用户名: 密码: 验证码:
小麦渐渗系山融3号MYB基因家族对非生物胁迫的响应及Tamyb31基因功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦的耐逆性是由多基因控制的复杂形状,耐逆性的提高需要胁迫应答、离子转运、次生代谢以及能量代谢等多方面因素。目前分子生物学研究及应用已经显著提高了水稻、玉米等对不良环境的抵抗性,但在小麦中,这种进展相对比较缓慢。因此有必要加强加深对小麦逆境下分子机理的研究,而现阶段主要的方式是从转录组变化中找出候选基因,进而验证基因在抗逆中的功能,已经有一些成功的报道。但对于普通小麦这样一个异源六倍体来讲,对其耐逆基因的报道很少,对其整个耐逆响应网络还缺乏研究。
     小麦渐渗系山融3号(SR3),是普通小麦济南177(Triticum aestivum L.2n=42)同耐盐小麦近缘属长穗偃麦草(Ae)(Thinopyrum ponticum 2n=70)不对称体细胞融合后代。SR3耐逆性高于JN177,特别是在盐/旱胁迫下。SR3同JN177的对比研究,提供了一个很好的研究小麦耐逆机制的平台。早期的研究表明,SR3基因组中渐渗了Ae的基因组序列,其抗逆性是由一个主效基因位点和多个微效基因控制。但具体到哪些基因在起作用,还不是很清楚。
     在实验室前期对SR3重要耐逆相关基因TaCHP和TaCEO的功能研究中,发现它们在过表达拟南芥中增加抗逆性的同时,都影响AtMYB15的表达。而在拟南芥中,MYB家族是最大的一个转录因子家族;其中一些MYB基因可以显著提高拟南芥抗逆性。类似的在水稻和玉米中,一些MYB基因参与到抗逆响应中。而对小麦MYB家族在抗逆性中作用的研究还没有报道。本论文通过分析SR3芯片数据,整理出了38个响应胁迫的MYB基因(Unigene/EST)。通过RT-PCR分析,系统研究了小麦渐渗系MYB基因对盐/旱胁迫的响应,揭示MYB基因参与耐逆调控的可能方式,并分析了MYB基因发育周期中的表达模式;对JN177/SR3间MYB基因等位变异进行了分析,进一步阐明MYB参与胁迫的方式及内容;选择了其中一个在JN177与SR3的具有序列差异的Tamyb31基因,进行功能鉴定。
     主要的研究内容及结果包括:
     1.MYB基因信息的整理
     在实验室芯片数据中,通过探针序列的BlastN分析,得到了SR3和JN177三叶期表达的36个MYB基因对应的Unigene(EST)信息。由于MYB家族在水稻和拟南芥中较为庞大,分析的这36个MYB基因只是小麦MYB基因家族的一部分。为此,又进一步从山融3号cDNA文库中克隆到了另外两个MYB基因,加起来总共有38个基因。
     2.MYB基因对盐/旱胁迫的响应分析及发育周期表达模式分析
     通过RT-PCR方法研究了SR3及JN177在盐/旱胁迫下不同时间点的差异,验证了芯片结果。同时发现在6个时间点间,35个MYB基因响应盐/旱胁迫一共存在42种表达模式(另外3个MYB低于RT-PCR的检测限)。
     不同MYB基因在同样的处理下,有着不同的响应模式,例如盐处理SR3叶中MYB3/17呈L1型表达模式,快速响应盐胁迫处理,在0.5h达到峰值,之后持续降低表达量;而MYB 1/8/9/11/15/16/19/27/31/33则呈L6型表达模式,即呈现波浪形表达模式,在0.5/6h到峰值。这表明在同样的器官同样的品种同样的处理下,各个MYB之间对胁迫信号的响应不同,这可能与MYB基因的功能差异有关。
     同一MYB基因在不同胁迫下的响应模式不一致,例如SR3叶中,MYB31在盐/旱胁迫下表达模式分别为L6/L41型。L6型呈现波浪形变化;L41型呈现一种逐步下降的情况,在0.5h升至最高,之后表达逐渐下降,在12h略有回升,之后接着下降。这表明MYB31在盐/旱胁迫信号转导中的位置不同,也就是体现了盐/旱胁迫信号转导的差异。
     同一MYB基因在不同的器官中表达模式不一致,例如盐处理下SR3中的MYB4,在叶/根中分别呈L11/L16型表达模式,L11型在3h有个表达高峰,而在其余时间点表达量变化不明显;L16型则是从开始处理后就呈现下降趋势。这体现了盐胁迫下,根和叶的同一MYB基因对胁迫的响应不同。
     同一MYB基因在SR3和JN177中间的表达模式也不一致,在盐处理下的根中,MYB3分别呈L15/L7型表达模式。L15型是Oh之后表达量就开始下降,L7型则是呈波浪型变化。这种差异体现了不同品种对胁迫响应的差异,可能是造成对胁迫抗性差异的原因。
     也有少数几个MYB基因在特定情况下存在一致的表达模式,例如盐处理下的叶中,SR3和JN177中的MYB29都呈L7型表达模式;盐处理下济南177中的MYB15,在根和叶中都呈现出L6型表达模式;JN177根中的MYB13在盐旱胁迫下表达模式都呈现出L7型。整体上看,MYB基因对胁迫的响应比较复杂。
     如何去判断哪些MYB基因及其表达模式同SR3/JN177抗逆性差异相关。我们从两方面入手:第一方面,找出SR3/JN177各自特异的表达模式。在42种表达模式中,SR3/JN177间差异的表达模式有13种。SR3中特异的响应模式有L3/L1 1/12/13/20/23/37/38型,而JN177中特异的有L28/29/30/34/35/36型。这些差异对我们选择候选基因提供了线索;第二个方面我们选择单个目标基因进行功能研究,例如,我们鉴定了MYB31对应基因的功能,而其胁迫响应的模式有L6/L7/L17/L18/L26/L41型,这些类型对应的基因是我们进一步研究的基础。
     由于芯片取材选择了小麦的三叶期;为避免发育时期的限制,进一步比较了SR3不同发育时期MYB基因的表达谱。以上发现有助于提供候选MYB基因用于功能验证,并在育种中加以应用。
     3.MYB基因结构分析
     由于小麦含有A,B,D三个基因组,而SR3又是体细胞杂种后代,每个MYB基因在SR3中的拷贝数不清楚;参与胁迫响应的MYB,是不是其RT-PCR产物就仅对应一个转录本?而转录本的差异也会对SR3和济南177抗逆性差异产生影响,特别是当RT结果显示为同一表达模式时。为此我们将RT-PCR产物进行测序,同时又对对应的基因组序列进行了比较。
     在分析的15个MYB基因中,RT产物中仅有MYB5/22是一个转录本;而其余13个MYB基因,则有多余一个的转录本。这些转录本在JN177和SR3中普遍存在差异,可能是JN177和SR3抗逆性差异的原因之一。具体细化分析时,用等位变异来描述这些差异;我们发现这些差异主要是SNP差异,多数是Substitution, Indel位点仅存在两处。在同一个MYB基因中,不同等位基因位点发生的变化不同,例如在MYB5的两个等位位点,两个位点都存在G/A的SNP多态性,但存在的位置不同。不同的MYB基因,等位变化也往往不同,例如MYB19中,三个等位基因位点都发生了变化;而对MYB18来讲,两个等位基因位点上都没有发生序列上的变化。内含子中SNP-Indel的频率要高于外显子中的频率,而SNP-Substitution的频率在内含子中要低于外显子中的频率。在MYB9/22中,启动子的核苷酸多态性要大于基因编码区域的核苷酸多态性。SNP中的核苷酸转化方式以转换为主。
     通过分析,同时发现等位基因上的SNP可以使编码的氨基酸发生变化。我们认为在小麦抗逆研究中,除了要关注MYB基因表达模式变化,还要关注同样表达模式下哪些MYB转录本在其中起作用。
     4. Tamyb31功能研究
     在以上小麦MYB基因家族中,SR3的MYB31随胁迫上调表达,并且上调比较明显。从cDNA文库中分离得到了其全长,通过同源比对,SR3与JN177中的MYB31存在SNP-Substitution,并且导致其蛋白质氨基酸的变异,将其命名为Tamyb31。Tamyb31 cDNA由192bp的5'UTR,765bp的开放阅读框(ORF)以及298bp的3’UTR构成。通过体外DNA结合试验以及转录活性试验,证实了Tamyb31是起作用的转录本。通过设计特异的引物研究其胁迫响应模式,在山融3号的根中,其表达模式类似MYB31的情况,但在叶中不同于MYB31的表达模式。在盐旱处理下,Tamyb31都是在0.5h就明显上调表达,这表明Tamyb31参与早期盐旱胁迫信号的转导。在激素处理下,Tamyb31在0.5h瞬时上调表达,表明Tamyb31参与多种激素信号的转导。从发育时期来讲,Tamyb31在整个发育期中都有表达,而在拔节期中的茎中表达量最高。Tamyb31编码一个R2R3型MYB蛋白;同其它物种中的MYB蛋白相比,其SANT domain的保守性很高;亚细胞定位于细胞核内;结合Ⅰ/Ⅱ/ⅡG型MYB结合基序。
     Tamyb31的拟南芥过表达系明显增加了对盐/旱胁迫的抗性。在NaCl处理下,过表达系的根长明显长于对照的根长;同时过表达系增加了对LiCl/KCl的抗性。这表明Tamyb31可能增加对离子胁迫的抗性。在甘露醇处理下,过表达系同对照系的表型没有明显差异。在控水干旱处理时,过表达系存活率要高于对照系;这可能同过表达系较低的失水率有关。Tamyb31也增加了过表达系萌发时对NaCl和ABA的抗性。NaCl处理下,过表达系中AtP5CS1/CBF3基因的表达量高于对照;不处理情况下,AtABF3的表达量在过表达系中较高。Tamyb31可能通过调控这些基因的变化来提高拟南芥的抗性。同时我们又分析了AtCBF3/ABF3的启动子区域,发现两者启动子上有多个MYB结合位点,体外实验也证实Tamyb31可以结合这些启动子区域。
     Tamyb31与AtMYB15有很高的同源性,但两者在功能上有所差异。例如AtMYB15可以同AtICE1相互作用,而Tamyb31则不可;Tamyb31没有选择性的结合Ⅰ/Ⅱ/ⅡG型结合基序,而AtMYB15则优先结合Ⅱ/ⅡG基序。这表明两者之间在胁迫中的作用有所差异。
     通过对Tamyb31的研究,我们认为本文的研究方法是有效的,即能分离到在胁迫中起作用的MYB基因。鉴于水稻/拟南芥中多个MYB基因参与胁迫抗性的提高,小麦MYB抗逆相关基因的挖掘仍需继续。
Wheat is one of the major crops, so its yield and quality are always quite important social issues around the world, especially in China. Yield and quality of wheat are influenced by varieties of environmental conditions, such as drought and salinity. Therefore, enhancement of wheat stress tolerance is critical for its production to cope with the still-increasing adverse environmental situations allover the world. Stress tolerance is a multigenes-controlled phenotype, which may include stress response, ion transport, secondary metabolism and energy flow. Until now, many molecular results regarding stress tolerance mechanisms were achieved using model plants, and have been applied in rice and maize breeding. However, given its hexaploidy and mega-genome, such progress in wheat is very slow, and only a few genes have been reported to improve wheat stress tolerance, which can not reveal the whole truth of its stress tolerance, and are inadequate for wheat breading.
     Alternatively, Thinopyrum ponticum, the wild relative of wheat with high stress tolerance, is an excellent gene reservoir for wheat breeding. Via somatic hybridization, we bred a wheat introgression line stress tolerance cultivar Shanrong No.3 (SR3) between common wheat stress sensitive cultivar Jinan 177 (JN177) and T. ponticum. Former results showed that some chromatin fragments of T. ponticum intergrated into SR3's genome, and a high frequency of allelic variation and a vast transcriptomic and proteomic change in SR3 happened. These alternations may offer the higher stress tolerance of SR3.
     Previous study in stress responsible genes TaCHP/TaCEO from SR3 indicated that their ectopic expression increased stress tolerance of Arabidopsis, and influenced the transcription of AtMYB15 in transgenic seedlings. AtMYB15 is one of MYB family members that can improve stress tolerance in Arabidopsis, suggesting MYB family may also play important roles in stress tolerance of wheat. However, little information of MYBs is available in wheat.
     In this paper, we proposed to identify wheat MYBs based on microarray data of SR3, to analyze their expression pattern under salinity/drought stress and during the whole developmental course, and to compare the variation in their cDNA and genomic sequences between JN177 and SR3, with the aim to primarily characterize the relationship between MYB family and stress tolerance of SR3 and find golden MYB candidates for wheat breeding. The main research contents and results of this work are summarized as follows.
     1. Wheat MYBs identification from SR3
     Based on microarray data in our lab,36 MYB unigenes/ESTs were identified using BlastN analysis. The other two MYBs were identified from the SR3 cDNA library in our lab. Totally,38 MYBs with detectable transcription patterns in SR3 at three-leaf stage were identified for further study.
     2. Expression patterns of MYBs under stress
     Using RT-PCR, the express characteristics of 35 MYBs under salinity/drought stress and during the whole development course were analyzed and classified into 42 patterns s in total(3 MYBs were below detectable limit of RT-PCR).
     MYBs showed differential patterns in response to the same stress. For example, in salinity-stressed SR3 leaves, MYB3/17 showed L1 pattern, a transient response to salinity; while MYB 1/8/9/11/15/16/19/27/31/33 showed L6 pattern, with fluctuant transcription during stress. This indicated that different MYBs play different roles in salinity response.
     MYBs took different patterns under salinity from those under drought. For instance, in SR3 leaves, MYB31 took L6 pattern under salinity stress, and L41 pattern under drought stress. L41 pattern had a high and a low transcription peak at 0.5h and 12h timepoint, respectively. This indicated that MYB31 plays different roles in salinity and drought response.
     MYBs showed organ-specific expression patterns. In salinity-stressed SR3, MYB4 showed L11 and L16 patterns in leave and root respectively. L11 pattern is that only mRNA abundance at 3h timepoint was higher than the control. L16 pattern is the transcription that was gradually reduced during stress. This indicated stress response signal transduction chains carry out in an organ-specific manner, and MYBs may function differently in different organs.
     MYBs had cultivar-specific expression patterns in response to stress. Under salinity stress, MYB3 showed L15 pattern in JN177 roots, whereas L7 pattern in SR3 roots. L15 and L7 patterns are similar to L16 and L6 patterns, respectively. These differences may account for different stress tolerance ability between JN177 and SR3.
     Apart from the above categories, a few MYBs also acted in the same way under specific conditions. In total, the diverse expression patterns of MYBs suggesting that this family is involved in stress response in a complex way.
     In order to rule out the relationship between MYBs and the difference in stress tolerance of SR3 from JN177, two analyses were conducted. One is checking SR3-or JN177-specific expression patterns. Among 42 expression patterns, eight (L3/L11/12/13/20/23/37/38) are SR3-specific, and five are JN177-specific. MYBs showing these cultivar-specific expression patterns should be the candidate genes for further study. The other is based the function study of MYB31 (Tamyb31), whose over-expression can improve stress tolerance. MYBs in the same expression patterns as MYB31 are also candidates.
     Besides, expression patterns of these MYBs at various stage of developmental course in SR3 were checked. The results displayed that MYBs also had their individual expression characteristics during development.
     3. Sequence variation of MYBs
     Common wheat is hexaploid, and SR3 is a somatic hybrid of common wheat. This implies that the RT-PCR product of a certain MYB gene of wheat, especially SR3, may contain more than one transcript. If it is the case, these different transcripts may play different roles in stress response.
     In order to outline this question, the RT-PCR products and genomic sequence of 15 MYBs were further cloned. Firstly, except for MYB5/22, the other 13 MYBs had more than one transcript in the RT-PCR products. The difference between transcripts concluded two types of diversity sites:Substitution and InDel. The frequency of Substitution was higher than that of InDel. Secondly, distribution of SNP-Indel varied in different MYBs, different alleles. In introns, frequency of SNP-Indel was higher than that in exons; while frequency of SNP-Substitution was a little lower than that in exons. In MYB9/22, Pi value in promoter region was higher than that in coding region. As for Substitutions, frequency of conversion was higher than that of transversion.
     Above results indicates that SR3 genome suffered a high-frequency of variation. Such sequence variation between JN177 and SR3 may result from two ways, one is the introgression of T. ponticum chromatic fragments, and the other is the genomic shock during somatic hybrid process. SNPs between JN177 and SR3 could cause change in amino acids, so it is quite important to check which transcripts function in stress response in wheat.
     4. Functional analysis of Tamyb31
     TaMYB31 was selected as an important candidate gene because of its significant upregulation of transcription under stress in both SR3 and JN177. Its full length cDNA was isolated from cDNA library of SR3, consisting a 192-bp 5'UTR, a 765-bp ORF and a 298-bp 3'UTR. There are SNPs in SR3 and JN177, which led to amino acide variation of the TaMYB31, so TaMYB31 of SR3 was named Tamyb31. Using DNA binding assay and transcriptional activity assay, the transcript with MYB function was identified.
     RT-PCR and real-time PCR analysis showed that Tamyb31 was induced after 0.5h exposure to salinity/drought stress in SR3. Under treatment with various plant hormones, the expression of Tamyb31 peaked at 0.5h, indicating Tamyb31 may be involved in many signal pathways. Tamyb31 expressed at the whole developmental course, with the highest level at stem jointing stage. Tamyb31 encodes a R2R3 MYB protein with conserved SANT domain when compared with other MYBs; Tamyb31 localizes in nuclei, and binds toⅠ/Ⅱ/ⅡG MYB binding motif.
     Overexpression Tamyb31 in Arabidopsis increased the tolerance to abiotic stress. Under NaCl, LiCl and KC1 stress, roots of transgenic lines were significantly longer than those of the control, indicating that Tamyb31 can increase the ion stress tolerance of plants. Under drought stress, the overexpression lines also grew better than the control lines. Under mannitol treatment, however, no obvious difference was detected between the overexpression lines and the control lines. This suggests that the enhancement in drought tolerance may be achieved through lowing water loss rate. Under salinity stress, AtP5CS1/AtCBF3 had higher transcripts in the overexpression lines than in the control lines; under non-stressful conditions, AtABF3 had more mRNA abundance in the overexpression lines than in the control lines. Tamyb31 can bind promoter regions of AtABF3/CBF3 using yeast one hybrid assay. These findings suggested that Tamyb31 may confer with abiotic stress through affecting the transcription of these genes.
     Tamyb31 shared high amino acid sequence similarity with AtMYB15, but their action mechanism may be significantly different from each other. For example, Tamyb31 did not interact with AtICE1, while AtMYB15 did. Tamyb31 had equal binding ability to I/II/IIG MYB motifs, while AtMYB15 prefers to II/IIG motifs.
     Taken together, in the case of Tamyb31, we conclude that gene-family-ome analysis is a feasible strategy for key functional gene isolation with the aim to stress response mechanism elucidation and transgenic engineer assistant breeding. Besides Tamyb31, other identified MYBs are also worthy of further study.
引文
1. Abbasi FM, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4:2072-2081
    2. Apel K, Hirt H (2004) Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373-399
    3. Assaad FF, Mayer U, Wanner G, Jurgens G (1996) The KEULE gene is involved in cytokinesis in Arabidopsis. Mol Gen Genet 253:267-277
    4. Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6-24
    5. Bernstein N, Lauchli A, Silk WK (1993) Kinematics and Dynamics of Sorghum (Sorghum bicolor L.) Leaf Development at Various Na/Ca Salinities (Ⅰ. Elongation Growth). Plant Physiol 103:1107-1114
    6. Berthomieu C, Dupeyrat F, Fontecave M, Vermeglio A, Niviere V (2002) Redox-dependent structural changes in the superoxide reductase from Desulfoarculus baarsii and Treponema pallidum:a FTIR study. Biochemistry 41:10360-10368
    7. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress:a review. Ann Bot 91 Spec No:179-194
    8. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to Environmental Stresses. Plant Cell 7:1099-1111
    9. Brugnoli E, Lauteri M (1991) Effects of Salinity on Stomatal Conductance, Photosynthetic Capacity, and Carbon Isotope Discrimination of Salt-Tolerant (Gossypium hirsutum L.) and Salt-Sensitive (Phaseolus vulgaris L.) C(3) Non-Halophytes. Plant Physiol 95:628-635
    10. Butler JE, Kadonaga JT (2002) The RNA polymerase Ⅱ core promoter:a key component in the regulation of gene expression. Genes Dev 16:2583-2592
    11. Cheplick GP (2004) Recovery from drought stress in Lolium perenne (Poaceae):are fungal endophytes detrimental? American Journal of Botany 91:1960-1968
    12. Chen RM, Ni Zhongfu, Nie XL, Qin YX, Dong GD, Sun QX (2005) Isolation and characterization of genes encoding Myb transcription factor in wheat (Triticum aestivem L.).Plant Science 169:1146-1154
    13. Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250-257
    14. Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559-574
    15. Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50:1187-1195
    16. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225-236
    17. Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18: 675-689
    18. Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739-1751
    19. Denekamp M, Smeekens SC (2003) Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol 132:1415-1423
    20. Desikan R, S AH-M, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159-172
    21. DeWald DB, Torabinejad J, Jones CA, Shope JC, Cangelosi AR, Thompson JE, Prestwich GD, Hama H (2001) Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed arabidopsis. Plant Physiol 126:759-769
    22. Dileep C, Kumar BS (2000) Influence of metham sodium on suppression of collar rot disease of peanut, in vitro antibiosis, siderophore production and root colonization by a fluorescent pseudomonad strain FPO4. Indian J Exp Biol 38:1245-1250
    23. Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569: 317-320
    24. Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci U S A 95: 10328-10333
    25. Edongali EA, Ferris H (1982) Varietal Response of Tomato to the Interaction of Salinity and Meloidogyne incognita Infection. J Nematol 14:57-62
    26. El Maarouf H, Zuily-Fodil Y, Gareil M, d'Arcy-Lameta A, Pham-Thi AT (1999) Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata L. Walp. differing in drought tolerance. Plant Mol Biol 39:1257-1265
    27. English D (1996) Phosphatidic acid:a lipid messenger involved in intracellular and extracellular signalling. Cell Signal 8:341-347
    28. Fan W, Dong X (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14: 1377-1389
    29. Fernandez P, Di Rienzo J, Fernandez L, Hopp HE, Paniego N, Heinz RA (2008) Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis. BMC Plant Biol 8:11
    30. Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60:3891-3908
    31. Frank W, Munnik T, Kerkmann K, Salamini F, Bartels D (2000) Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell 12:111-124
    32. Fu W, Wu K, Duan J (2007) Sequence and expression analysis of histone deacetylases in rice. Biochem Biophys Res Commun 356:843-850
    33. Garcia-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790-792
    34. Glover BJ (2000) Differentiation in plant epidermal cells. J Exp Bot 51:497-505
    35. Goldfarb AN, Lewandowska K (1994) Nuclear redirection of a cytoplasmic helix-loop-helix protein via heterodimerization with a nuclear localizing partner. ExpCell Res 214:481-485
    36. Grieve EM, Hawksworth GM, Simpson JG, Whiting PH (1993) The reversal of experimental cyclosporin A nephrotoxicity by thromboxane synthetase inhibition. Biochem Pharmacol 45:1351-1354
    37. Grotewold E, Athma P, Peterson T (1991) Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors. Proc Natl Acad Sci U S A 88:4587-4591
    38. Guan LM, Zhao J, Scandalios JG (2000) Cis-elements and trans-factors that regulate expression of the maize Catl antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J 22:87-95
    39. Gupta R, Webster CI, Gray JC (1998) Characterisation and promoter analysis of the Arabidopsis gene encoding high-mobility-group protein HMG-I/Y. Plant Mol Biol 36: 897-907
    40. Gusmaroli G, Tonelli C, Mantovani R (2002) Regulation of novel members of the Arabidopsis thaliana CCAAT-binding nuclear factor Y subunits. Gene 283:41-48
    41. Haga N, Kato K, Murase M, Araki S, Kubo M, Demura T, Suzuki K, Muller I, Voss U, Jurgens G, Ito M (2007) R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development 134:1101-1110
    42. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant Cellular and Molecular Responses to High Salinity. Annu Rev Plant Physiol Plant Mol Biol 51: 463-499
    43. Hasegawa Y, Kawada N, Nosoh Y (1980) Change in chemical composition of membrane of Bacillus caldotenax after shifting the growth temperature. Arch Microbiol 126:103-108
    44. Hendawy SE, Hu YC, Yakout GM, Awad AM, Hafiz SE, Schmidhalter U (2005) Evaluating salt tolerance of wheat genotypes using multiple parameters. Europ. J. Agronomy 22:243-253
    45. Hong SW, Jon JH, Kwak JM, Nam HG (1997) Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol 113:1203-1212
    46. Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900-2910
    47. Hughes MA, Dunn MA (1996) The molecular biology of plant acclimation to low temperature.Journal of Experimental Botany 47:291-305
    48. Huh GH, Damsz B, Matsumoto TK, Reddy MP, Rus AM, Ibeas JI, Narasimhan ML, Bressan RA, Hasegawa PM (2002) Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. Plant J 29:649-659
    49. Immink RG, Ferrario S, Busscher-Lange J, Kooiker M, Busscher M, Angenent GC (2003) Analysis of the petunia MADS-box transcription factor family. Mol Genet Genomics 268:598-606
    50. Ito M, Araki S, Matsunaga S, Itoh T, Nishihama R, Machida Y, Doonan JH, Watanabe A (2001) G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors. Plant Cell 13:1891-1905
    51. Izawa T, Foster R, Nakajima M, Shimamoto K, Chua NH (1994) The rice bZIP transcriptional activator RITA-1 is highly expressed during seed development. Plant Cell 6:1277-1287
    52. Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577-585
    53. Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong JJ (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623-635
    54. Kaniuga Z (1997) Galactolipase and chilling sensitivity of plants. Acta Biochim Pol 44:21-35
    55. Katila T, Koskinen E, Oijala M, Parviainen P (1988) Evaluation of the post-partum mare in relation to foal heat breeding. Ⅱ. Uterine swabbing and biopsies. Zentralbl Veterinarmed A 35:331-339
    56. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889-905
    57. Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun HJ, Yun DJ, Hong JC, Lee SY, Lim CO, Cho MJ (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25:247-259
    58. Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339-2350
    59. Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1994) Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol 35:225-231
    60. Klempnauer KH, Gonda TJ, Bishop JM (1982) Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb:the architecture of a transduced oncogene. Cell 31:453-463
    61. Klinge B, Uberlacker B, Korfhage C, Werr W (1996) ZmHox:a novel class of maize homeobox genes. Plant Mol Biol 30:439-453
    62. Knight H (2000) Calcium signaling during abiotic stress in plants. Int Rev Cytol 195: 269-324
    63. Knight H, Knight MR (2001) Abiotic stress signalling pathways:specificity and cross-talk. Trends Plant Sci 6:262-267
    64. Kosugi S, Suzuka I, Ohashi Y (1995) Two of three promoter elements identified in a rice gene for proliferating cell nuclear antigen are essential for meristematic tissue-specific expression. Plant J 7:877-886
    65. Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B (1998) Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J 16:263-276
    66. Ku DH, Wen SC, Engelhard A, Nicolaides NC, Lipson KE, Marino TA, Calabretta B (1993) c-myb transactivates cdc2 expression via Myb binding sites in the 5'-flanking region of the human cdc2 gene. J Biol Chem 268:2255-2259
    67. Lee TI, Young RA (2000) Transcription of eukaryotic protein-coding genes. Annu Rev Genet 34:77-137
    68. Leshem YY, Pinchasov Y (2000) Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa (Duch.) and avocados Persea americana (Mill.). J Exp Bot 51:1471-1473
    69. Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929-938
    70. Liao Y, Zou HF, Wang HW, Zhang WK, Ma B, Zhang JS, Chen SY (2008) Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res 18:1047-1060
    71. Lipsick JS (1996) One billion years of Myb. Oncogene 13:223-235
    72. Liu J, Zhu JK (1997) An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc Natl Acad Sci U S A 94:14960-14964
    73. Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:1943-1945
    74. Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong K (2007) Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta 226:1007-1016
    75. Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J Biochem 262:247-257
    76. Liu S, Gao X, Xia G (2008) Characterizing HMW-GS alleles of decaploid Agropyron elongatum in relation to evolution and wheat breeding. Theor Appl Genet 116: 325-334
    77. Liu S, Zhao S, Chen F, Xia G (2007) Generation of novel high quality HMW-GS genes in two introgression lines of Triticum aestivum/Agropyron elongatum. BMC Evol Biol 7:76
    78. Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457-463
    79. Lyck R, Harmening U, Hohfeld I, Treuter E, Scharf KD, Nover L (1997) Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta 202:117-125
    80. Maathuis FJ (2006) cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J 45:700-711
    81. Maathuis FJ, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127:1617-1625
    82. Magaraggia F, Solinas G, Valle G, Giovinazzo G, Coraggio I (1997) Maturation and translation mechanisms involved in the expression of a myb gene of rice. Plant Mol Biol 35:1003-1008
    83. Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403-410
    84. Mandaokar A, Browse J (2009) MYB 108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol 149:851-862
    85. Marin K, Suzuki I, Yamaguchi K, Ribbeck K, Yamamoto H, Kanesaki Y, Hagemann M, Murata N (2003) Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803. Proc Natl Acad Sci U S A 100:9061-9066
    86. Martin C, Bhatt K, Baumann K, Jin H, Zachgo S, Roberts K, Schwarz-Sommer Z, Glover B, Perez-Rodrigues M (2002) The mechanics of cell fate determination in petals. Philos Trans R Soc Lond B Biol Sci 357:809-813
    87. Medrano H, Escalona JM, Bota J, Gulias J, Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought:stomatal conductance as a reference parameter. Ann Bot 89 Spec No:895-905
    88. Meissner R, Michael AJ (1997) Isolation and characterisation of a diverse family of Arabidopsis two and three-fingered C2H2 zinc finger protein genes and cDNAs. Plant Mol Biol 33:615-624
    89. Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N (2007) Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. Plant J 51:656-669
    90. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7: 405-410
    91. Mizrahi Y (1982) Effect of Salinity on Tomato Fruit Ripening. Plant Physiol 69: 966-970
    92. Mu RL, Cao YR, Liu YF, Lei G, Zou HF, Liao Y, Wang HW, Zhang WK, Ma B, Du JZ, Yuan M, Zhang JS, Chen SY (2009) An R2R3-type transcription factor gene AtMYB59 regulates root growth and cell cycle progression in Arabidopsis. Cell Res 19: 1291-1304
    93. Munnik T, Ligterink W, Meskiene II, Calderini O, Beyerly J, Musgrave A, Hirt H (1999) Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant J 20:381-388
    94. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239-250
    95. Munns R, King RW (1988) Abscisic Acid Is Not the Only Stomatal Inhibitor in the Transpiration Stream of Wheat Plants. Plant Physiol 88:703-708
    96. Munns R, Passioura JB, Guo J, Chazen O, Cramer GR (2000) Water relations and leaf expansion:importance of time scale. J Exp Bot 51:1495-1504
    97. Murata N, Los DA (1997) Membrane Fluidity and Temperature Perception. Plant Physiol 115:875-879
    98. Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237-1247
    99. Nishida I, Murata N (1996) CHILLING SENSITIVITY IN PLANTS AND CYANOBACTERIA:The Crucial Contribution of Membrane Lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541-568
    100.Nuccio ML, Rhodes D, McNeil SD, Hanson AD (1999) Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 2:128-134
    101.Nugent CI, Hughes TR, Lue NF, Lundblad V (1996) Cdc13p:a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274:249-252
    102.Ogata K, Morikawa S, Nakamura H, Hojo H, Yoshimura S, Zhang R, Aimoto S, Ametani Y, Hirata Z, Sarai A, et al. (1995) Comparison of the free and DNA-complexed forms of the DNA-binding domain from c-Myb. Nat Struct Biol 2: 309-320
    103.Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341-351
    104.Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K (2005) Leucine-rich repeat receptor-like kinase 1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17:1105-1119
    105.Pandey S, Assmann SM (2004) The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16:1616-1632
    106.Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants:a review. Ecotoxicol Environ Saf 60:324-349
    107.Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6: 3553-3558
    108.Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731-734
    109.Perez-Rodriguez P, Riano-Pachon DM, Correa LG, Rensing SA, Kersten B, Mueller-Roeber B PlnTFDB:updated content and new features of the plant transcription factor database. Nucleic Acids Res 38:D822-827
    11O.Plieth C, Hansen UP, Knight H, Knight MR (1999) Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J 18: 491-497
    111.Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for Chilling-Induced Oxidative Stress in Maize Seedlings and a Regulatory Role for Hydrogen Peroxide. Plant Cell 6:65-74
    112.Price AH, Taylor A, Ripley SJ, Griffiths A, Trewavas AJ, Knight MR (1994) Oxidative Signals in Tobacco Increase Cytosolic Calcium. Plant Cell 6:1301-1310
    113.Price CM (1999) Telomeres and telomerase:broad effects on cell growth. Curr Opin Genet Dev 9:218-224
    114.Rainbird RM, Atkins CA, Pate JS (1983) Effect of Temperature on Nitrogenase Functioning in Cowpea Nodules. Plant Physiol 73:392-394
    115.Ravel C, Praud S, Murigneux A, Canaguier A, Sapet F, Samson D, Balfourier F, Dufour P, Chalhoub B, Brunel D, Beckert M, Charmet G (2006) Single-nucleotide polymorphism frequency in a set of selected lines of bread wheat (Triticum aestivum L.). Genome 49:1131-1139
    116.Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53:127-136
    117.Riechmann JL, Ratcliffe OJ (2000) A genomic perspective on plant transcription factors. Curr Opin Plant Biol 3:423-434
    118.Robertson JM, Pharis RP, Huang YY, Reid DM, Yeung EC (1985) Drought-Induced Increases in Abscisic Acid Levels in the Root Apex of Sunflower. Plant Physiol 79:1086-1089
    119.Rock CD, Sun X (2005) Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh. Planta 222:98-106
    120.Romero PA, Sleno B, Herscovics A (1994) Glycoprotein biosynthesis in Saccharomyces cerevisiae. Partial purification of the alpha-1,6-mannosyltransferase that initiates outer chain synthesis. Glycobiology 4:135-140
    121.Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49-56
    122.Rook F, Gerrits N, Kortstee A, van Kampen M, Borrias M, Weisbeek P, Smeekens S (1998) Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J 15:253-263
    123.Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319-327
    124.Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691-706
    125.Sangwan V, Foulds I, Singh J, Dhindsa RS (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+influx. Plant J 27:1-12
    126. Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard Cell Signal Transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627-658
    127.Seemann JR, Berry JA, Downton WJ (1984) Photosynthetic Response and Adaptation to High Temperature in Desert Plants:A Comparison of Gas Exchange and Fluorescence Methods for Studies of Thermal Tolerance. Plant Physiol 75:364-368
    128.Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61-72
    129.Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151:275-289
    130.Sheen J (1998) Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc Natl Acad Sci U S A 95:975-980
    131.Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+) transport in plants. Plant Cell 14:465-477
    132.Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217-223
    133.Skinner RH, Nelson CJ (1994) Epidermal cell division and the coordination of leaf and tiller development. Ann Bot 74:9-16
    134.Sridha S, Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46:124-133
    135.Stewart JM, Guinn G (1971) Chilling Injury and Nucleotide Changes in Young Cotton Plants. Plant Physiol 48:166-170
    136.Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447-456
    137.Strompen G, El Kasmi F, Richter S, Lukowitz W, Assaad FF, Jurgens G, Mayer U (2002) The Arabidopsis HINKEL gene encodes a kinesin-related protein involved in cytokinesis and is expressed in a cell cycle-dependent manner. Curr Biol 12:153-158
    138.Struhl K (1989) Molecular mechanisms of transcriptional regulation in yeast. Annu Rev Biochem 58:1051-1077
    139.Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051-2065
    140.Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001-2019
    141.Sylvester AW (2000) Division decisions and the spatial regulation of cytokinesis. Curr Opin Plant Biol 3:58-66
    142.Tan G, Gao Y, Shi M, Zhang X, He S, Chen Z, An C (2005) SiteFinding-PCR:a simple and efficient PCR method for chromosome walking. Nucleic Acids Res 33: e122
    143.Taylor IB, Burbidge A, Thompson AJ (2000) Control of abscisic acid synthesis. J Exp Bot 51:1563-1574
    144.Temple BR, Jones AM (2007) The plant heterotrimeric G-protein complex. Annu Rev Plant Biol 58:249-266
    145.Tester M, Bacic A (2005) Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol 137:791-793
    146.Thomashow MF (1999) PLANT COLD ACCLIMATION:Freezing Tolerance Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571-599
    147.Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3:525-536
    148.Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na(+) currents in xenopus laevis oocytes and Na(+) uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249-1259
    149.Van der Ent S, Verhagen BW, Van Doorn R, Bakker D, Verlaan MG, Pel MJ, Joosten RG, Proveniers MC, Van Loon LC, Ton J, Pieterse CM (2008) MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol 146:1293-1304
    150.Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37:115-127
    151.Varagona MJ, Raikhel NV (1994) The basic domain in the bZIP regulatory protein Opaque2 serves two independent functions:DNA binding and nuclear localization. Plant J 5:207-214
    152.Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress:achievements and limitations. Curr Opin Biotechnol 16:123-132
    153.Wang QY, Nick P (2001) Cold acclimation can induce microtubular cold stability in a manner distinct from abscisic acid. Plant Cell Physiol 42:999-1005
    154.Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570-577
    155.Wang X (1999) The role of phospholipase D in signaling cascades. Plant Physiol 120: 645-652
    156.Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide:a new player in plant signalling and defence responses. Curr Opin Plant Biol 7:449-455
    157.Weston K (1998) Myb proteins in life, death and differentiation. Curr Opin Genet Dev 8:76-81
    158.Wu C, Morris JR (2001) Genes, genetics, and epigenetics:a correspondence. Science 293:1103-1105
    159.Xia G, Xiang F, Zhou A, Wang H, Chen H (2003) Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevishi. Theor Appl Genet 107:299-305
    160.Xiong L, Gong Z, Rock CD, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu JK (2001) Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell 1:771-781
    161.Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14 Suppl:S165-183
    162.Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131-139
    163.Yanagisawa S, Sheen J (1998) Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 10:75-89
    164.Yang SW, Kim SK, Kim WT (2004) Perturbation of NgTRFl expression induces apoptosis-like cell death in tobacco BY-2 cells and implicates NgTRF1 in the control of telomere length and stability. Plant Cell 16:3370-3385
    165.Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q, Yunping S, Li Z, Xiaohui D, Jingchu L, Xing-Wang D, Zhangliang C, Hongya G, Li-Jia Q (2006) The MYB transcription factor superfamily of Arabidopsis:expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107-124
    166.Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K (2001) Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol 42: 1012-1016
    167.Zhang S, Klessig DF (1998) The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proc Natl Acad Sci U S A 95:7225-7230
    168.Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134: 849-857
    169.Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, Zhu JK, Hasegawa PM, Bohnert HJ, Shi H, Yun DJ, Bressan RA (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci U S A 105:4945-4950
    170.Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247-273
    171.Zinselmeier C, Jeong BR, Boyer JS (1999) Starch and the control of kernel number in maize at low water potentials. Plant Physiol 121:25-36
    172.陈吉宝,景蕊莲,员海燕,卫波,昌小平(2005)小麦TaDREB1基因的单核苷酸多态性分析。中国农业科学,38(12):2387-2394

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700