用户名: 密码: 验证码:
控释肥硫膜在土壤中的降解转化机理及对作物生长的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着硫包膜控释肥的大面积连续施用,硫膜对土壤环境的影响问题受到关注。只有探明硫膜在土壤中的迁移转化过程,才能在理论上解释硫膜转化过程对土壤造成的影响。对硫膜在土壤中降解动态及迁移转化过程进行研究,既可发现控释肥硫膜降解对土壤微域某些性质的影响,也可探明其影响机理,从而为控释肥的推广、应用提供科学依据,以期指导硫包膜控释肥的应用及推广。
     研究采用室内模拟培养试验、砂培试验和池栽试验并结合扫描电镜、微域技术、同位素示踪等手段,对控释肥硫膜在土壤中的迁移转化过程、硫膜施入土壤后在不同时期的形貌及超微形态变化做细致研究,探明降解过程的中间产物和最终降解产物对土壤环境的影响,揭示控释肥硫膜在土壤中的具体去向,并分析硫膜对土壤中营养元素活化和控释肥包膜控释下氮素的迁移转化及对作物生长发育的影响。本文主要研究结果如下:
     采用连续两年的盆栽试验,观察硫膜降解过程中形貌及超微形态的变化,选择硫磺膜壳、硫磺外喷涂石蜡为密封剂的膜壳和硫磺包被热固性树脂的膜壳,在土壤中培养的不同时期对膜壳的横断面和表面进行扫描电镜分析,电镜照片显示:①仅由硫磺构成的膜壳表面粗糙,并遍布细缝和孔洞,并随着培养时间的延长,很快裂缝和孔洞逐渐变大,使膜壳断裂变小,这也是仅用硫磺包膜控释效果差的原因;②外涂石蜡为密封剂的膜壳表面较光滑略有细小突起,虽然因包膜时温度变化表层会存在细小的裂缝,但较好的覆盖了硫磺形成的细缝和小孔。在培养中可发现原本光滑连续的石蜡膜逐渐出现侵蚀孔洞,孔洞由小变大,由浅变深,并慢慢连成一片。在培养的中后期,发现缺乏密封剂保护的硫磺由膜状碎裂成小块,进而粉化;③硫加树脂膜壳的树脂层较薄,可见膜下硫磺表面的孔隙。随着膜壳的降解,树脂层变薄,树脂在膜壳表面收缩,原本光滑的表面变得有些粗糙,树脂层完整变得间断,逐渐露出树脂膜内的硫磺膜。与外涂石蜡的硫磺膜相比包被树脂的硫磺膜降解时间较长,可以对养分起到更好的控释作用。
     无硫砂培试验得出硫膜降解的中间产物为硫代硫酸根,最终产物为硫酸根,硫酸根也是硫膜降解的主要产物。硫膜在基质中的主要转化途径是S~0→S_2O_3~(2-)→SO_4~(2-)。并且残膜在基质中降解的速率要高于包膜肥料膜壳的降解速率。浸提液中硫酸根离子浓度较高的时期,植株中全硫含量也较高,表明硫膜降解促进了植株对硫素的吸收。
     硫磺和硫膜在土壤中的降解,导致了棕壤各处理微域土壤pH值的显著变化,而对非微域土壤影响不显著,在培养的中后期pH值均有回升;与棕壤相比潮土中pH值下降幅度较小。各处理在棕壤、潮土中的氧化速度是:硫磺>硫膜>硫加树脂膜。施用硫膜和硫加树脂膜起到了活化微域土壤中微量元素的作用,在培养的中后期增加了微域土壤中有效态铁、有效态锰及有效态铜的含量。并显著提高了棕壤微域有效硫的含量,非微域中有效硫也有升高的趋势;潮土微域中有效硫和有效磷的含量均有增加的趋势,随着硫膜在土壤中降解时间的延长,非微域土壤的有效硫、有效磷含量也有上升的趋势。试验表明:硫际微域(≤5 mm)土壤受硫膜降解产物的影响显著,而对非微域(>5 mm)土壤影响不显著。表明硫包膜或硫加树脂包膜控释肥在土壤中施用仅显著影响小范围土壤的化学性质,而对整个土体影响不显著。
     采用棕壤池栽试验,对夏玉米-冬小麦轮作体系中土壤硫组分动态变化分析发现,0-20 cm土层是土壤水溶性硫含量变化幅度较大的层次,硫包膜和硫加树脂包膜控释肥的施用可显著增加作物生育中后期0-20 cm土壤水溶性硫含量。在作物种植过程中,土壤水溶性硫与吸附态硫之间存在动态平衡。棕壤中无机硫组分以水溶性硫和盐酸可溶性硫为主,并且盐酸可溶性硫含量有逐渐下降的趋势,表明当土壤中水溶性硫和吸附态硫不充足时,盐酸可溶性硫可以进行及时的补充。硫加树脂包膜控释肥的施用增加了土壤中无机硫总量,在玉米的整个生育期内稳定持续的供给作物生长所需的硫素。在降雨、灌溉淋溶作用下SO42-有向土壤深层运移的趋势。硫包膜控释肥促进了夏玉米大口期及乳熟期对硫素的吸收,其顺序为:PSCU> SCU+PCU>PCU >Urea,也增加了冬小麦开花期及成熟期植株全硫含量,在冬小麦开花期,与Urea处理相比PSCU处理植株全硫含量增加了25.64%,SCU+PCU处理增加了17.16%。土壤中硫组分的动态变化促进了作物对硫素的吸收利用。
     采用15N同位素示踪技术研究了包膜控释氮肥与普通尿素在夏玉米-冬小麦轮作系统中肥料氮的转化及去向,肥料氮的残留,肥料氮在剖面中的运移及作物对肥料氮的吸收利用。研究结果表明:在夏玉米季,施用控释肥与普通尿素相比,控释肥可获得较高的氮肥利用率;PCU处理与Urea处理相比肥料氮回收率增加3.9%、残留率增加5.02%、损失率减少7.67%;冬小麦季与Urea处理相比PCU处理肥料氮回收率增加1.88%、氮肥的残留率增加5.45%、损失率减少7.32%。
     硫包膜和硫加树脂包膜控释氮肥的施用可增加夏玉米季和冬小麦季拔节期植株的干物质积累量,并增加成熟期作物的籽粒产量,并可使作物的氮素利用效率与硫素利用效率协同提高,增加植株氮素累积量和硫素累积量。硫包膜和硫加树脂包膜控释氮肥通过提高氮、硫的收获指数促进籽粒产量的增加,夏玉米季产量PSCU,PCU处理与Urea处理相比分别高出16.0%,13.43%。冬小麦季产量分别高出11.85%,9.79%。硫加树脂包膜控释氮肥的施用可实现夏玉米-冬小麦轮作体系作物对氮素的高效利用,并且硫加树脂包膜尿素较低的价格有利于大田作物大面积使用。
     在超级玉米“登海661”高产栽培过程中,通过对不同控释肥处理的产量和产量构成因素的研究,由相关分析及通径分析结果可知施用不同控释肥处理对产量的提高由不同产量构成因素的结果。施用控释掺混肥时,千粒重、穗行数、穗粗和穗粒数对玉米产量起决定性作用;施用硫加树脂包膜尿素,千粒重、行粒数、穗粗和穗行数为玉米产量的主要影响因素;而施用树脂包膜尿素,起决定性作用的产量构成因素为千粒重、行粒数、穗粒数和穗行数。各控释肥处理主要决定因素均为千粒重,主要限制因素各不相同,树脂包膜尿素和硫加树脂包膜尿素为穗行数,控释掺混肥为行粒数。因此在夏玉米高产栽培,选用不同的控释肥和掺混肥组合时,要注意协调产量构成主要因素之间的关系,使之处于最佳结合状态,并兼顾其他产量构成因素是实现夏玉米最佳产量的有效途径。
With continuous application of SCU (sulfur coated urea) in wide area, there are growing concerns about SC (sulfur coating) effect on the soil environment. Only by exploration of the migration and transformation process of SC in the soil, the impact of SC conversion on the soil can be theoretically explained. The research of degradation dynamics and transformation process of SC not only can explore SCU degradation effect on certain properties oil micro-sulfur domain, but also can ascertain the impact mechanism, which will provide scientific proof of CRFs (controlled release fertilizers) application and dissemination and guide SCU application and promotion.
     In this study, the migration and transformation process of SC of CRFs and the various times morphology and ultrastructure changes in soil SC were explored thoroughly by the indoor simulation training, sand culture and pool culture experiment combined with scanning electron microscopy, micro-domain technology and isotope tracer so on, the researches ascertain the intermediates during the degradation process and the final degradation products effect on soil environment, and reveal SC of CRFs specific destination in the soil sulfur specific destination, and also analysis SC effect on activation of soil nutrient elements, migration and transformation of N and the impact on crop growth and development. The main results are as follows:
     (1) Using the pot experiment of two consecutive years to observe feature and ultrastructure changes during the degradation of SC. In this research, the cross-section and surface of coating (SC, SC spraying paraffin sealant outer coating and packing thermosetting resins SC) were analyzed by scanning electron microscope in different cultivating stages, the electron microscope images show that only SC surface is rough, and has slits and holes all over. Along with the extending of time, the cracks and holes become gradually very big, whose reason is only the poor effect of SC control;②The surface of SC spraying paraffin sealant outer coating, on which some tiny cracks will be produced when coating because of temperature changes, has some relative smooth and thin coatings formed by paraffin, but it can better coat the slits and holes formed by sulfur. During the cultivating, the erosion holes, whose size enlarged increasingly and become darker in color from light, occurred on smooth and continuous paraffin coating. During the mid-late cultivation, sulfur of lack of sealant cracked into small pieces from coating condition and turned to powder.③Polymer-sulfur coating has relatively thin polymer layer and the gap of sulfur surface under coating can be seen, and with the degradation of the coating, the coating of sulfur under polymer coating can be found. Compared with SC spraying paraffin sealant outer coating, the degradation of packing thermosetting resins SC need a long time, which can control the release of nutrients better.
     (2) By the quartz sand sulfur-free culture experiment of 560 days, the intermediate product of the degradation of SC is thiosulfate, and at the end of culture the final product of is sulfate that is the main product of SC degradation. In matrix, SC main transformation approach is S~0→S_2O_3~(2-)→SO_4~(2-), and the rate of degradation of sulfur coating residual is higher than that of packing fertilizer coating. In the period when the concentration of sulfate ions of is higher, the total sulfur content in plants is also higher, which indicates that the degradation of SC can promote the sulfur absorption of plant.
     (3) The degradation of sulfur and SC in the soil gives rise to significant change of pH in each treatment micro-domain soil of brown soil, the less effect in non-micro-domain soil, but at the middle-late stage of culture, their PH value increase. Compared with the brown, PH value of fluvo-aquic soils descended in a narrow range. The each sulfur-containing treatment oxidation rate in brown and fluvo-aquic soil is Sulphur>SC>Polymer-sulfur coating. The application of SC and polymer-sulfur coating plays role of activation of trace elements in micro-domain soil. At the middle-late stage of culture the content of available ferrum, manganese and copper get exaltation, and the content of available sulphur in brown micro-domain soil has increase trend, also rising trend in non-micro-domain soil. In fluvo-aquic micro-domain soil, the content of available sulfur and phosphorus has a growing tendency, and with the extension of degradation time that in non-micro-domain soil also has rising trend.
     The experiment results show that the soil of sulfur micro-domain (≤5 mm) is significantly affected by the products of SC degradation, while the soil of non-micro-domain (>5 mm) is less affected. The above conclusions show that the controlled-release fertilizers application of SC and polymer-sulfur coating will dramatically affect the chemical properties of soil in a small range, no obvious effects were observed in the whole soil.
     (4) With brown pool culture experiment, the content change of soil sulfur components in the rotation system of summer corn-winter wheat shows the water-soluble sulfur content has a big margin in 0-20 cm layer, and the application of controlled-release fertilizers of SC and polymer-sulfur coating can significantly increase the water-soluble sulfur content in mid-late period of crop cultivation. In the process of crop growth, there exist the balance of mutual transformation between water-soluble sulfur and adsorbed sulfur. In brown soil, the water-soluble sulfur and soluble sulfur of hydrochloric acid is the main components of inorganic sulfur, and the content of soluble sulfur of hydrochloric acid has a gradually downward trend, which indicates when the adsorbed sulfur and water-soluble sulfur in soil is not sufficient, the soluble sulfur of hydrochloric acid can be timely supplied. The application of controlled-release fertilizers of polymer-sulfur coating increased the total amount of inorganic sulfur in soil, which guarantees the steady and continuous supply of sulfur required for crop growth in the whole growth period of corn. By the role of rainfall and irrigation-leaching, SO_4~(2-) has the migration trend to the deep soil layers.
     (5) Controlled release fertilizer of SC promotes absorption of sulfur in 12-leaf stage and milk ripe stage of summer wheat, the absorption of sulfur of each treatment is PSCU> SCU + PCU> PCU> Urea. The application of Controlled release fertilizer of SC increased total sulfur content of plant at flowering and mature stage of winter wheat. At flowering stage, total sulfur content of plant of PSCU and SCU+PCU treatment have the increase of 25.64% and 17.16% compared with Urea treatment respectively. The dynamic change of sulfur components in soil promotes the absorption of sulfur for crop.
     (6) In the rotation system of the summer corn-winter wheat, the isotope tracer technique is used to compare with N fate of Controlled release fertilizer of SC, the residual nitrogen in soil, the soil nitrate N migration in the profile and absorption and use of N in crop. The results show that in the summer corn, the application of controlled-release fertilizer has the higher availability of N fertilizer compared with urea, and N recovery rate, residue rate and loss rate of PCU treatment has the increase of 3.9% and 5.02% and the decrease of 7.67% compared with Urea treatment, respectively. In winter wheat, N recovery rate, residue rate and loss rate of PCU treatment has the increase of 1.88% and5.45% and the decrease of 7.32% compared with Urea treatment, respectively.
     (7) Application of controlled-release fertilizers of SC and polymer-sulfur coating can increase the plant dry matter accumulation and grain yield of crop maturity. Furthermore, the use efficiency of crop nitrogen and sulfur gain improvement synchronously, which will increase nitrogen and sulfur concentrations of grain, and accumulation amount of N and sulfur in plant. By increasing the harvest index of N and sulfur to promote the increase of grain yield, the yield of grain of summer corn of PSCU and PCU treatment has an increase of 16.0% and 13.43% compared with Urea treatment (11.85% and 9.79% for winter wheat, respectively). Application of controlled-release fertilizers of polymer-sulfur coating may realize the efficient use of nitrogen in rotation system of summer corn-winter wheat, and the lower price of PSCU will benefit large-scale use of field crops.
     (8) Path-coefficients of yield and yield components shows that when applied the mixture of PSCU and SCU(Sulfur coated urea), TGW(thousand-grain weight), R/E( rows per ear), ED (ear diameter) and G/E(the grain per ear) play a decisive role in yield of maize; in only application of PSCU, TGW, G/R(row grains), ED and G/E have the main role, while in that of PSU, TGW, G/R, ED and R/E play decisive role. Each key decision factors is TGW, and in limiting factor PSCU and PCU is R/E, SCU and PCU is G/R. Therefore, in high-yield maize cultivation, selection of combinations of different CRFs should coordinate the main factors of yield to guarantee the best combination of each factor.
引文
鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000.
    陈光,李立中.包膜尿素对玉米吸氮及产量的影响[J].吉林农业大学学报, 1996, 18(4): 61-65.
    陈靖宇.控制释放肥料的生产技术及其研究方向[J].化肥工业, 2005, 32(2): 1-5.
    陈士林,赵新亮.不同产量水平玉米杂交种主要农艺性状的遗传相关与通径分析[J]. 河南农业科学, 2003, 3(5): 13-16.
    程励励,文启孝.盆栽和田间条件下土壤15N标记肥料氮的转化[J].土壤学报, 1989, 26(2): 124-130.
    丁洪,蔡贵信.华北平原几种主要类型土壤的硝化及反硝化活性[J].农业环境保护, 2001, 20(6): 390-393.
    杜建军,廖宗文.包膜控释肥养分释放特性评价方法的研究进展[J].植物营养与肥料学报, 2002, 8(1): 16-21.
    杜建军,廖宗文.高吸水性树脂包膜尿素的结构特征及养分控/缓释性能[J].中国农业科学, 2007, 40(7): 1447-1455.
    段路路.缓控释肥料养分释放机理及评价方法研究[D],山东农业大学(博士), 2009.
    段平.缓效多营养包硫尿素氮溶出速率的实验研究[J].磷肥与复肥, 2000, 15(2): 21-22.
    樊军,郝明德.旱地长期定位施肥土壤剖面中有效硫累积及其影响因素[J].植物营养与肥料学报, 2002, 8(1): 86-90.
    符建荣.控释氮肥对水稻的增产效应及提高肥料利用率的研究[J].植物营养与肥料学报, 2001, 7(2): 145-152.
    符建荣,马军伟.养分释放可调控型有机无机掺混肥的创制及应用[J].浙江农业学报, 2005, 17(5): 251-256.
    郭建华,邢竹.应用15N研究不同土壤和不同施肥时期对冬小麦氮素利用率的影响[J]. 核农学通报, 1992, 13(6): 274-277.
    郭亚芬,陈魁卿.黑龙江省主要土壤硫的形态及其有效性的研究[J].东北农业大学学报, 1995, 26(1): 27-33.
    郭智芬,刘国庆.应用15N研究不同氮肥在麦田土壤中的去向及脲酶抑制剂的效果[J]. 同位素, 1992, 5(4): 93-97.
    国家环境保护总局.固定污染源排气中二氧化硫的测定.碘量法. 2000.
    韩晓日,郭鹏程.土壤微生物对施入肥料氮的固持及其动态研究[J].土壤学报, 1998, 35(3): 412-418.
    何念祖.肥料制造与加工[M].上海:上海科学技术出版社, 1998.
    何绪生,李素霞.控效肥料的研究进展[J].植物营养与肥料学报, 1998, 4(2): 97-106.
    胡正义,竺伟民.油-稻条件下土壤硫形态消长规律的研究[J].土壤学报, 1999, 36(4):564-568.
    黄旭,唐拴虎.一次性施用不同配方控释BB肥对水稻不同生育时期生理及产量的影响[J].广东农业科学, 2010, 8(1): 92-94.
    黄运湘,刘鹏.稻作制与有机肥及地下水位对水稻土硫素状况的影响Ⅱ.土壤无机硫的形态分析[J].湖南农业大学学报(自然科学版), 2003, 29(4): 322-325.
    姜宝雷,张民.硫包膜尿素养分释放特征[J].化肥工业, 2005, 32(1): 36-41.
    巨晓棠.冬小麦/夏玉米轮作体系中土壤-肥料氮的转化及去向[D],中国农业大学(博士), 2000.
    雷利斌.加硫尿素N-S在土壤中的转化及其作物效应研究[D],安徽农业大学(硕士), 2006.
    李成保,赵安珍.海河流域定位土壤中不同形态硫的含量及其与土壤性质的关系[J]. 环境化学, 1990, 129(6): 65-69.
    李方敏,樊小林.控释肥料的制造工艺及包膜的结构特征[J].磷肥与复肥, 2005, 20(5): 47-48.
    李方敏,廖宗文.平衡施肥理论与肥料高效利用[J].磷肥与复肥, 2004, 19(5): 66-67.
    李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失[J].应用生态学报, 2000, 11(2): 240-242.
    李书田,林葆.土壤硫素形态及其转化研究进展[J].土壤通报, 2001, 32(3): 132-135.
    李新华,刘景双.土壤硫的氧化还原及其环境生态效应[J].土壤通报, 2006, 37(1): 159-163.
    李玉中,祝延成. 15N标记肥去向及平衡状况[J].中国草地, 2002, 24(5): 15-17.
    李宗新,王庆成.控释肥对夏玉米的应用效应研究[J].玉米科学, 2007, 15(6): 89-92.
    李宗新,王庆成.控释肥对玉米高产的应用效应研究进展[J].华北农学报, 2007, 22(增刊): 127-130.
    联合国工业发展组织编.化肥手册[M].北京:中国对外翻译出版公司, 1984.
    林葆,李家康.当前我国化肥的若干问题和对策[J].磷肥与复肥, 1997, 2(1): 1-23.
    林葆,李书田.影响硫磺在土壤中氧化的因素[J].土壤肥料, 2000, 5(5): 3-8.
    刘常珍,赵言文.硫元素对蔬菜地土壤NO3-淋溶损失的影响[J].南京农业大学学报, 2004, 27(3): 54-57.
    刘德林,聂军. 15N标记水稻控释氮肥对提高氮素利用效率的研究[J].激光生物学报, 2002, 11(2): 87-92.
    刘芳,于振文.应用15N示踪法对旱地冬小麦施肥与氮素吸收利用的研究[J].土壤肥料, 1997, 12(2): 291-295.
    刘广明,杨劲松.土壤含盐量与土壤电导率及水分含量关系的实验研究[J].土壤通报, 2001, 32(50): 85-87.
    刘广明,杨劲松.影响土壤浸提液电导率的盐分化学性质要素及其强度研究[J].土壤学报, 2005, 42(2): 247-252.
    龙继锐,马国辉.缓释尿素对超级杂交稻Y两优1号生长发育及氮肥利用率的影响[J]. 杂交水稻, 2007, 22(6): 48-51.
    鲁如坤.土壤植物营养学:原理与施肥[M].北京:化学工业出版社, 1998.
    鲁如坤.“微域土壤学”一个可能的土壤学的新分支[J].土壤学报, 1999, 36(2): 287-288.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000.
    吕家珑,张一平.长期单施化肥对土壤性状及作物产量的影响[J].应用生态学报, 2001, 12(4): 569-572.
    吕丽华,陶洪斌.施氮量对夏玉米碳、氮代谢和氮利用效率的影响[J].植物营养与肥料学报, 2008, 14(4): 630-637.
    毛小云,冯新.固-液反应包膜尿素膜的微结构与红外光谱特征及氮素释放特性研究[J]. 中国农业科学, 2004, 37(5): 704-710.
    孟赐福,姜培坤.硫素与其他营养元素的交互作用对作物养分吸收、产量和质量的影响[J].土壤(soils), 2009, 41(3): 329-334.
    佩奇,米勒.土壤分析法[M].北京:中国农业科技出版社, 1991.
    邱标麟.肥料制造学[M].台南:复文书店, 1988.
    茹德平,赵彩霞.用15N示踪技术研究高产小麦、玉米的施氮规律[J].核农学报, 2005, 19(2): 151-154.
    山东省质量技术监督局.超级玉米高产栽培技术规程北京, 2009.
    尚兴甲,王梅芳.运用同位素15N研究冬小麦不同时期追施尿素的效果及氮肥的利用率[J].土壤肥料, 2001, 12(6): 9-11.
    沈其荣,王岩.土壤微生物量和土壤固定态铵的变化及水稻对残留N的利用[J].土壤学报, 2000, 37(3): 330-338.
    苏琳,董志新.控释尿素施用方式及用量对夏玉米氮肥效率和产量的影响[J].应用生态学报, 2010, 21(4): 915-920.
    隋常玲,张民.不同控释肥对土壤无机硫组分的影响[J].水土保持学报, 2010, 24(6): 158-161.
    孙克刚,和爱玲.小麦-玉米周年轮作制下的控释肥及控释BB肥肥效试验研究[J].中国农学通报, 2009, 25(12): 150-154.
    孙克刚,李丙奇.金正大包膜尿素与普通尿素不同掺混比例对玉米肥效试验的研究初报[J].磷肥与复肥, 2008, 23(4): 72-73.
    唐拴虎,陈建生.控释肥料氮素释放与水稻及吸收动态研究[J].土壤通报, 2004, 35(2): 186-190.
    陶运平.硫代硫酸铵对土壤硝化作用的影响[J].土壤学报, 1997, 34(4): 467-473.
    田霄鸿,南雄雄.施用硫磺和ALA对碱性盐土上作物生长发育及土壤性质的影响[J]. 生态环境, 2008, 17(6): 2407-2412.
    汪吉东,张永春.硫包衣尿素对水稻养分吸收利用及土壤反应的影响[J].华北农学报, 2008, 23(增刊): 293-297.
    汪景宽,田晓婷.长期地膜覆盖及不同施肥处理对棕壤中全硫和有效硫的影响[J].土壤通报, 2008, 39(4): 804-807.
    王东,金士鹏.不同小麦品种氮、硫积累特性与子粒品质的关系[J].植物营养与肥料学报, 2009, 15(1): 41-47.
    王俊忠,黄高宝.施氮量对不同肥力水平下夏玉米碳氮代谢及氮素利用率的影响[J]. 生态学报, 2009, 29(4): 2045-2052.
    王庆成,刘开昌.山东夏玉米高产栽培理论与实践[J].玉米科学, 2004, 12(专刊): 60-62,65.
    王玉军,邹应斌.掺混型缓/控释肥对杂交晚稻产量的影响[J].中国土壤与肥料, 2009, 8(5): 28-33.
    吴新德,江志根.硫衣尿素对安徽沿江地区几种作物产量和效益的影响[J].中国土壤与肥料, 2007, 16(6): 64-67.
    肖军,秦志伟.农田土壤化肥污染及对策[J].环境保护科学, 2005, 31(131): 32-34.
    谢正苗,黄铭洪.铝超积累植物和铝排斥植物吸收和累积铝的机理[J].生态学报, 2002, 22(10): 1653-1659.
    刑竹,郭建华.涂层尿素在石灰性土壤上的行为[J].植物营养与肥料学报, 1997, 3(1): 16-23.
    徐晓荣,李恒辉.利用15N研究氮肥对土壤及植物内硝酸盐的影响[J].核农学报, 2000, 14(5): 301-304.
    徐玉鹏.掺混型缓释肥料对玉米产量及品质的影响[J].河北农业科学, 2008, 12(5): 48-49.
    许秀成,王好斌.包裹型缓释/控制释放肥料专题报告-第三报包膜(包裹)型控制释放肥料各国研究进展1.美国、加拿大;2.日本[J].磷肥与复肥, 2000, 15(6): 7-12.
    杨劲峰,韩晓日.长期不同施肥对土壤无机硫组分的影响[J].土壤通报, 2008, 39(4): 808-811.
    杨越超,耿毓清.膜特性对包膜控释肥养分控释性能的影响[J].农业工程学报, 2007, 23(11): 23-29.
    杨越超,张民.聚合物硫包尿素的养分释放特征[J].化肥工业, 2006, 33(1): 26-30.
    易镇邪,王璞.氮肥基追比对华北平原夏玉米生长发育与水、氮利用的影响II.夏玉米氮素累积、转运与土壤无机氮动态[J].中国生态农业学报, 2008, 16(1): 86-90.
    袁志发,周静芋.多元统计分析(农林类) [M].北京:科学出版社, 2002.
    张昌爱,张民.硫对石灰性土壤化学性质的影响[J].应用生态学报, 2007, 18(7): 1453-1458.
    张昌爱,张民.控释肥硫膜对酸性棕壤淋溶特性的影响[J].水土保持学报, 2006, 20(3): 21-24.
    张昌爱,张民.控释尿素硫膜对土壤性质和油菜生长的影响[J].土壤学报, 2007, 44(1): 113-121.
    张福锁,王激清.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报, 2008, 45(5): 915-924.
    张民,史衍玺.控释和缓释肥的研究现状与进展[J].化肥工业, 2001, 28(5): 28-30.
    张民,杨越超.包膜控释肥料研究与产业化开发[J].化肥工业, 2005, 3(2): 7-12.
    张文辉,段平.缓效多营养包膜尿素肥效试验与经济效益分析[J].磷肥与复肥, 1997, 12(4): 61-62.
    张永春,汪吉东.硫包衣尿素对水稻的增产效应及氮素利用率的影响研究[J].水土保持学报, 2007, 21(4): 108-111.
    赵秉强,张福锁.我国新型肥料发展战略研究[J].植物营养与肥料学报, 2004, 10(5): 536-545.
    赵霞,刘京宝.缓控释肥对夏玉米生长及产量的影响[J].中国农学通报, 2008, 24(6): 247-249.
    郑磊,张民.控释肥及硫膜对土壤性质和水稻生长发育的影响[J].水土保持学报, 2009, 23(2): 193-197.
    中国国家标准化管理委员会.化学试剂五水合硫代硫酸钠(硫代硫酸钠).北京, 2006.
    朱红英,董树亭.不同控释肥料对玉米产量及产量性状影响的研究[J].玉米科学, 2003, 11(4): 86-89.
    邹长明,高菊生.长期施用含氯和含硫肥料对土壤性质的影响[J].南京农业大学学报, 2004, 27(1): 117-119.
    Adamczyk-Winiarska Z, Król M. Microbial oxidation of elemental sulphur in brown soil [J]. Plant and Soil, 1975, 43(3): 95-100.
    Barhosa-Jefferson V L, Zhao F J. Thiosulphate and tetrathionate oxidation in arable soils [J]. Soil Biology and Biochemistry, 1998, 30(5): 553-559.
    Blair G J. Development and evaluation of sulphur-containing fertilizers inAustralia and New Zealand [C]. Proc.of the Inter.Workshop on current and future plant nutrient sulphur requirements,availability and commercial issues for China, Beijing, 1995: 57-66.
    Bloomfield C. Effect of some phosphate fertilizers on the oxidation of elemental sulphur in soil [J]. Soil Science, 1967, 103(3): 219-223.
    Cambouris A N, Nolin M C. Soil Management Zones Delineated by Electrical Conductivity to Characterize Spatial and Temporal Variations in Potato Yield and in Soil Properties [J]. American Journal of Potato Research, 2006, 83(5): 381-395.
    Chapman S J. Oxidation of micronized elemental sulphur in soil [J]. Plant and Soil, 1989, 116(2): 69-76.
    Curtin D, Syers J K. Extractability and adsorption of sulphate in soils [J]. European Journal ofSoil Science, 1990, 41(2): 305-312.
    Dail D B, Fitzgerald J W. S cycling in soil and stream sediment: influence of season and in situ concentrations of carbon, nitrogen and sulfur [J]. Soil Biology and biochemistry, 1999, 31(1): 1395-1404.
    Dr. Martin, Trenkel E. Controlled-release and stabilized Fertilizers in agriculture. [M]. Paris:International Fertilizer Industry Association, 1997.
    Fan M X, Donald L M. Correcting sulphur deficiency for higher productivity and fertilizer efficiency. The Sulphur Institute.United States, 2007.
    Fox R L, Oleen R A. Evaluating the Sulfur status of soils by plants and Soil tests [J]. Soil Science 1964, 28(10): 243-246.
    Gathumbi S M, Cadisch G. Subsoil nitrogen capture in mixed legume stands as assessed by deep nitrogen-15 placement [J]. Soil Science Society of America Journal, 2003, 67(1): 573-582.
    Goertz H M, Timmons R J. Sulfur coated fertilizers and process for the preparation thereof United States Patent, 1993.
    Goos R J. Identification of Ammonium Thiosulfate as a Nitrification and Urease Inhibitor1 [J]. Soil Science Society of America Journal, 1984, 49(1): 232-235.
    Graeme B, Rod L. Sulfur and carbon research in rice production systems [J]. Field Crops Research, 1998, 56(1): 177-181.
    Gupta V, Lawrence S R. Impact of elemental sulfur fertilization on agricultural soils. I. Effects on microbial biomass and enzyme activities. [J]. Soil science, 1988, 68(2): 463-473.
    Hamdallah G M, prasad D. Crop response to sulfur-coated urea (SCU) and other N-carriers in sandy soils of Saudi Arabia [J]. Ferilizer Research, 1988, 15(1): 47-54.
    Hartsock N J, MuEller T G. Interpreting Soil Electrical Conductivity and Terrain Attribute Variability with Soil Surveys [J]. Precision Agriculture, 2005, 6(1): 53-72.
    Huang Y, Rickerl D H. Recovery of deep-point injected soil nitrogen-15 by switchgrass,alfalfa,ineffective alfalfa and corn [J]. Journal of Environmental Quality, 1996, 25(1): 1394-1400.
    Janzen H H, Bettany J R. The Effect of Temperature and Water Potential on Sulfur Oxidation in Soils [J]. Soil science, 1987, 144(1): 81-89.
    Jerrell W M, Boersam L. Model for the Release of Urea by Granules of Sulfur-Coated Urea Applied to Soil [J]. Soil Science Society of America Journal, 1979, 43(1): 1044-1050.
    Ju X T, Kou C L. Nitrogen balance and groundwater nitrate contamination: Comparioson among three intensive cropping systems on the north China Plain [J]. Environmental Pollution, 2006, 143(1): 117-125.
    Kochba M, Ayalon O. Slow release rate: Individual granules and population behaviour [J].Fertilizer Research, 1994, 39(1): 39-42.
    Lunt O R. Modified sulfur-coated granular urea for controlled nutrient release [J]. Transactions of the 9th International Congress of Soil Science, 1968, 3(1): 377-383.
    Maquieira A, Climent M D. Fertilization of orange trees with sulfur-coated urea. Nitrogen levels in leaves and fruits [J]. Plant and Soil, 1984, 80(2): 247-254.
    Mcardle R N, Mcclurg C A. Effects of sulfur-coated urea fertilizer regimes on production of processing tomatoes on a sandy loam [J]. Ferilizer Research, 1986, 8(3): 259-262.
    McClellan G H, Scheib R M. Texture of sulfur coatings on urea [M]. Washington, DC:American Chemical Society, 1975.
    Michael M S, Choi. Sulfur coating of urea in shallow spouted beds [J]. Chemical Engineering Science, 1997, 52(7): 1073-1086.
    Nor Y M, Tabatabai M A. Oxidation of elemental sulfur in soils [J]. Soil Science Society of America Journal, 1976, 41(1): 736-741.
    Ogola J B O, Wheeler T R. Effects of nitrogen and irrigation on water use of maize crops. [J]. Field Crops Research, 2002, 78(3): 105-117.
    Osake M, Shinano T. Redistribution of carbon and nitrogen compounds from the shoot to the harvesting organs during maturation in field crops [J]. Soil science and plant nutrition, 1991, 37(1): 117-128.
    Paramasivam S, Alva A K. Leaching of nitrogen forms from controlled-release nitrogen fertilizers [J]. Communications in Soil Science and Plant Analysis, 1997, 28(17,18): 1663-1674.
    Pettersson C G, S?derstr?m M. Canopy reflectance, thermal stress, and apparent soil electrical conductivity as predictors of within-field variability in grain yield and grain protein of malting barley [J]. Precision Agriculture, 2006, 7(5): 343-359.
    Raban S, Zaidel E. Release mechanisms of controlled release fertilizers in practical use [C]. on Fertilization and the Environment, Haifa, 1997: 287-295.
    Raigon M D, Primo Yufera E. Available N in the root area for citrus orchards fertilized with sulphur-coated-urea and ammonium nitro-sulphate [J]. Nutrient cycling Agroecosystem, 1999, 55(3): 187-196.
    Richter J, Roelcke M. The N-cycle as determined by intensive agriculture– examples from central Europe and China [J]. Nutrient cycling in agroecosystems, 2000, 57(1): 33-48.
    Rui L, Liu M Z. Controlled release NPK compound fertilizer with the function of water retention [J]. Reactive&Function Polymers, 2007, 67(2): 759-779.
    Shanley J B. Sulfate retention and release in soils at Panola Mountain Georgia. [J]. Soil Science, 1992, 153(5): 499-508.
    Shoji S, Kanno H. Use of polyolefin-coated fertilizers for increasing fertilizer efficiency andreducing nitrate leaching and nitrous oxide emissions [J]. Fertilizer Research, 1994, 39(2): 145-152.
    Strehl C, Prietzel J. Method of the Partitioning of organic sulphur in forest soil O layers [J]. Soil Biology and Biochemistry, 1998, 30(13): 1725-1731.
    Trenkel M E. Controlled-release and stabilized Fertilizers in agriculture [M]. Paris:International Fertilizer Industry Association, 1997.
    Trenkel M E.农业生产中的控释与稳定肥料[M].北京:中国科学技术出版社, 2002.
    Wang F L, Alva A K. Leaching of nitrogen from slow-release Urea sources in sandy soils [J]. Soil Science Society of America Journal, 1996, 60(1): 1454-1458.
    Wang Y P, Li Q B. Effect of sulphur on soil Cu/Zn availability and microbial community composition [J]. Journal of Hazardous Materials, 2008, 159(2): 385-389.
    Williams C H, Steinbergs A. Soil sulphur fractions as chemical indices of available sulphur in some Australian soils [J]. Australian Journal of Agricultural Research, 1959, 10(3): 340-352.
    Worrall R J, Lamont G P. The growth response of container grown woody ornamentals to controlled-release fertilizers [J]. Scientia Horticulture, 1987, 32(3): 275-286.
    Zhang M, Nyborg G M. Determining permeability of polymer-coated urea sulphur coated fertilizers [J]. Fertility Research, 1994, 38(1): 47-51.
    Zhang W L, Tian Z X. Nitrate pollution of groundwater in northern China [J]. Agriculture, Ecosystems & Environment, 1996, 59(3): 223-231.
    Zinati G M, Christenson D R. Spatial and temporal distribution of 15N tracer and temporal pattern of N uptake from various depths by sugarbeet [J]. Communicate Soil Science of PlantAnalysis, 2001, 32(1): 1445-1456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700