用户名: 密码: 验证码:
机械对称的概念、作用及其应用知识获取的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对称广泛存在于机械系统中,小至标准件,大至整机系统,具体如几何结构,抽象如功能原理,都有对称的存在。深入系统的研究机械对称,可以指导对称在机械系统中的科学应用,更好的实现机械系统的功能、提高机械系统的性能、满足机械系统的设计约束,提高机械系统的技术性、经济性和社会性,有助于产品创新设计,提高产品的市场竞争力。在综合分析了各领域对称的研究历史和研究现状后,本文针对当前机械对称研究存在的问题,对机械对称的概念、作用及其应用知识获取进行了研究。主要研究内容及成果体现在以下四个方面:
     一.机械对称概念体系的建立
     在研究了跨学科领域对称和机械对称的存在后,提出了机械对称的概念和层次结构体系。总结和扩展了对称在生物学和物理学中的概念体系,建立了生物对称和物理对称的本体论框架,提出了适用于一般系统的对称本体框架。在此基础上结合对大量机械对称实例的研究,对比研究了对称在机械工程科学中的存在体系,提出了按结构对称、原理对称和功能对称分类的机械对称本体体系。对各种机械对称进行定义并阐明了其在机械中的存在和作用原理。探讨了机械结构对称、原理对称及功能对称在改进和创新产品中的应用方法。揭示了对称在自然和工程系统中的存在模式具有层次结构性、相关性、多体性、多元性、多维性和组合性等共性特征。
     二.机械结构对称知识发现方法和比较模式映射关联规则挖掘算法的研究
     大量的对称实例中存在着规律性的对称设计知识,将知识发现的方法应用到对称实例的知识挖掘中,采用计算机辅助方法挖掘出深层次的设计知识是促进对称在机械设计中正确应用的基础。提出了基于实例的机械结构对称设计知识发现进程和方法,建立了结构对称设计基础知识库,建立了结构对称实例模型和结构对称设计知识模板。基于机械对称实例库属性数量较大而事务数量不大的特征,建立了基于事务属性合并和比较模式映射关联规则挖掘算法。与经典算法的对比分析表明,该算法对属性数量较大的中小型数据具有较高的求解效率,尤其在求解低支持度频繁模式时效果明显较好。运用机械结构对称知识发现方法和比较模式映射关联规则挖掘算法从对称实例中挖掘出关联知识,对关联知识加以提炼可得到具有普适性的结构对称应用知识。
     三.结构对称在机械设计中的应用知识的建立
     为指导对称在机械设计过程中的科学、系统的应用,在应用机械结构对称知识发现方法从大量对称实例中挖掘出关联知识的基础上,对关联知识进行整理、总结和提炼,提出了若干机械结构对称的应用知识。建立了设计需求、通用设计原理以及结构对称三者之间的双向关联知识。建立了结构对称在实现功能需求及性能需求中的若干应用知识。恰当的应用机械结构对称应用知识有助于更好地实现机械系统的设计需求,有助于提高机械系统的技术性、经济性和社会性,同时提高设计效率,实现能快速响应需求的产品创新。
     四.计算机辅助机械对称实例知识挖掘系统的实现和应用
     在上述理论的基础上,研制了机械对称实例知识挖掘系统,构建了由基础知识管理、对称实例管理和对称知识挖掘等模块组成的软件框架体系,将系统应用于机械结构对称实例的知识发现中,挖掘出了大量机械结构对称关联知识。
There widely exists symmetry in mechanical systems, covering the mechanical systems from small standard parts to large machine system. Symmetry is embodied by the visual geometrical structures, the abstract functions and the principles of mechanical systems. Deep and systemic research on mechanical symmetry can guide the application of symmetry to better realize the function of mechanical systems, improve their performance, meet their design restrictions, and finally increase the technical, economic and social performances of mechanical products. Moreover, research on symmetry will also benefit innovative design, and escalate the market competitiveness of mechanical products. After synthetic analysis on the research history and situation of symmetry in different domains, aiming at the drawbacks of current research in mechanical symmetry, research on mechanical symmetry concept, function and acquisition of application knowledge is carried out. The main research and primary contributions are reflected in the following four aspects:
     Firstly, the concept system of mechanical symmetry was established. After the research on the existence of symmetry in mechanics and other domains, the concept and hierarchical structure framework of mechanical symmetry was proposed. By summarizing and extending of concept framewrok of biologic symmetry and physical symmetry, the ontology framework of biology symmetry and physics symmetry was established, and then a symmetry ontology framework for general systems was presented. By combining the above works with the analysis of a large number of instances of mechanical symmetry, the framework of mechanical symmetry ontology, categorized into function symmetry, principle symmetry, structure symmetry, was set up. Furthermore, the definitions of different kinds of mechanical symmetry were put forward and their existence and working principles in mechanical systems were illustrated. Then the application strategies of structure symmetry, principle symmetry and function symmetry on improving and innovating products were discussed. Finally, the commonness of symmetry in natural and engineering systems, including hierarchical structure, correlation, multi-body, multi-element, multi-dimension and combination was discovered.
     Secondly, the research on knowledge discovery method of mechanical structure symmetry design and an algorithm for mining associating rules based on transaction attribute combination and comparative pattern mapping (CPM) was conducted. There existed much regular symmetry application knowledge in the large number of symmetry instances. The application of KDD (Knowledge Discovery in Database) in the knowledge discovery of symmetry instances and utilization of computer-aid methods to mine design knowledge in deep-level is the basis to promote the correct application of symmetry in mechanical design. An instance-based knowledge discovery process and method for mechanical structure symmetry design was proposed. And then the basic knowledge database of structure symmetry design, the model of structure symmetry instance and the template of structure symmetry design knowledge were established. A mining algorithm for associating rules based on transaction attribute combination and comparative pattern mapping (CPM) was presented aiming at the databases with a large mount of attributes but a small mount of transactions. By comparing CPM algorithm and classical algorithms, it is indicated that CPM has a satisfactory effect in calculating associating rules for databases with multiple attributes, especially for low supporting associating rule. By using knowledge discovery method of mechanical structure symmetry design and the CPM algorithm to mine associating knowledge from symmetric instances and abstract the associating knowledge, the general structure symmetry application knowledge could be obtained.
     Thirdly, the application knowledge of mechanical structure symmetry were established. By applying the knowledge discovery method of mechanical structure symmetry design to mine the associating knowledge from vast symmetric instances, the associating knowledge was sorted, summarized and abstracted and some application knowledge of symmetry in mechanical structure design was proposed. The bidirectional associating knowledge between design demands, general design principle and structure symmetry was proposed. Some knowledge of applying structure symmetry in realizing design function demands and design performance demands were proposed. Correctly applying the mechanical structure symmetry application knowledge could be beneficial for realizing design demands better, increasing the technical, economic and social performances of mechanical products, improving design efficiency and implementing product innovation with rapid response to consumers'demands.
     Fourthly, research on realization and application of computer-aided knowledge discovery system for mechanical symmetric instances was put forward. On the basis of above theory, the knowledge discovery system for mechanical symmetric instances (KDDMSI) was established. The software framework included basic knowledge management module, symmetric instance management module and symmetry design knowledge mining module. By applying the KDDMSI system in mechanical structure symmetry design knowledge discovery, a lot of mechanical symmetry associating knowledge was mined.
引文
[1]吕宝忠.生物的几何对称性研究及其对未来的挑战[J].大自然探索,1999,18(68):19-22.
    [2]FINNERTY John R., PANG Kevin, BURTON Pat, et al. Origins of Bilateral Symmetry:Hox and Dpp Expression in a Sea Anemone[J]. Science,2004,304(5675):1335-1337.
    [3]ENDRESS P. K.. Evolution of floral symmetry[J]. Current Opinions in Plant Biology,2001, 4:86-91.
    [4]冯献忠,罗达.被子植物花对称性的遗传控制[J].植物生理与分子生物学学报,2002,28(6):411-418.
    [5]王骁勇,刘树勇.对称性理论的发展[J].首都师范大学学报(自然科学版),2000,21(4):40-47.
    [6]杨振宁.20世纪物理学中各种对称性观念的起源[J].自然杂志,1997,19(7):311-315.
    [7]杨振宁.对称与物理[J].自然杂志,1995,17(5):247-256.
    [8]李政道.对称与不对称[M].北京:清华大学出版社,2000.
    [9]颜振珏.对称性与守恒律[J].黔南民族师范学院学报,2003,3:13-16.
    [10]KOPTSIK V A. Symmetry principle in physics[J]. J. Phys. C:Solid State Phys,1983,16:23-34.
    [11]王骁勇.对称性原理的由来和发展[J].涪陵师专学报(自然科学版),1997,13(3):48-54.
    [12]T佐尔泰.矿物学原理[M].北京:地质出版社,1992.
    [13]周公度.晶体结构的周期性和对称性[M].北京:高等教育出版社,1992.
    [14]王仁卉,郭可信.晶体学中的对称群[M].北京:科学出版社,1990.
    [15]BENNETT L. H., R. E. Watson. Symmetry and supersymmetry in crystals[J]. Physical Review B,1987,35(2):845-847.
    [6]NUCCI M. C.. The Role of Symmetries in Solving Differential Equations[J]. Mathl. Comput. Modelling,1997,25(8/9):181-193.
    [17]VASSILEV V M., MLADENOV I M. Geometric symmetry groups, conservation laws and group-invariant solutions of the willmore equation[C]. Fifth International Conference on Geometry, Integrability and Quantization June 5-12,2003, Varna, Bulgaria Ivailo M. Mladenov and Allen C. Hirshfeld, Editors SOFTEX, Sofia,2004:246-265.
    [18]AVITAL Tsion. Symmetry:the Connectivity Principle of Art. Symmetry[J]. Culture and Science,1996,7(1):27-50.
    [19]余建荣,张朝晖.论陶瓷产品的设计美学特征[J].中国陶瓷,2005,41(1):68-69,64.
    [20]刘致平.中国建筑类型及结构[M].北京:中国建筑工业出版社,1987.
    [21]jorg Barrenscheen. Die systematische Ausnutzung von Symmetrieeigenschaften beim Konstruieren[D]. Technische Univertitat Braunschweig Fakultat fur Maschinenbau und Elektrotechnik,1990.
    [22]SONG Ju-Whan, GWUN Ou-Bong. Reflective Symmetry Detection Based on Parallel Projection[C]. The 8th International Conference, ICANNGA 2007, Part 2:590-598.
    [23]朱林森,汤漾平,宾鸿赞等.对称加工方法及其实现机理的研究[J].中国机械工程,2007,20:2395-2399.
    [24]吴惠彬,张迎战.机械装配中的对称群方法[J].北京理工大学学报,2005,10:852-855.
    [25]The Columbia Electronic Encyclopedia(6th ed)[M]. Columbia:Columbia University Press, 2006.
    [26]I. NASZ, EVA ADAM. Symmetry types, systems and their multiplicity in the structure of adenovirus capsid i. symmetry networks and general symmetry motifs[J]. Acta Microbiologica et Immunologica Hungarica,2006,53 (1):1-23.
    [27]JORGE ALMEIDA, LISETE GALEGO. Flower symmetry and shape in Antirrhinum[J]. International Journal of Developmental Biology,2005,49:527-537.
    [28]GARDNER R. L.. The early blastocyst is bilaterally symmetrical and its axis of symmetry is aligned with the animal-vegetal axis of the zygote in the mouse[J]. Development,1997, 124:289-301.
    [29]NEAL Paul R., DAFNI Amots, GIURFA Martin. Floral symmetry and its role in plant-pollinator systems:Terminology, Distribution, and Hypotheses[J]. Annual Review of Ecology and Systematics,1998,29:345-373.
    [30]MARCELLINI Sylvain. When Brachyury meets Smadl:the evolution of bilateral symmetry during gastrulation[J]. BioEssays,28:413-420.
    [31]ALLARD Patrick, TABIN Clifford J. Achieving bilateral symmetry during vertebrate limb development[J]. Seminars in Cell & Developmental Biology,2009,20:479-484.
    [32]LIU Chun-ming, XU Zhi-hong, CHUAB Nam-Hai. Auxin polar transport Is essential for the establishment of bilateral symmetry during early plant embryogenesis[J]. The Plant Cell, 1993,5:621-630.
    [33]POZZI Carlo, ROSSINI Laura, Fiorenza Agosti. Patterns and symmetries in leaf development[J]. Cell & Developmental Biology,2001,12:363-372.
    [34]CATHERINE DAMERVAL, SOPHIE NADOT. Evolution of perianth and stamen characteristics with respect to floral symmetry in ranunculales[J]. Annals of Botany,2007, 100:631-640.
    [35]RAYNAUD Xavier, Paul W. LEADLEY. Symmetry of belowground competition in a spatially explicit model of nutrient competition[J]. Ecological Modelling,2005, 189:447-453.
    [36]迪生(译),张淇(校).不单纯是左右对称[J].国外科技动态,1996,2:13-15.
    [37]DAVIS1 Andrew K., MAERZ John C.. Spot symmetry predicts body condition in spotted salamanders, ambystoma maculatum[J]. Applied Herpetology,2007,4(3):195-205.
    [38]ZAIDEL Dahlia W., AARDE Shawn M., BAIG Kiran. Appearance of symmetry, beauty, and health in human faces[J]. Brain and Cognition,2005,57:261-263.
    [39]THEODORE GARLAND JR, PATRICIA W. FREEMAN. Selective breeding for high endurance running increases hindlimb symmetry[J]. Evolution,2005,59(8):1851-1854.
    [40]Sz. BERCZI, B. LUKACS. Symmetry versus katachi in animal organisms[J]. Forma,2001, 16:91-99.
    [41]DUFOUR Kevin W., WEATHERHEAD Patrick J.. Bilateral symmetry as an indicator of male quality in red-winged blackbirds:associations with measures of health, viability, and parental effort[J]. Behavioral Ecology,1998,9(3):220-231.
    [42]KOSHIO Chiharu, MURAJI Makoto, TATSUTA Haruki, KUDO Shin-ichi. Sexual selection in a moth:effect of symmetry on male mating success in the wild[J]. Behavioral Ecology, 2007,18(3):1-8.
    [43]立人.贵州小春虫:最早的两侧对称真体腔动物化石[J].科学,2004,56(4):64-64.
    [44]北京自然博物馆.生物史图说[M].北京:科学出版社,1982.
    [45]王成红,宋苏,贺建军.动物体形结构的对称性[J].复杂系统与复杂性科学,2004,1(3):41-44.
    [46]CASTELLANI Elena. Symmetry, quantum mechanics, and beyond[J]. Foundations of Science 7,2002:181-196.
    [47]卓崇培,刘文杰.时空对称性与守恒定律[M].北京:人民教育出版社,1982.
    [48]KUMAR S. Prem, POLICASTRO Giuseppe. Strings in twistor superspace and mirror symmetry[J]. Physics Letters B,2005,619:163-170.
    [49]HEINZNER P., HUCKLEBERRY A., ZIRNBAUER M R. Symmetry classes of disordered fermions[J]. Communications in Mathematical Physics,2005,257:725-771.
    [50]BARROS Eduardo B., JORIO Ado, SAMSONIDZE Georgii G., et al. Review on the symmetry-related properties of carbon nanotubes[J]. Physics Reports,2006,431:261-302.
    [51]LEVIN Michael, HALPERIN Bertrand I., ROSENOW Bernd. Particle-hole symmetry and the pfaffian state[J]. Physical Review Letters,2007,99(23):236806.
    [52]GRANGE Pascal, MINASIAN Ruben. Modified pure spinors and mirror symmetry[J]. Nuclear Physics B,2006,732:366-378.
    [53]KUMMER W., TIEBER G. Universal conservation law and modified Noether symmetry in 2D models of gravity with matter[J]. Physical Review D,1998,59(4):044001.
    [54]LIZZI Fedele, VAIDYA Sachindeo, VITALE Patrizia. Twisted conformal symmetry in noncommutative two-dimensional quantum field theory[J]. Physical Review D,2006, 73(12):125020.
    [55]CHAICHIAN M., TUREANU A.. Twist symmetry and gauge invariance[J]. Physics Letters B,2006,637:199-202.
    [56]FENG Sheng, KUMAR Prem. Spatial symmetry and conservation of orbital angular momentum in spontaneous parametric down-conversion[J]. Physical Review Letters,2008, 101(16):163602.
    [57]EARMAN John. Laws, symmetry, and symmetry breaking:invariance, conservation principles, and objectivity[J]. Philosophy of Science,2004,71;1227-1241.
    [58]BOSTREM I.G., KISHINE J., LAVROV R.V., et al. Hidden Galilean symmetry, conservation laws and emergence of spin current in the soliton sector of chiral helimagnet[J]. Physics Letters A,2009,373:558-562.
    [59]BRADING Katherine A.. Which symmetry? Noether, Weyl, and conservation of electric charge[J]. Studies in History and Philosophy of Modern Physics,2002,33:3-22.
    [60]CHAICHIAN M., TUREANU A., ZET G. Twist as a symmetry principle and the noncommutative gauge theory formulation[J]. Physics Letters B,2007,651:319-323.
    [61]SZABO Richard J. Symmetry, gravity and noncommutativity[J]. Classical and Quantum Gravity,2006,23:R199-R242.
    [62]赵凯华.半定量物理学[M].北京:高等教育出版社,1993.
    [63]周公度.晶体结构的周期性和对称性[M].北京:高等教育出版社,1992.
    [64]赵珊茸,王继扬,于光伟,等.数学在晶体形貌研究中的应用[J].人工晶体学报,2005,34(5):817-822.
    [65]ROUNDY David, LIDORIKIS Elefterios, JOANNOPOULOS J. D.. Polarization-selective waveguide bends in a photonic crystal structure with layered square symmetry[J]. Journal of Applied Physics,2004,96(12):7750-7752.
    [66]ROUNDY David, JOANNOPOULOS John. Photonic crystal structure with square symmetry within each layer and a three-dimensional band gap[J]. Applied Physics Letters,2003, 82(22):3835-3837.
    [67]卢嘉锡,陆敬严,华觉明.中国科学技术史机械卷[M].北京:科学出版社,2000.
    [68]中山秀太朗等.世界机械发展史[M].北京:机械工业出版社,1986.
    [69]PRASAD P. LAXMI, NANDAKUMAR R., RAMAMURTI V. Estimation of machining errors using the concept of cyclic symmetry[J]. International Journal of Machine Tools and Manufacture,1997,37(5):635-647.
    [70]朱林森,汤漾平,宾鸿赞等.对称加工方法及其实现机理的研究[J].中国机械工程,2007,18(20):2395-2399.
    [71]郭峰.多刀对称镗削法[J].金属加工,2008,11:26-27.
    [72]吴志明.对称转台与对称加工.机械工人(冷加工)[J].1995,1:17-18.
    [73]TATE Susan J, JARED G. E M, SWIFT K G. Detection of Symmetry and Primary Axes in Support of Proactive Design for Assembly[C]. Fifth Symposium on Solid Modeling and Applications, Ann Arbor,1999:151-158.
    [74]TATE Susan J. Symmetry and Shape Analysis for Assembly-Oriented CAD [D]. Cranfield University, School Of Industrial And Manufacturing Science, PhD Thesis,2000.
    [75]吴惠彬,张迎战.机械装配中的对称群方法[J].北京理工大学学报,2005,25(10):852-855.
    [76]LIU Yan-xi, POPPLESTONE Robin J. Symmetry constraint inference in assembly planning-automatic assembly configuration specification[C]. AAAI-90 Proceedings, 1990:1038-1044.
    [77]LIU Yan-xi, POPPLESTIONE Robin J. Symmetry groups in analysis of assembly kinematics[C]. Procedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, California,1991:572-577.
    [78]钟康民,王明娣.对称美与机械设计创新初探[J].苏州大学学报(工科版),2004,24(5):36-37.
    [79]Pahl G,Beitz W.冯培恩,张直明,毛谦德,等译.工程设计学[M].北京:机械工业出版社,1992.
    [80]PAHL G, BEITZ W. Engineering design:a systematic approach (2nd Edition) [M]. Springer-Verlag, London,1996.
    [81]FRENCH M J. Conceptual design for engineers(3rd Edition) [M]. London:Springer,1998.
    [82]SUH N P. Axiomatic design:advances and applications[M]. MIT Press,2000.
    [83]TOMIYAMA T. From general design theory to knowledge-intensive engineering[J]. AIEDAM,1994,8:319-333.
    [84]ALTSHULLER G S. The inventor appeared:TRIZ, the theory of inventive problem solving[M]. MA:Technical Innovation center,1996.
    [85]邹慧君.机械设计原理[M].上海:上海交通大学出版社,1995.
    [86]邹慧君,汪利,王石刚,等.机械产品概念设计及其方法综述[J].机械设计与研究,1998.
    [87]郭南初,扬明忠,熊志勇.产品概念设计阶段成本分析的研究[c].2005年国际工业设计研讨会暨第十届全国工业设计学术年会,9.23-9.25,2005:526-529.
    [88]STONE R, WOOD K. Development of a functional basis for design[J]. Journal of Mechanical Design,2000,122(4):359-370.
    [89]BOHM M R, VUCOVICH J P, STONE R B. Capturing creative:using a design repository to drive concept innovation[C]. Proceedings of DETC'05, ASME 2005 Design Engineering Technical Conferences & Computers and Information in Engineering Conference Long Beach, California USA,2005,9:24-28.
    [90]陈泳.基于仿生学的产品概念设计方法学探索[D].杭州:浙江大学博士学位论文,2004.
    [91]何斌.有助于产品创新的概念设计理论与方法的研究[D].杭州:浙江大学博士学位论文,2006.
    [92]YAN Xiang-tong, JIANG Ping-yu. Conceptual design modeling for microcomponent based on FES[J]. Lecture Notes in Computer Science,2008,5315:279-288.
    [93]GERO J S. Design prototypes:a knowledge representation schema for design[J]. AI Magazine,1990,11(4):26-36.
    [94]QIAN Lena, GERO John S.. Function-behavior-structure paths and their role in analogy-based design[J]. Artificial Intelligence for Engineering Design Analysis and Manufacturing,1996,10:289-312.
    [95]GERO John S., Udo Kannengiesser. The situated function-behaviour-structure framework[J]. Design Studies,2004,25:373-391.
    [96]GERO John S., KANNENGIESSER Udo. A function-behavior-structure ontology of processes[J]. Artificial Intelligence for Engineering Design Analysis and Manufacturing, 2007,21:379-391.
    [97]UMEDA Y., TAKEDA H., TOMIYAMA T., et al. Function, Behavior and Structure[C]. Applications of Artificial Intelligence in Engineering V, Gero, J. S. (Editor),1990:177-193.
    [98]UMEDA Yasushi, KONDOH Sinsuke, SHIMOMURA Yoshiki, et al. Development of design methodology for upgradable products based on function-behavior-state modeling[J]. Artificial Intelligence for Engineering Design Analysis and Manufacturing,2005, 19:161-182.
    [99]LIN Y., ZHANG W. J. A function-behavior-state approach to designing human-machine interface for nuclear power plant operators[J]. IEEE Transactions on Nuclear Science,2005, 52(1):430-439.
    [100]张帅.复合功能产品概念设计建模理论及自动化求解方法研究[D].杭州:浙江大学博士学位论文,2005.
    [101]MILES L D. Techniques of value analysis and engineering[M]. New York:McGraw-Hill, 1972.
    [102]KOCH-P., PEPLINSKI J., ALLEN J. et al. A method for design using available assets: identifying a feasible system configuration[J]. Behavioral Science,1994,30:229-250.
    [103]KIRSCHMAN C., FADEL G. Classifying functions for mechanical design. Journal of Mechanical Design[J]. Transactions of the ASME,1998,120(3):475-482.
    [104]ALTSHULLER G. Creativity as an Exact Science[M]. Luxembourg:Gordon and Branch Publishers,1984.
    [105]MALMQVIST J., AXELSSON R., JOHANSSON M. Comparative Analysis of the Theory of Inventive Problem Solving and the Systematic Approach of Pahl and Beitz[C]. Proceedings of the 1996 ASME Design Engineering Technical Conference and Computers in Engineering Conference, Irvine, CA,1996.
    [106]SZYKMAN Simon, RACZ Janusz W., SRIRAM Ram D. The representation of function in computer-based design[C]. Proceedings of the 1999 ASME Design Engineering Technical Conferences, Las Vegas, Nevada, September 12-15,1999.
    [107]STONE Robert B., WOOD Kristin L., CRAWFORD Richard H. A heuristic method for identifying modules for product architectures[J]. Design Studies,2000,21:5-31.
    [108]HIRTZ Julie M., STONE Robert B., MCADAMS Daniel A., et al. Evolving a functional basis for engineering design[C]. Proceedings of DETC01 2001 ASME Design Engineering Technical Conferences, Pittsburgh, PA, September 9-12,2001.
    [1O9]HIRTZ Julie, STONE Robert B., MCADAMS Daniel A., et al. A functional basis for engineering design:reconciling and evolving previous efforts[R]. NIST Technical Note 1447,2002.
    [110]STONE R B, MCADAMS Daniel A, KAYYALETHEKKEL Varghese J, et al. A product architecture-based conceptual DFA technique[J]. Design Studies,2004,25:301-325.
    [111]UMEDA Y, MASAKI I, TOMIYAMA T. Supporting conceptual design based on the function-behavior-state modeler[J]. AI EDAM,1996,10(4):275-288.
    [112]GOEL A K, STROULIA E. Functional device models and model-based diagnosis in adaptive design[J]. AI EDAM,1996,10(4):355-369.
    [113]FENG P E, XU G R, ZHANG M J. Feature modeling based on design catalogues for principle conceptual design[J]. AI EDAM,1996,10(4):347-354.
    [114]KITAMURA Y, MIZOGUCHI R. Ontology-based systematization of functional knowledge[J]. Journal of Engineering Design,2004,15(4):327-351.
    [115]孙守迁,包恩伟,潘云鹤.面向产品布局设计的组件特征模型[J].计算机辅助设计与图形学学报,1999,11(1):28-32.
    [116]GRADY Peter O, LIANG Wen-yau. An object oriented approach to design with modules[J]. Computer Integrated Manufacturing Systems,1998, 11(4):267-283.
    [117]GORTI Sreenivasa R, SRIRAM Ram D. From symbol to form:a framework for conceptual design[J]. Computer-aided design,1998,28(11):853-870.
    [118]岳建鹏, 尹文生, 王启富.基于虚拟零件的自顶向下并行装配设计[J].华中理工大学学报,2000,28(5):13-15.
    [119]徐志刚.几何缺席推理研究[J].计算机辅助设计与图形学学报,2000,12(12):881-885.
    [120]FAYYAD U, PIATETSKY-SHAPIRO G, SMYTH P. From Data Mining to Knowledge Discovery:An Overview[C]. Advances in Knowledge Discovery and Data Mining, Fayyad et al (Eds.), MIT Press,1996.
    [121]ROIGER Richard J., AZARBOD Cyrus, SANT Rajiv R. A Majority Rules Approach to Data Mining[C].1997 IASTED International Conference on Intelligent Information Systems (ⅡS'97),1997.
    [122]FAYYAD Usama, STOLORZ Paul. Data mining and KDD:promise and challenges[J]. Future Generation Computer Systems,1997,13:99-115.
    [123]DUNKEL Brian, SOPARKAR Nandit, SZARO John, et al. Systems for KDD:form concepts to practice[J]. Future Generation Computer Systems,1997,13:231-242.
    [124]FREITAS Alex A. A survey of evolutionary algorithms for data mining and knowledge discovery[J]. Advances in Evolutionary Computation,2002.
    [125]马当先,穆志纯,王绍波,等.CBR及KDD技术在中厚板轧制负荷分配建模中的应用[J].北京科技大学学报,2005,27(1):98-101.
    [126]CASILLAS Jorge, et al. KDD in Marketing with Genetic Fuzzy Systems[C]. Springer:Soft Computing for Knowledge Discovery and Data Mining,2008.
    [127]CHENG Tie-xin, WANG Hong-qin, CHEN Mei. The development and application of the model of KDD in project management[C]. Proceedings of 2007 IEEE International Conference on Grey Systems and Intelligent Services, Nanjing, China,2007:580-585.
    [128]PACHON V, MATA J, MANA M J. Practical application of a KDD process to a sulphuric acid plant[J]. Lecture Notes in Computer Science,2009,5518:1205-1212.
    [129]FAYYAD U. Data mining and knowledge discovery in databases:implications for scientific databases[C]. Ninth International Conference on Scientific and Statistical Database Management, IEEE,1997.
    [130]CATLETT J. On changing continuous attributes into ordered discrete attributes[C]. Proceeding of European Working Session on Learning (EWSL-91), Lecture Notes in Artificial Intelligence Springer-Verlag,1991,482:164-178.
    [131]GUYON I, MATIC N, VAPNIK V. Discovering informative patterns and data cleaning[C]. Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press.1996:181-203.
    [132]HAND David, MANNILA Heikki, SMYTH Padhraic,张银奎(译).数据挖掘原理[M].北京:机械工业出版社,2003.
    [133]HAN Jia-wei,KAMBER Micheline.数据挖掘概念与技术[M].北京:机械工业出版社,2001.
    [134]刘晓东.KDD的产生及在各领域的广泛应用[J].现代情报,2004,10:68-69.
    [135]AGRAWAL R, IMILIENSKI T, SWAMI A. Mining association rules between sets of items in large databases[C]. Proc. of the ACM SIGMOD Int'l Conference on Management of Data, Washington DC,1993,5:207-216.
    [136]AGRAWAL R, et al. Fast discovery of association rules[C]. Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press,1996:307-328.
    [137]AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules[R]. IBM Almaden Research Center,1994.
    [138]PORK J, CHEN M, YU P. An effective hash based algorithm for mining association rules[J]. ACM SIGMOD,1995:175-186.
    [139]BRIN S, MOTWANI R, SILVERSTEIN C. Beyond market baskets:generalizing association rules to correlations[C]. ACM SIGMOD Conference on Management of Data, Tuscon, AZ,1997,5:265-276.
    [140]PASQUIER N, BASTIDE Y, TAOU IL R, et al. Discovering frequent closed itemsets for association rules[C]. Proc of ICDT1999, Israel,1999:3982416.
    [141]方炜炜,杨炳儒,宋威,等.基于布尔矩阵的关联规则算法研究[J].计算机应用研究,2008,25(7):1964-1966.
    [142]HAN J, PEI J, YIN Y. Mining frequent patterns without candidate generation[C]. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000:1-12.
    [143]邓丰义,刘震宇.基于模式矩阵的FP-growth改进算法[J].厦门大学学报(自然科学版),2005,44(5):629-633.
    [144]焦明海,姜慧研,唐加福.一种基于聚合链的改进FP-Growth算法[J].东北大学学报 (自然科学版),2006,27(2):153-156.
    [145]WANG Ke, TANG Liu, HAN Jia-wei, et al. Top down fp-growth for association rule mining[C].The 6th Pacific-Asia Conference, PAKDD 2002, Taipei, Taiwan, May 6-8,2002, Lecture Notes in Computer Science, Springer,2002:334-340.
    [146]QIU Yong, LAN Yong-Jie, XIE Qing-Song. An improved algorithm of mining from FP-tree[C]. Proceedings of 2004 International Conference on Machine Learning and Cybernetics, Jinan, China,26-29 Aug,2004, (3):1665-1670.
    [147]ROBERTO J. BAYARDO Jr, AGRAWAL Rakesh, GUNOPULOS Dimitrios. Constraint-Based Rule Mining in Large, Dense Databases[C]. Proc. of the 15th Int'l Conf. on Data Engineering,1999:188-197.
    [148]AGARWAL Ramesh C., AGGARWAL Cham C., PRASAD V. V. V. Depth First Generation of Long Patterns[C]. Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining,2000:108-118.
    [149]BURDICK Doug, CALIMLIM Manuel, GEHRKE Johannes. MAFIA:A Maximal Frequent Itemset Algorithm for Transactional Databases[C]. Int'l Conf on Data Engineering,2001.
    [150]THOMAS Wessel. Parallel Mining Of Association Rules Using A Lattice Based Approach[C]. SoutheastCon,2007. Proceedings. IEEE,2007:645-650.
    [151]HOLT, J.D., CHUNG, S.M. Parallel mining of association rules from text databases on a cluster of workstations[C]. Parallel and Distributed Processing Symposium,2004. Proceedings.18th International.2004:84-95.
    [152]SRIKANT Ramakrishnan, AGRAWAL Rakesh. Mining Generalized Association Rules[C]. Proceedings of the 21st VLDB Conference, Zurich, Swizerland,1995:407-419.
    [153]SRIKANT Ramakrishnan, AGRAWAL Rakesh. Mining Quantitative Association Rules in Large Relational Tables[C]. Proceedings of the 1996 ACM SIGMOD international conference on Management of data,1996:1-12.
    [154]PARKEFELT Linda, SKOGH Charlotta, NILSSON Dan-Eric, et al. Bilateral Symmetric Organization of Neural Elements in the Visual System of a Coelenterate, Tripedalia cystophora (Cubozoa) [J]. The Journal of Comparative Neurology,2005,492:251-262.
    [155]Symmetry, biological. [2007-09-12] http://www.factmonster.com/ce6/sci/A0847482.html.
    [156]DARVAS G. Generalisation of the concept of symmetry and its classification in physics[C]. The Official Electronic Proceedings Issue of the Wigner Centennial Conference, Pecs,8-12 July,2002, CD-ROM, Item 48.
    [157]汪新文.地球科学概论[M].北京:地质出版社,2005.
    [158]中国材料科学学会.结晶学与晶体绕射[2007-08-04] http://140.114.18.41/diff/index.html.
    [159]杨文彬.机械结构设计准则及实例[M].北京:机械工业出版社,1997.
    [160]孟宪源,姜琪.机构构型与应用[M].北京:机械工业出版社,2004.
    [161]王启义.中国机械设计大典[M].南昌:江西科学技术出版社,2002.
    [162]《起重机设计手册》编写组.起重机设计手册[M].北京:机械工业出版社,1980.
    [163]段广汉,舒森茂,王传贤,等.离合器结构图册[M].北京:国防工业出版社,1985.
    [164]压力容器实用技术丛书编委会.压力容器设计知识[M].北京:化学工业出版社,2005.
    [165]申永胜.机械原理教程[M].北京:清华大学出版社,2005.
    [166]柯热夫尼柯夫,等.机构参考手册[M].北京:机械工业出版社,1988.
    [167]阎书文.机械式挖掘机设计[M].北京:机械工业出版社,1982.
    [168]曹志超,愈一鸣.常用机械电器实用手册(下册)[M].北京:化学工业出版社,2001.
    [169]林家让.汽车构造发动机篇[M].北京:电子工业出版社,2004.
    [170]李宗良,林永立(编译).现代机构百科(上册)[M].北京:世界图书出版公司,1990.
    [171]李宗良,林永立(编译).现代机构百科(下册)[M].北京:世界图书出版公司,1990.
    [172]严大考,郑兰霞.起重机械[M].郑州:郑州大学出版社,2003.
    [173]顾礼邦,范本贤,黄灿,等.气动泵:中国,91230857.5[P].1992-5-20.
    [174]宋学礼,姜维安,何玉坤.一种新型气动泵及其喷涂机:中国,200520091320.9[P].2006-11-15.
    [175]林健.气动泵:中国,03259557.3[P].2004-10-20.
    [176]冯继文,邱清盈,武建伟.一种气动泵:中国,200820164523.X[P].2009-7-1.
    [177]胡学军,何国良,孙培德.提供油压动力的气动泵:中国,03272364.4[P].2003-7-11.
    [178]曹志良.无气喷涂机:中国,95244683.9[P].1996-7-17.
    [179]宋学礼,姜维安,何玉坤.一种高压无气喷涂机:中国,200420031025.X[P].2004-4-2.
    [180]姚胥源,顾学军.活塞式气动泵:中国,200720071117.4[P].2007-6-15.
    [181]魏东波,周仲淦.无气喷涂机:中国,00259838.8[P].2000-12-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700