用户名: 密码: 验证码:
基于光谱和多光谱成像技术的油菜生命信息快速无损检测机理和方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字农业和农业物联网技术作为现代农业最前沿的发展领域之一,是当今世界发展农业信息化,实现农业可持续发展的关键和核心技术。数字农业和农业物联网要求快速、实时、准确和定位化的获取植物生长信息,而传统的实验室测量分析和信息获取方法已经不能满足现代农业的发展要求。因此,研究和开发植物生命信息快速无损检测技术和传感仪器等软硬件平台已经成为现代农业亟待解决的关键问题。本研究以种植广泛、经济价值高和作为可再生能源的油菜为研究对象,通过连续4年(2007-2010年)的试验研究,建立了油菜苗期、花期、角果期等全生长期的叶片和冠层养分信息快速检测模型,首次实现了非生物胁迫(除草剂丙酯草醚)下油菜叶片乙酰乳酸合成酶活力、蛋白质含量、氨基酸含量等生理信息的快速检测,并研发了油菜生物胁迫(菌核病)早期诊断识别方法和系统,对油菜种植的精细化管理和作业,提高油菜籽的产量和品质具有重要意义。主要创新性成果有:
     (1)提出了光谱数据预处理-特征波长提取-线性和非线性建模预测的光谱分析技术路径,建立了油菜苗期、花期、角果期,以及苗-花-角果生命期叶片和冠层养分的快速检测模型,实现了油菜养分信息的精确、高效无损检测。系统地研究了原始光谱(Raw)和7种光谱预处理方法,并应用连续投影算法提取特征波长,建立了线性(多元线性回归MLR和偏最小二乘法PLS)和非线性(最小二乘-支持向量机LS-SVM)预测模型。对油菜苗期、花期、角果期,以及苗-花-角果生命期SPAD值的预测相关系数分别为0.7149、0.9431、0.9215和0.8557。基于Cropscan多光谱辐射信息(15通道)的油菜冠层SPAD值检测最优模型LS-SVM的预测相关系数为0.7122。
     (2)应用可见/近红外光谱技术,建立了油菜叶片光谱信息与生理信息的定量关系模型,首次实现了非生物胁迫(除草剂丙酯草醚)下油菜叶片乙酰乳酸合成酶活力(ALS)的快速检测。在可见光谱(400-780 nm)、近红外光谱(781-2500 nm)和可见/近红外光谱(400-2500 nm)范围的最优预测相关系数分别为0.9026、0.9179和0.9379。在近红外光谱(1100-2500 nm)范围,应用回归系数(RC)提取的10个特征波长所建最优模型对ALS的预测相关系数为0.9395。
     (3)提出了连续投影算法(SPA)、回归系数法(RC)、载荷系数法(x-Loading Weights)和独立组分分析法(ICA)提取特征波长的准则,建立了除草剂丙酯草醚胁迫下油菜叶片蛋白质含量的快速检测方法和模型。在可见/近红外光谱(400-2500 nm)范围,油菜鲜叶可溶性蛋白含量、非可溶性蛋白含量和总蛋白含量最优预测相关系数分别为0.9351、0.9067和0.9338。在近红外光谱(1100-2500 nm)范围,油菜干叶可溶性蛋白含量最优模SPA-LS-SVM(Raw)的预测相关系数为0.9887。
     (4)提出了直接正交信号校正(DOSC)和连续投影算法(SPA)的优化组合次序为DOSC-SPA,建立了除草剂胁迫下油菜叶片17种氨基酸和总氨基酸含量的预测模型,阐明了除草剂丙酯草醚对总氨基酸含量的作用机理和响应规律。所建模型对氨基酸含量的预测相关系数均大于0.95,应用DOSC-SPA提取特征波长所建直接方程模型(幂函数方程)对总氨基酸含量的预测相关系数为0.9968。
     (5)应用光谱和多光谱成像技术,建立了油菜生物胁迫(菌核病)早期识别的光谱诊断模型、多光谱图像反射特性诊断模型和多光谱图像纹理特征诊断模型,并开发了油菜菌核病早期诊断识别系统。应用DOSC-SPA提取的组合模拟波段、基于多光谱图像提取的植被指数(归一化植被指数NDVI、绿波段归一化植被指数GNDVI和比值植被指数RVI)和纹理特征(惯性矩、同质性、二阶角矩、相关性和熵)所建菌核病诊断模型的识别率均达到了100%,对实际生产具有重要意义。
     上述研究成果实现了油菜生长全过程、全方位生命信息的精准、高效检测,为开发油菜养分信息、生理信息和生态信息的快速检测仪器和传感器奠定了理论基础,具有广阔的应用前景。
Digital agriculture and internet of things (IoT) in agriculture are the most frontier technologies in modern agriculture, and they are also the key and kernel technologies for the development of modern agriculture and the realization of sustainable agriculture. Digital agriculture and IoT in agriculture require the fast, real time, accurate and positional plant growth information acquisition technologies. Obviously, the traditional lab measurements and information acquisition methods cannot meet the demands of modern agricultural development. Therefore, the study on nondestructive detection methods for plant growth information and development of information detection sensors or instruments are the key problems to be dealt of modern agriculture. This study is mainly focused on the Brassica napus L., which is a widely planted, high economic valued and alternative energy resource plant. Based on a four-year experimental study, the SPAD value detection model for oilseed rape leave and canopy were developed for different growing stage, including seedling, blooming, podding stage. The physiological information (acetolactate synthase (ALS) activity, protein content and amino acids) in oilseed rape leaves were firstly measured in a fast and nondestructive way under herbicide propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate (ZJ0273) stress. A new method and system were also developed for plant disease (Sclerotinia) early diagnosis of oilseed rape leaves. These results were helpful for the precision management and operation of oilseed rape planting and were also meaningful for the improvement of of rapeseed yield and quality. The main creative results were achieved as follows:
     (1) A spectral analysis technical method was proposed as spectral preprocessing-effective wavelength selection-linear and nonlinear calibration model. The fast, high precision and nondestructive models were developed for SPAD value detection in oilseed rape leave and canopy during different growing stage, including seedling, blooming, podding stage. A complete comparison was performed among raw spectra and different spectral preprocessing methods. Successive projections algorithm (SPA) was applied for effective wavelengths (EWs) selection. Linear multiple linear regression (MLR) and partial least squares (PLS), and nonlinear least squares-support vector machine (LS-SVM) models were developed for the detection of fresh leaf SPAD value. The regression coefficients (Rp) were 0.7149,0.9431,0.9215 and 0.8557 for seedling, blooming, podding and seedling-blooming-podding-stage, respectively. An exploration research was proceeded to utilize multi-channel (15 channels) spectroscopy for the SPAD detection of oilseed rape canopy, and the best LS-SVM model achieved Rp=0.7122.
     (2) Vis/NIR spectroscopy was applied for the quantitative relationship between spectral information and physiological information in oilseed rape leaves, and this study firstly realized the fast detection of ALS under herbicide (ZJ0273) stress. The correlation coefficients were 0.9026,0.9179 and 0.9379 for visible region (400-2500 nm), near infrared region (781-2500 nm) and Vis/NIR region (400-2500 nm) models, respectively. In near infrared region (1100-2500 nm),10 EWs selected by regression coefficient (RC) were applied for ALS detection, and the best prediction results was Rp=0.9395.
     (3) The principles for effective variable selection were proposed, inclueding successive projections algorithm (SPA), regression coefficients (RC), x-loading weights (x-LW) and independent component analysis (ICA). Fast detection methods and models were developed for protein content detection under herbicide (ZJ0273) stress. In visible/near infrared region (400-2500 nm), the optimal results Rp for soluble protein content, unsoluble protein content and total protein content were 0.9351,0.9067, and 0.9338, respectively. In near infrared region (1100-2500 nm), the best model for soluble protein content using dried leaf spectra was SPA-LS-SVM (Raw) with Rp=0.9887.
     (4) The optimal combination order for direct orghogonal signal correction (DOSC) and SPA were obtained with DOSC-SPA. Fast and nondestructive models were developed for 17 amino acids and total amino acid (TAA) in oilseed rape leaves. The functional mechanism and response rules were descript for TAA under herbicide stress. The result indicated that the Rp by optimal model were over 0.95 for all 17 amino acids. The selected effective wavelength by DOSC-SPA were applied for direct function development for TAA detection, and the results indicated that power function obtained the best prediction results with Rp=0.9968.
     (5) The early diagnosis models were developed for Sclerotinia in oilseed rape using spectral and multi-spectral imaging technology, including spectral diagnosis model, multi-spectral imaging reflectance diagnosis model and multi-spectral imaging texture feature diagnosis model. An early diagnosis system was also developed for Sclerotinia in oilseed rape. An early diagnosis model for Sclerotinia in oilseed rape leaves using combinational-simulated wavelengths by DOSC-SPA was developed with a good discrimination ratio of 100%. A multi-spectral imaging discrimination model with a discrimination ratio of 100% was developed based on vegetation index (normalized difference vegetation index, Green normalized difference vegetation index and ratio vegetation index) and texture features (moment of inertia, homogeneity, second derivative angular moment, correlation and entropy). The results were quite helpful for practical applications.
     The above results realized the fast and high precision detection of oilseed rape for whole growing stage and whole growth information. They also supplied theoretical basis of detection instruments and sensors for the determination of oilseed rape nutritional information, physiological information and ecological information, which had a promising application prospect.
引文
Adams M. L., Philpot W. D., Norvell W. A. Yellowness index:an application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation. International Journal of Remote Sensing,1999,20(18): 3663-3675.
    Ahmad I. S., Reid J. F. Evaluation of colour representations for maize images. Journal of Agricultural Engineering Research,1996,63(3):185-195.
    Araujo, M. C. U., Saldanha, T. C. B., Galvao, R. K. H., et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics and Intelligent Laboratory Systems, 2001,57:65-73.
    Barberi P. Weed management in organic agriculture:are we addressing the right issue? Weed Research,2002, 42:177-193.
    Boccaral M., Boue C., Garmier M. Infra-red thermograph revealed a role for mitochondria in pre-symptomatic cooling during harpin-induced hypersensitive response. The plant Journal,2001,28(6): 663-670.
    Borhan M. S., Panigrahi S., Lorenzen J. H., et al. Multispectral and color imaging techniques for nitrate and chlorophyll determination of potato leaves in a controlled environment. Transactions of the ASAE,2004, 47(2):599-608.
    Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976,72:248-254.
    Bravo C., Moshou D. Early disease detection in wheat fields using spectral reflectance. Biosystems Engineering,2003,84 (2):37-145.
    Bullock D. G., Anderson D. S. Evaluation of the Minolta SPAD-502 chlorophyll meter for nitrogen management in corn. Journal of Plant Nutrition,1998,21:741-755.
    Calera A., Martinez C., Melia J. A procedure for obtaining green plant cover:relation to NDVI in a case study for barley. International Journal of Remote Sensing,2001,22(17):3357-3362.
    Casady W. W., Singh N., Costello T. A. Machine vision for measurement of rice canopy dimensions. Transactions of the ASAE,1996,39(5):1891-1898.
    Chaerle L. Presymptomatic visualization of plant-virus interactions by thermography. Nature Biotechnology. 1999,17:813-816.
    Chen J., Wang X. Z. A new approach to near-infrared spectral data analysis using independent component analysis. Journal of Chemical Information and Computer Science,2001,41:992-1001.
    Chen, J. Y., Iyo. C., Terada. F., et al. Effect of multiplicative scatter correction on wavelength selection for near infrared calibration to determine fat content in raw milk. Journal of Near Infrared Spectroscopy, 2002,10:301-307.
    Chong I. G., Jun C. H. Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems,2005,78(1-2):103-112.
    Cobb A. H., Kirkwood R. C. Herbicides and Their Mechanism of Action. Sheffield:Sheffield Academic Press, 2000.
    Cowe, I. A., Koester, S., Paul, C., et al. Principal component analysis of near infrared spectra of whole and ground oilseed rape(Brassica napus L.) samples. Chemometrics and Intelligent Laboratory Systems, 1998,3:233-242.
    Daszykowski, M., Wrobel. M. S., Czarnik-Matusewicz, H., et al. Near-infrared reflectance spectroscopy and multivariate calibration techniques applied to modeling the crude protein, fibre and fat content in rapeseed meal. Analyst,2008,133:1523-1531.
    Dhanoa M. S., Lister S. J., Sandersona R., et al. The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra. Journal of Near Infrared Spectroscopy, 1994,2:43-47.
    Elvidge C. D., Chen Z. K. Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment,1995,54:38-48.
    Esbensen K. H. Multivariate Data Analysis in Practice. Oslo:CAMO Process As,2002.
    Galvao L. S., Vitorello I., Pizarro M. A. An adequate band positioning to enhance NDVI contrasts among green vegetation, senescent biomass, and tropical soils. International Journal of Remote Sensing,2000, 21(9):1953-1960.
    Geladi P., Kowalski B. R. Partial least-squares regression:a tutorial. Analtica Chimica Acta 1986,185:1-17.
    Gitelson A. A., Kaufman Y. J., Merzlyak M. N. Use of green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment,1996,58:289-298.
    Goel P. K., Prasher S. O., Landry J. A., et al. Hyperspectral image classification to detect weed infestations and nitrogen status in corn. Transactions of the ASAE,2003,46(2):539-550.
    Gorry P. A. General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method. Analytical Chemistry,1990,62:570-573.
    Haidar M. A., Sidahmad M. M. Soil solarization and chicken manure for the control of Orobanche crenata and other weeds in Lebanon. Crop Protection,2000,19:169-173.
    Huang J. F., Tang S. C., Ousama A., et al. Rice yield estimation using remote sensing and simulation model. Journal of Zhejiang University Science A,2002,3(4):1862-1775.
    Huang M., He Y., Cen H. Y. Predictive analyses on electric power supply and demand in China. Renewable Energy,2007,32(7):1165-1174.
    Huete A. R., Liu H. Q., Batchily K., et al. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment,1997,59:440-451.
    Humphries S., Simonton W. Identification of plant p arts using color and geometric image data. Transactions of the ASAE,1993,36 (5):1493-1500.
    Hyvarinen A., Karhunen J., Oja E. Independent Component Analysis. New York:John Wiley & Sons,2001.
    Hyvarinen A., Oja E., Independent component analysis:algorithms and applications. Neural Networks,2000, 13:411-430.
    Inoue Y., Penuelas J. An AOTE-based hyperspectral imaging system for field use in ecophysiological and agricultural applications. International Journal of Remote Sensing,2001,22 (18):3883-3888.
    Kobayashi T., Kanda E., Kitada K., et al. Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners. Phytopathology,2001,91(3):316-323.
    Labus M. P., Nielsen G. A. Wheat yield estimates using multi-temporal NDVI satellite imagery. International Journal of Remote Sensing,2002,23:4169-4180.
    Leyval D., Uy D., Delaunay S., et al. Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. Journal of Biotechnology,2003,104:241-252.
    Liu F., He Y., Wang L. Determination of effective wavelengths for discrimination of fruit vinegars using near infrared spectroscopy and multivariate analysis. Analytica Chimica Acta,2008a,615(1):10-17.
    Liu F., He Y., Wang L., et al. Feasibility of the use of visible and near infrared spectroscopy to assess soluble solids content and pH of rice wines. Journal of Food Engineering,2007,83(3):430-435.
    Liu F., Nie P. C., Huang M., et al. Nondestructive determination of nutritional information in oilseed rape leaves using visible/near infrared spectroscopy and multivariate calibrations. Science China Information Science,2011,54(3):598-608.
    Liu F., Zhang F., Jin Z. L., et al. Determination of acetolactate synthase activity and protein content of oilseed rape (Brassica napus L.) leaves using visible/near infrared spectroscopy. Analytica Chimica Acta,2008c, 629(1-2):56-65.
    Liu, F., He, Y., Wang, L. Comparison of calibrations for the determination of soluble solids content and pH of rice vinegars using visible and short-wave near infrared spectroscopy. Analytica Chimica Acta,2008b, 610:196-204.
    Malthus T. J., Maderia A. C. High resolution spectroradiometry:Spectral reflectance of field bean leaves infected by botrytis fabae. Remote Sensing of Environment,1993,45(1):107-116.
    McFarlane N. J. B., Tisseyre B., Sinfort C., et al. Image analysis for pruning of long wood grape vines. Journal of Agricultural Engineering Research,1997,66(2):111-119.
    Merlot S., Mustilln A., Genty B. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. The Plant Jounal,2002.30(4):601-609.
    Muir Y., Porteous R. L., Wastie R. L. Experiments in the detection of incipient diseases in potato tubers by optical methods. Journal of Agricultural Engineering Research,1982,27 (2):131-138.
    N(?)s T., Mevik B. H. Understanding the collinearity problem in regression and discriminant analysis. Journal of Chemometrics,2001,15:413-426.
    Noh H., Zhang Q., Han S., et al. Dynamic calibration and image segmentation methods for multispectral imaging crop nitrogen deficiency sensors. Transactions of the ASAE,2005,48(1):393-401.
    Patel N. K., Patnaik C., Dutta S., et al. Study of crop growth parameters using Airborne Imaging Spectrometer data. International Journal of Remote Sensing.2001,22(12):2401-2411
    Pinar A., Curran P. J. Grass chlorophyll and the reflectance red edge. International Journal of Remote Sensing, 1996,17(2):351-357.
    Qasem J. R. Weed control in cauliflower (Brassica oleracea var. Botrytis L.) with herbicides. Crop Protection, 2007,26:1013-1020.
    Qin Z. H., Zhang M. H. Detection of rice sheath blight for in-season disease management using multispectral remote sensing. International Journal of Applied Earth Observation and Geoinformation,2005,7(2): 115-128.
    Scarponi L., Younis M. E., Standardard A. Journal of Agricultural and Food Chemistry,1997,45:3652-3658.
    Shimizu H., Heins R. D. Computer vision based system for plant growth analysis. Transactions of the ASAE, 1995,38(3):958-964.
    Simonne A. H., Simonne E. H., Eitenmiller R. R., et al. Could the Dumas method replace the Kjeldahl digestion for nitrogen and crude protein determinations in foods? Journal of the Science of Food and Agriculture,1997,73:39-45.
    Singh N., Casady W. W., Costello T. A. Machine vision based nitrogen management models for rice. Transactions of the ASAE,1996,39(5):1899-1904.
    Song W. J., Zhou W. J., Jin Z. L., et al. Growth regulators restore germination of Orobanche seeds that are conditioned under water stress and suboptimal temperature. Australian Journal of Agricultural Research, 2006,57(11):1195-1201.
    Stone J. V. Independent component analysis:an introduction. Trends in Cognitive Sciences,2002,6:59-64.
    Su S. Q., Song S. Z. Encyclopedia of chemical control of weeds on farmland. Beijing:China Agriculture Press, 1996.
    Subrahmaniyan K., Kalaiselvan P., Balasubramanian T. N., et al. Soil properties and yield of groundnut associated with herbicides, plant geometry and plastic mulch. Communications in Soil Science and Plant Analysis,2007,39:1206-1234.
    Subrahmaniyan K., Zhou W. J. Soil temperature associated with degradable, non-degradable plastic and organic mulches and their effect on biomass production, enzyme activities and seed yield of winter rapeseed (Brassica napus L.). Journal of Sustainable Agriculture,2008,32(4):611-627.
    Suykens J. A. K., Van Gestel T., De Brabanter J., et al. Least Squares Support Vector Machines. World Scientific:Singapore,2002.
    Suykens J. A. K., Vanderwalle J. Least squares support vector machine classifiers. Neural Processing Letters, 1999,9:293-300.
    Tang H.S., Xue S.T., Chen R., et al. Online weighted LS-SVM for hysteretic structural system identification. Engineering Structures,2006,28 (12):1728-1735.
    Tucker C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment,1979,8:127-150.
    Tumbo S. D., Wagner D. G., Heinemann P. H. Hyperspectral-based neural network for predicting chlorophyll status in corn. Transactions of the ASAE,2002,45(3):825-832.
    Westerhuis J. A., De Jong S., Smilde A. K. Direct orthogonal signal correction. Chemometrics and Intelligent Laboratory Systems,2001,56:13-25.
    Workman J., Weyer L. Practical Guide to Interpretive Near-Infrared spectroscopy. Taylor & Francis Group, CRC Press,2008.
    Yang C. M. Assessment of the severity of bacterial leaf blight in rice using canopy hyperspectral reflectance. Precision Agriculture,2010,11(1):61-81.
    Yang Y. T., Peredelchuk M., Bennet G. N., et al. Effect of variation of Klebsiella pneumoniae acetolactate synthase expression on metabolic flux redistribution in Escherichia coli. Biotechnology and Bioengineering,2000,69:150-159.
    Zaragoza C. Weed Management in Vegetables. In:Weed Management for Developing Countries (Addendum 1) (Labrada R, ed.), FAO Document Repository. FAO Plant Production and Protection paper 120 Add.1. Agriculture Department, Food and Agriculture Organization of the United Nations, Rome, Italy,2003.
    Zhang F., Jin Z. L., Naeem M. S., et al. Spatial and temporal changes in acetolactate synthase activity as affected by new herbicide ZJ0273 in rapeseed, barley and water chickweed. Pesticide Biochemistry and Physiology,2009,95:63-71.
    Zhou W. J., Yoneyama K., Takeuchi Y., et al. In vitro infection of host roots by differentiated calli of the parasitic plant Orobanche. Journal of Experimental Botany,2004,55:899-907.
    白景峰,赵学增.针叶苗木计算机视觉特征提取方法.东北林业大学学报,2000,28(5):94-96.
    白瑞贤.杜文建,袁亚章等.连续免耕秸秆覆盖稻、麦(油)集约化高效栽培.湖北农业科学,2002,2:21-22.
    白雪冰,王克奇,王辉.基于灰度共生矩阵的木材纹理分类方法的研究.哈尔滨工业大学学报,2005, 37(12):36-41.
    毕贤,李通化,吴亮.独立组分分析在红外光谱分析中的应用.高等学校化学学报,2004,25(6):1023-1027.
    陈斌,孟祥龙,王豪.连续投影算法在近红外光谱校正模型优化中的应用.分析测试学报,2007,26(1):66-69.
    陈杰,袁军,刘继东等.新型除草剂丙酯草醚的作用机理.植物保护学报,2005,32(1):48-52.
    褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用.化学进展,2004,16(4):528-542.
    邓乃扬,田英杰.支持向量机:理论、算法与拓展.北京:科学出版社,2009.
    冯雷,柴荣耀,孙光明等.基于多光谱成像技术的水稻叶瘟检测分级方法研究.光谱学与光谱分析,2009,29(10):2730-2733.
    冯雷,方慧,周伟军等.基于多光谱视觉传感技术的油菜氮含量诊断方法研究.光谱学与光谱分析,2006,26(9):1749-1752.
    傅廷栋,周永明.油菜遗传改良与生物柴油.云南农业大学学报,2006,21(增刊):25-28.
    何勇,冯雷.地球空间信息学基础.杭州:浙江大学出版社,2010.
    何勇,赵春江,吴迪等.作物-环境信息的快速获取技术与传感仪器.中国科学:信息科学,2010,40(增刊):1-20.
    何勇,赵春江.精细农业.杭州:浙江大学出版社,2010.
    何勇.精细农业.杭州:浙江大学出版社,2003.
    侯瑞,吉海彦,饶震红等.基于近红外光谱的活体植物叶片水分检测仪器.农业工程学报,2009,25(增刊2):92-96.
    胡林军.油菜田杂草综合管理技术的初步探讨.杂草科学,1999,2:37-39.
    黄木易,王纪华,黄文江等.冬小麦条锈病的光谱特征及遥感监测.农业工程学报,2003,19(6):154-158.
    黄木易,王纪华,黄义德等.高光谱遥感监测冬小麦条锈病的研究进展(综述).安徽农业大学学报,2004,31(1):119-122.
    李刚华,丁艳锋,薛利红等.利用叶绿素计(SPAD-502)诊断水稻氮素营养和推荐追肥的研究进展.植物营养与肥料学报,2005,11(3):412-416.
    李刚华,薛利红,尤娟等.水稻氮素和叶绿素SPAD叶位分布特点及氮素诊断的叶位选择.中国农业科学,2007,40(6):1127-1134.
    李民赞,韩东海,王秀.光谱分析技术及其应用.北京:科学出版社,2006.
    李修华,李民赞,崔笛.基于光谱学原理的无损式作物冠层分析仪.农业机械学报,2009,40(增刊1):252-255,257.
    李映雪,朱艳.小麦叶片氮含量与冠层反射光谱指数的定量关系.作物学报,2006,32(3):358-362.
    刘春明,赵永刚.加快我国油菜产业能源化发展研究.生态经济,2007,5:109-112.
    刘飞,方慧,张帆等.应用光谱技术无损检测油菜叶片中乙酰乳酸合成酶.分析化学,2009c,37(1):67-71.
    刘飞,冯雷,柴荣耀等.基于直接正交信号校正的水稻冠层叶瘟光谱诊断.光学学报,2010,30(2):585-589.
    刘飞,王莉,何勇.应用多光谱图像技术获取黄瓜叶片含氮量及叶面积指数.光学学报,2009a,29(6):1616-1620.
    刘飞,王莉,何勇等.基于可见/近红外光谱技术的黄瓜叶片SPAD值检测.红外与毫米波学报,2009d,28(4):272-276.
    刘飞,张帆,方慧等.连续投影算法在油菜叶片氨基酸总量无损检测中的应用.光谱学与光谱分析,2009b,29(11):3079-3083.
    刘宏斌,张云贵.光谱技术在冬小麦氮素营养诊断中的应用研究.中国农业科学,2004,37(11):1743-1748.
    刘良云,黄木易,黄文江.利用多时相的高光谱航空图像监测冬小麦条锈病.遥感学报,2004,8(3):275-281.
    刘伟东,项月琴,郑兰芬等.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析.遥感学报,2000,4:279-283.
    陆婉珍.现代近红外光谱分析技术.北京:中国石化出版社,2006.
    马瑞燕,王韧,丁建清.利用传统生物防治控制外来杂草入侵.生态学报,2003,12:2677-2688.
    彭虓,张树文.基于NDVI与LAI的水稻生长状况研究.东北测绘,2002,25(4):16-19
    彭月,魏虹,朱韦等.作物氮素营养状况的高光谱遥感估测技术探析.云南民族大学学报:自然科学版,2006,15(1):45-49.
    齐龙,马旭,廖醒龙.基于多光谱视觉的稻瘟病抗病性分级检测技术.吉林大学学报(工学版),2009,S1:121-125.
    裘正军,宋海燕,何勇等.应用SPAD和光谱技术研究油菜生长期间的氮素变化规律.农业工程学报,2007,23(7):150-154.
    沈国辉,何云芳,杨烈.草坪杂草防除技术.上海:上海科学文献出版社,2002.
    沈国强,周国军,施彩仙等.10%丙草醚乳油防除移栽油菜田杂草试验.浙江农业科学,2002,1:33-34.
    孙光明,刘飞,张帆等.基于近红外光谱技术检测除草剂胁迫下油菜叶片中脯氨酸含量的方法.光学学报,2010,30(4):1192-1196.
    孙光明,杨凯盛,张传清等.基于多光谱成像技术的大麦赤霉病识别.农业工程学报,2009,25(S2):204-207.
    孙红,李民赞,张彦娥等.不同施氮水平下玉米冠层光谱反射特征分析.光谱学与光谱分析,2010,30(3):715-719.
    谭海珍,李少昆,王克如等.基于成像光谱仪的冬小麦苗期冠层叶绿素密度监测.作物学报,2008,34(10):1812-1817.
    唐庆红,陈杰,吕龙.2005.新型高效油菜田除草剂丙酯草醚创制研究.农药,44(11):496-502
    唐延林,黄敬峰,王秀珍等.水稻、玉米、棉花的高光谱及其红边特征比较.中国农业科学,2004b,37(1):29-35.
    唐延林,王人潮,王秀珍等.水稻叶面积指数和叶片生化成分的光谱法研究.华南农业大学学报(自然科学版),2003a,24(1):4-7.
    唐延林,王秀珍,黄敬峰等.水稻微分光谱和植被指数的作用探讨.农业工程学报,2003b,19(1):145-150.
    唐延林,王秀珍,王福民等.农作物LAI和生物量的光谱法测定.西北农林科技大学学报(自然科学版),2004a,32(11):100-104.
    田永超,朱艳,曹卫星等.水稻不同叶位层物理结构与冠层反射光谱的定量研究.中国水稻科学,2005,19(2):137-141.
    田有文,张长水,李成华.基于支持向量机和色度矩的植物病害识别研究.农业机械学报,2004,35(3):95-98.
    王福民,王渊,黄敬峰.不同氮素水平油菜冠层反射光谱特征研究.遥感技术与应用,2004,19(2): 80-84.
    王珂,沈掌泉,Abou-Ismail等.不同钾营养水平的水稻冠层和叶片光谱特征研究初报.科技通报,1997,13(4):211-214.
    王人潮,陈铭臻,蒋亨显.水稻遥感估产的农学机理研究.1.不同氮素水平的水稻光谱特征及其敏感波段的选择.浙江农业大学学报,1993,19(增刊):7-14.
    王秀,赵春江,周汉昌等.冬小麦生长便携式NDVI测量仪的研制与试验.农业工程学报,2004,20(4):95-98.
    王渊,黄敬峰,王福民等.油菜叶片和冠层水平氮素含量的高光谱反射率估算模型.光谱学与光谱分析,2008.28(2):273-277.
    王圆圆,陈云浩,李京等.利用偏最小二乘回归反演冬小麦条锈病严重度.国土资源遥感,2007,1:57-60.
    吴春,傅关英,陶国才.直播油菜田化学除草.上海农业科技,2001,5:63-65.
    吴迪,曹芳,张浩等.基于可见-近红外光谱技术的水稻穗颈瘟染病程度分级和有效波长选择方法研究.光谱学与光谱分析,2009,29(12):3295-3299.
    吴迪,冯雷,张传清等.基于可见/近红外光谱技术的番茄叶片灰霉病检测研究.光谱学与光谱分析,2007a,27(11):2208-2211.
    吴迪,冯雷,张传清等.基于可见/近红外光谱技术的茄子叶片灰霉病早期检测研究.红外与毫米波学报,2007b,26(4):269-274.
    吴迪,朱登胜,何勇等.基于地面多光谱成像技术的茄子灰霉病无损检测研究.光谱学与光谱分析,2008,28(7):1496-1500.
    徐桂转,张百良.生物柴油的研究与进展.华中农业大学学报,2005,24(6):644-650.
    许禄,邵学广.化学计量学方法.北京:科学出版社,2004.
    薛利红,曹卫星,罗卫红等.光谱植被指数与水稻叶面积指数相关性的研究.植物生态学报.2004,28(1):47-52.
    薛利红,曹卫星.基于冠层反射光谱的水稻群体叶片氮素状况监测.中国农业科学,2003,36(7):807-812.
    严衍禄,赵龙莲,韩东海等.近红外光谱分析基础与应用.北京:中国轻工业出版社,2005.
    杨海清,姚建松,何勇.基于反射光谱技术的植物叶片SPAD值预测建模方法研究.光谱学与光谱分析,2009,29(6):1607-1610.
    杨可明,郭达志.植被高光谱特征分析及其病害信息提取研究.地理与地理信息科学,2006,22(4):31-34.
    杨述平.归一化植被指数测量技术研究.应用基础与工程科学学报,2004,12(3):328-332.
    杨玮,Nick Sigrimis,李民赞.基于多光谱图像分析的温室黄瓜叶片营养元素检测与诊断.光谱学与光谱分析,2010,30(1):210-213.
    姚建松,杨海清,何勇.基于可见-近红外光谱技术的油菜叶片叶绿素含量无损检测研究.浙江大学学报(农业与生命科学版),2009,(4):433-438.
    叶莺,陈崇帼,林熙.偏最小二乘回归的原理及应用.海峡预防医学杂志,2005,11(3):3-6.
    易秋香,黄敬峰,王秀珍等.玉米全氮含量高光谱遥感估算模型研究.农业工程学报,2006,22(9)138-143.
    于海鹏,刘一星,张斌等.应用空间灰度共生矩阵定量分析木材表面纹理特征.林业科学,2004,40(6):121-129.
    张殿京,陈仁霖.油菜田化学除草.农田杂草化学防除大全.上海:上海科学技术文献出版社,1991.
    张桂生.油菜田杂草综合防除技术.安徽农业,2000,12:16.
    张国平,周伟军(译).植物生理生态学.杭州:浙江大学出版社,2005.
    张国平,周伟军.作物栽培学.杭州:浙江大学出版社,2001.
    张金恒,王珂,王人潮.叶绿素计SPAD-502在水稻氮素营养诊断中的应用.西北农林科技大学学报(自然科学版),2003,31(2):177-180.
    张喜杰,李民赞,张彦娥等.基于自然光照反射光谱的温室黄瓜叶片含氮量预测.农业工程学报,2004,20(6):11-14.
    张霞,刘良云,赵春江等.利用高光谱遥感图像估算小麦氮含量.遥感学报,2003,3(7):176-181.
    张雪红,刘绍民,何蓓蓓.不同氮素水平下油菜高光谱特征分析.北京师范大学学报:自然科学版,2007,43(3):245-249.
    张彦娥,李民赞,张喜杰等.基于计算机视觉技术的温室黄瓜叶片营养信息检测.农业工程学报,2005,21(8):102-105.
    张耀鸿,高文丽,胡继超.利用叶绿素计诊断水稻氮素营养的研究.江苏农业科学,2008,6:256-257.
    赵进辉,罗锡文,周志艳.基于颜色与形状特征的甘蔗病害图像分割方法.农业机械学报,2008,39(9):100-103,133.
    赵延存,娄远来,刘凤权.21%油壮胶悬剂防除稻茬移栽油菜田杂草研究.江苏农业科学,2006,2:66-69.
    周启发,王人潮.水稻氮素营养水平与光谱特征的关系.浙江农业大学学报,1993,19(增刊):40-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700