify the practicability and usability of multi-scale nonlinear structure tensor model, optimization and improvement methods of the Graph Cuts framework, and color and texture image segmentation techniques. These research achievements can not only enforce the related study in texture analysis and Graph Cuts optimization, but also extend the application prospect of image segmentation in both civilian and military domains.
引文
[1]贾云得.机器视觉.北京:科学出版社,2000.
    [2]张毓晋.图像工程(中册)图像分析.北京:清华大学出版社,2006.
    [3]Sonka M, Hlavac V, Boyle R. Image processing, analysis, and machine vision. Beijing:Posts and Telecom Press,2003.
    [4]Wang J, Cohen M F. Image and video matting:A survey. Foundations and Trends(R) in Computer Graphics and Vision,2007,3(2):97~175.
    [5]王志勇,池哲儒,余英林.分形编码在图像检索中的应用.电子学报,2000,28(6):19~23.
    [6]Swanson M D, Tewfik A H. Fast progressively refined image retrieval. Journal of Electronic Imaging,1998,7(3):443~452.
    [7]Trier D. Feature extraction methods for character recognition:A survey. Pattern Recognition,1996,29(4):641~662.
    [8]Jolly M, Lakshmanan S, Jain A K. Vehicle segmentation and classification using deformable templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(3):293~308.
    [9]陈寅鹏,丁晓青.复杂车辆图像中的车牌定位与字符分割方法.红外与激光工程,2004,33(1):29~33.
    [10]黎明,马聪,杨小芹.机械加工零件表面纹理缺陷检测.中国图象图形学报,2004,9(3):318~322.
    [11]Tian L F, Slaughter D C. Environmentally adaptive segmentation algorithm for outdoor image segmentation. Computers and Electronics in Agriculture,1998,21(3): 153~168.
    [12]Tian B, Shaikh M A, Azimi-Sadjadi M R et al. A study of cloud classification with neural networks using spectral and textural features. IEEE Transactions on Neural Networks,1999,10(1):138~151.
    [13]Pang B, Zhang D, Li N et al. Computerized tongue diagnosis based on Bayesian networks. IEEE Transactions on Biomedical Engineering,2004,51(10):1803~1810.
    [14]Bezdek J C, Hall L O, Clarke L P. Review of MR image segmentation techniques using pattern recognition. Medical Physics,1993,20(4):1033~1048.
    [15]王元全,贾云得.一种新的心脏核磁共振图像分割方法.计算机学报,2007,30(1):129~136.
    [16]Kirbas C, Quek F. Vessel extraction techniques and algorithms:A survey.in: Symposium on Bioinformatics and Bioengineering.2003.238~245.
    [17]Wang T F, Li D Y, Zheng C Q et al. Segmentation of medical ultrasonic image using hybrid neural network. Space Medicine & Medical Engineering,2001,14(2):84~87.
    [18]朱述龙,张占睦.遥感图像获取与分析.北京:科学出版社,2000.
    [19]Karvonen J A. Baltic sea ice SAR segmentation and classification using modified pulse-coupled neural networks. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(7):1566~1574.
    [20]陶文兵,田金文,柳健等.基于遗传算法和模糊熵的前视红外图像分割.红外与毫米波学报,2003,22(6):465~468.
    [21]马颂德,张正友.计算机视觉-计算理论与算法基础.北京:科学出版社,1998.
    [22]Zhang H, Fritts J E, Goldman S A. Image segmentation evaluation:A survey of unsupervised methods. Computer Vision and Image Understanding,2008,110(2): 260~280.
    [23]Vu N B S. Image segmentation with semantic piors:A graph cut approach:[Ph.D. Dissertation]. Santa Barbara:Library of University of California,2008.
    [24]Geman S, Geman D, Abend K et al. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. Journal of Applied Statistics,1993,20(5):25~62.
    [25]Besag J. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society:Series B,1986,48(3):259~302.
    [26]Mumford D, Shah J. Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics,1989, 42(5):577~685.
    [27]Zhu S C, Yuille A. Region competition:Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(9):884~900.
    [28]Cheng H D, Jiang X H, Sun Y et al. Color image segmentation:Advances and prospects. Pattern Recognition,2001,34(12):2259~2281.
    [29]王爱民,沈兰荪.图像分割研究综述.测控技术,2000,19(5):1~6.
    [30]Ballard D H, Brown C M. Computer vision. Englewood Cliffs:Prentice Hall Press, 1982.
    [31]Reese L J. Intelligent paint:Region-based interactive image segmentation:[M.S. Dissertation]. Provo:Library of Brigham Young University,1999.
    [32]Duda R O, Hart P E, Stork D G. Pattern classification.2nd edition. New York: Wiley Press,2000.
    [33]Bezdek J C. Pattern recognition with fuzzy objective function algorithms. New York:Plenum Press,1981.
    [34]Orchard M T, Bouman C A. Color quantization of images. IEEE Transactions on Signal Processing,1991,39(12):2677~2690.
    [35]Comaniciu D, Meer P. Mean shift:A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603~619.
    [36]Felzenszwalb P F, Huttenlocher D P. Efficient graph-based image segmentation. International Journal of Computer Vision,2004,59(2):167~181.
    [37]Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888~905.
    [38]Hagen L, Kahng A B. New spectral methods for ratio cut partitioning and clustering. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,1992,11(9):1074~1085.
    [39]Wu Z, Leahy R. An optimal graph theoretic approach to data clustering:Theory and its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1101~1113.
    [40]Ohta Y, Kanade T, Sakai T. Color information for region segmentation. Computer Graphics and Image Processing,1980,13(3):222~241.
    [41]Ohlander R, Price K, Reddy D R. Picture segmentation using a recursive region splitting method. Computer Graphics and Image Processing,1978,8(3):313~333.
    [42]Celenk M. A color clustering technique for image segmentation. Computer Vision, Graphics, and Image Processing,1990,52(2):145~170.
    [43]Vincent L, Soille P. Watersheds in digital spaces:An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(6):583~598.
    [44]Fairfield J. Toboggan contrast enhancement for contrast segmentation.in: International Conference on Pattern Recognition.1990.712~716.
    [45]Bellman R E, Dreyfus S E. Applied dynamic programming. Princeton:Princeton University Press,1962.
    [46]Mortensen E N, Barrett W A. Intelligent scissors for image composition.in:ACM Siggraph.1995.191~198.
    [47]Blake A, Isard M. Active contours. London:Springer-Verlag Press,1998.
    [48]Boykov Y, Funka-Lea G. Graph cuts and efficient N-D image segmentation. International Journal of Computer Vision,2006,70(2):109~131.
    [49]Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(11): 1222~1239.
    [50]Boykov Y, Veksler O, Zabih R. Markov random fields with efficient approximations. in:Computer Vision and Pattern Recognition.1998.648~655.
    [51]Kolmogorov V, Zabih R. Multi-camera scene reconstruction via graph cuts. in: European Conference on Computer Vision.2002.82~96.
    [52]贾云涛,胡事民.基于图切分的交互式图像染色算法.计算机学报,2006,29(3): 508~512.
    [53]Li Y, Sun J, Shum H Y. Video object cut and paste. ACM Transactions on Graphics,2005,24(3):595~600.
    [54]Kwatra V, Schodl A, Essa I et al. Graphcut textures:Image and video synthesis using graph cuts. in:ACM Siggraph.2003.277~286.
    [55]Cour T, Benezit F, Shi J. Spectral segmentation with multiscale graph decomposition. in:Computer Vision and Pattern Recognition.2005.1124~1131.
    [56]Freedman D, Zhang T. Interactive graph cut based segmentation with shape priors. in:Computer Vision and Pattern Recognition.2005.755~762.
    [57]Malcolm J, Rathi Y, Tannenbaum A. Graph cut segmentation with nonlinear shape priors. in:International Conference on Image Processing.2007.365~368.
    [58]Bertalm M, Sapiro G, Randall G. Morphing active contours. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(7):733~737.
    [59]Kass M, Witkin A, Terzopoulos D. Snakes:Active contour models. International Journal of Computer Vision,1988,1(4):321~331.
    [60]Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal of Computer Vision,1997,22(1):61~79.
    [61]Osher S, Fedkiw R P. Level set methods and dynamic implicit surfaces. New York: Springer Press,2002.
    [62]Falcao A X, Udupa J K, Samarasekera S et al. User-steered image segmentation paradigms:Live wire and live lane. Graphical Models and Image Processing,1998,60(4): 233~260.
    [63]Wang J, Wang F, Zhang C et al. Linear neighborhood propagation and its applications. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,31(9): 1600~1615.
    [64]Bai X, Sapiro G. A geodesic framework for fast interactive image and video segmentation and matting. in:International Conference on Computer Vision.2007.1-8.
    [65]Ghanem B, Ahuja N. Dinkelbach NCUT:An efficient framework for solving normalized cuts problems with priors and convex constraints. International Journal of Computer Vision,2010, in press:1~16.
    [66]Boykov Y, Kolmogorov V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(9):1124~1137.
    [67]Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks,1994,5(2):157~166.
    [68]Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing. Science,1983,220(4598):671~680.
    [69]Amini A, Weymouth T E, Jain R C. Using dynamic programming for solving variational problems in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(9):855~867.
    [70]Szeliski R, Zabih R, Scharstein D et al. A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(6):1068~1080.
    [71]Pearl J. Probabilistic reasoning in intelligent systems:Networks of plausible inference. San Mateo:Morgan Kaufmann Press,1988.
    [72]教材编写组.运筹学.北京:清华大学出版社,2003.
    [73]Kolmogorov V, Zabin R. What energy functions can be minimized via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(2):147~159.
    [74]Ford L R, Fulkerson D R. Flows in networks. Princeton:Princeton University Press, 1962.
    [75]Dinic E A. Algorithm for solution of a problem of maximum flow in networks with power estimation. Soviet Mathematics Doklady,1970,11(2):1277~1280.
    [76]Edmonds J, Karp R M. Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM,1972,19(2):248~264.
    [77]Goldberg A V, Tarjan R E. A new approach to the maximum flow problem. in: ACM Symposium on Theory of Computing.1986.136~146.
    [78]Goldberg A V, Tarjan R E. A new approach to the maximum-flow problem. Journal of the ACM,1988,35(4):921~940.
    [79]Cherkassky B V, Goldberg A V. On implementing the push-relabel method for the maximum flow problem. Algorithmica,1997,19(4):390~410.
    [80]King V, Rao S, Tarjan R. A faster deterministic maximum flow algorithm. in: ACM symposium on Discrete algorithms.1992.157~164.
    [81]Cheriyan J, Hagerup T, Mehlhorn K. Can a maximum flow be computed in o(nm) time. in:International Colloquium on Automata, Languages and Programming Table of Contents.1990.235-248.
    [82]Ahuja R K, Orlin J B, Tarjan R E. Improved time bounds for the maximum flow problem. SIAM Journal of Computing,1988,18(5):939~954.
    [83]Hochbuam D. The pseudoflow algorithm and the pseudoflow-based simplex for the maximum flow problem. in:Integer Programming and Combinatorial Optimization.1998. 325~337.
    [84]Greig D, Porteous B, Seheult A. Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society, Series B,1989,51(2):271~279.
    [85]Boykov Y, Jolly M P. Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. in:International Conference on Computer Vision. 2001.105~112.
    [86]Blake A, Rother C, Brown M et al. Interactive image segmentation using an adaptive GMMRF model. in:European Conference on Computer Vision.2004.428~441.
    [87]Rother C, Kolmogorov V, Blake A. GrabCut:Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics,2004,23(3):309~314.
    [88]Han S D, Tao W B, Wang D S et al. Image segmentation based on GrabCut framework integrating multiscale nonlinear structure tensor. IEEE Transactions on Image Processing,2009,18(10):2289-2302.
    [89]Kim J S, Hong K S. Color-texture segmentation using unsupervised graph cuts. Pattern Recognition,2009,42(5):735-750.
    [90]Malcolm J, Rathi Y, Tannenbaum A. A graph cut approach to image segmentation in tensor space.in:Computer Vision and Pattern Recognition.2007.18~25.
    [91]Delong A, Boykov Y. A scalable graph-cut algorithm for N-D grids. in:Computer Vision and Pattern Recognition.2008.1-8.
    [92]Juan O, Boykov Y. Active graph cuts. in:Computer Vision and Pattern Recognition. 2006.1023~1029.
    [93]Kohli P, Torr P H. Dynamic graph cuts for efficient inference in Markov random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(12): 2079~2088.
    [94]Lombaert H, Sun Y, Grady L et al. A multilevel banded graph cuts method for fast image segmentation. in:International Conference on Computer Vision.2005.259~265.
    [95]Han S D, Tao W B, Wu X L et al. Fast image segmentation based on multilevel banded closed-form method. Pattern Recognition Letters,2010,31(3):216~225.
    [96]Li Y, Sun J, Tang C K et al. Lazy snapping. ACM Transactions on Graphics,2004, 23(3):303~308.
    [97]Yang Q, Tang X, Wang C et al. Progressive cut:An image cutout algorithm that models user intentions. IEEE Multimedia,2007,14(3):56~66.
    [98]Vicente S, Kolmogorov V, Rother C. Graph cut based image segmentation with connectivity priors. in:Computer Vision and Pattern Recognition.2008.1-8.
    [99]Tao W, Jin H, Zhang Y et al. Image thresholding using graph cuts. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2008,38(5): 1181-1195.
    [100]Xu N, Ahuja N, Bansal R. Object segmentation using graph cuts based active contours. Computer Vision and Image Understanding,2007,107(3):210~224.
    [101]Boykov Y, Kolmogorov V, Cremers D et al. An integral solution to surface evolution PDEs via geo-cuts. in:European Conference on Computer Vision.2006. 409~422.
    [102]Levine M D. Vision in man and machine. New York:McGraw-Hill College Press, 1985.
    [103]Tuceryan M, Jain A K. Texture segmentation using Voronoi polygons. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(2):211~216.
    [104]Pavlidis T. Structural descriptions and graph grammars. Berlin:Springer Press, 1980.
    [105]Soille P. Morphological image analysis:Principles and applications. Berlin: Springer Press,2003.
    [106]刘晓民.纹理研究及其应用综述.测控技术,2008,27(5):4-9.
    [107]刘丽,匡纲要.图像纹理特征提取方法综述.中国图象图形学报,2009,14(4):622~635.
    [108]Cross G R, Jain A K. Markov random field texture models. IEEE Transactions on Pattern Analysis andMachine Intelligence,1983,5(1):25~39.
    [109]Mao J, Jain A K. Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition,1992,25(2):173~188.
    [110]Francos J M, Meiri A Z, Porat B. A unified texture model based on a 2-D Wold-like decomposition. IEEE Transactions on Signal Processing,1993,41(8): 2665~2678.
    [111]李水根,吴纪桃.分形与小波.北京:科学出版社,2002.
    [112]Manjunath B S, Ma W Y. Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(8):837~842.
    [113]Bigun J, Granlund G H, Wiklund J. Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(8):775~790.
    [114]Forstner W, Gulch E. A fast operator for detection and precise location of distinct points, corners and centres of circular features. in:Intercommission Conference on Fast Processing of Photogrammetric Data.1987.281~305.
    [115]Bigun J, Granlund G H. Optimal orientation detection of linear symmetry. in: International Conference on Computer Vision.1987.433~438.
    [116]Rao A R, Schunck B G. Computing oriented texture fields. CVGIP:Graphical Models and Image Processing,1991,53(2):157~185.
    [117]Weickert J. Anisotropic diffusion in image processing. Stuttgart:Teubner-Verlag Press,1998.
    [118]Weickert J. Coherence-enhancing diffusion filtering. International Journal of Computer Vision,1999,31(2):111~127.
    [119]JaHne B. Spatio-temporal image processing:Theory and scientific applications. New York:Springer-Verlag Press,1991.
    [120]Di Z S. A note on the gradient of a multi-image. Computer Vision, Graphics, and Image Processing,1986,33(1):116~125.
    [121]Luis-Garcia R D, Deriche R, Alberola-Lopez C. Texture and color segmentation based on the combined use of the structure tensor and the image components. Signal Processing,2008,88(4):776~795.
    [122]Brox T, Weickert J, Burgeth B et al. Nonlinear structure tensors. Image and Vision Computing,2006,24(1):41~55.
    [123]Scheunders P. A multivalued image wavelet representation based on multiscale fundamental forms. IEEE Transactions on Image Processing,2002,11(5):568~575.
    [124]Mallat S.信号处理的小波导引.北京:机械工业出版社,2002.
    [125]Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(7):629~639.
    [126]Gerig G, Kubler O, Kikinis R et al. Nonlinear anisotropic filtering of MRI data. IEEE Transactions on Medical Imaging,1992,11(2):221~232.
    [127]Andreu F, Ballester C, Caselles V et al. Minimizing total variation flow. Differential and Integral Equations,2001,14(3):321~360.
    [128]Mallat S. A wavelet tour of signal processing.2nd edition. New York:Academic Press,1999.
    [129]Weickert J, Romeny B, Viergever M A. Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing,1998,7(3):398~410.
    [130]Brodatz P. Textures:A photographic album for artists and designers. New York: Dover Press,1966.
    [131]Cheng H D, Jiang X H, Sun Y et al. Color image segmentation:advances and prospects. Pattern Recognition,2001,34(12):2259~2281.
    [132]Wang S, Siskind J M. Image segmentation with ratio cut. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(6):675~690.
    [133]Wu Z, Leahy R. An optimal graph theoretic approach to data clustering:theory and its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1101~1113.
    [134]Manjunath B S, Chellappa R. Unsupervised texture segmentation using Markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(5):478~482.
    [135]Bouman C, Liu B. Multiple resolution segmentation of textured images. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(2):99~113.
    [136]Sagiv C, Sochen N A, Zeevi Y Y. Texture segmentation via a diffusion segmentation scheme in the Gabor feature space.in:International Workshop on Texture Analysis and Synthesis.2002.123~128.
    [137]Rousson M, Brox T, Deriche R. Active unsupervised texture segmentation on a diffusion based feature space. in:Computer Vision and Pattern Recognition.2003. 699~704.
    [138]Wang Z, Vemuri B. Tensor field segmentation using region based active contour model. in:European Conference on Computer Vision.2004.304~315.
    [139]Wang Z, Vemuri B C. An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation. in:Computer Vision and Pattern Recognition.2004.228~233.
    [140]Weldeselassie Y T, Hamarneh G. DT-MRI segmentation using graph cuts. in:SPIE Medial Imaging.2007.1~9.
    [141]He X, Niyogi P. Locality preserving projections.in:Neural Information Processing Systems.2003.1~8.
    [142]Grady L, Schiwietz T, Aharon S et al. Random walks for interactive alpha-matting. in:Visualization Imaging and Image Processing.2005.423~429.
    [143]Wyszecki G, Stiles W S. Color science:Concepts and methods, quantitative data and formulae. New York:Wiley Press,1982.
    [144]Zhukov L, Museth K, Breen D et al. Level set modeling and segmentation of DT-MRI brain data. Journal of Electronic Imaging,2003,12(1):125~133.
    [145]Wiegell M R, Tuch D S, Larsson H B W et al. Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging. Neuroimage,2003,19(2): 391~401.
    [146]Lenglet C, Rousson M, Deriche R et al. Statistics on the manifold of multivariate normal distributions:Theory and application to diffusion tensor MRI processing. Journal of Mathematical Imaging and Vision,2006,25(3):423~444.
    [147]Pennec X, Fillard P, Ayache N. A Riemannian framework for tensor computing. International Journal of Computer Vision,2006,66(1):41~66.
    [148]Wang Z, Vemuri B C. DTI segmentation using an information theoretic tensor dissimilarity measure. IEEE Transactions on Medical Imaging,2005,24(10):1267~1277.
    [149]Fletcher P T, Joshi S. Principal geodesic analysis on symmetric spaces:Statistics of diffusion tensors. in:European Conference on Computer Vision.2004.87~98.
    [150]Cardelino J, Randall G, Bertalmio M. An active regions approach for the segmentation of 3D biological tissue. in:International Conference on Image Processing. 2005.277~280.
    [151]Goldberger J, Gordon S, Greenspan H. An efficient image similarity measure based on approximations of KL-divergence between two gaussian mixtures. in:Computer Vision and Pattern Recognition.2004.487~494.
    [152]Do M N, Vetterli M. Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Transactions on Image Processing,2002, 11(2):146~158.
    [153]Martin D, Fowlkes C, Tal D et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. in:International Conference on Computer Vision.2001.416~423.
    [154]MacQueen J B. Some methods for classification and analysis of multivariate observations. in:Berkeley Symposium on Mathematical Statistics and Probability.1967. 281~297.
    [155]Permuter H, Francos J, Jermyn I. A study of Gaussian mixture models of color and texture features for image classification and segmentation. Pattern Recognition,2006,39(4): 695~706.
    [156]Figueiredo M A T, Jain A K. Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(3):381~396.
    [157]Lenglet C, Rousson M, Deriche R. DTI segmentation by statistical surface evolution. IEEE Transactions on Medical Imaging,2006,25(6):685~700.
    [158]Arsigny V, Fillard P, Pennec X et al. Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine,2006,56(2):411~421.
    [159]Lazebnik S, Schmid C, Ponce J. A sparse texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8): 1265~1278.
    [160]Arthur D, Vassilvitskii S. K-means++:The advantages of careful seeding. in:ACM symposium on Discrete algorithms.2007.1027~1035.
    [161]Martin D R, Fowlkes C C, Malik J. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(5):530~549.
    [162]Levin A, Lischinski D, Weiss Y. A closed form solution to natural image matting. in:Computer Vision and Pattern Recognition.2006.61~68.
    [163]Christoudias C M, Georgescu B, Meer P. Synergism in low level vision. in: International Conference on Pattern Recognition.2002.150~155.
    [164]Meer P, Georgescu B. Edge detection with embedded confidence. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(12):1351~1365.
    [165]Yoshizawa S, Tanabe K. Dual differential geometry associated with Kullback-Leibler information on the gaussian distributions and its 2-parameter deformations. SUT Journal of Mathematics,1999,35(1):113~137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700