用户名: 密码: 验证码:
钢管混凝土节点抗震与框架抗连续性倒塌性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土结构作为一种组合结构形式,有着多种优良的力学特性和良好的抵抗极限荷载的能力。而钢管混凝土结构梁柱节点,对于此种结构在灾害荷载作用下的响应特点有着极为重要的影响。本文针对多种钢管混凝土柱-钢筋混凝土梁节点形式进行了研究,通过试验及有限元等方法对此类节点的抗震性能以及对结构的抗连续性倒塌性能的影响进行了分析。提出了结构连续性倒塌简化分析方法。
     主要研究内容如下:
     (1)分别对三种钢筋混凝土梁—钢管混凝土柱节点进行抗震性能试验。节点类型包括焊接节点、搭接节点以及新型钢筋套筒连接节点。通过试验获得了不同节点类型的荷载—位移滞回曲线。并通过试验对比了不同牛腿长度等因素对于节点抗震性能的影响。计算获得了节点的骨架曲线、延性系数、粘滞阻尼系数等参数。通过试验对比分析得出,焊接与钢筋套筒连接方式具有良好滞回性能以及耗能能力。搭接节点同样满足抗震延性要求,但由于试验开展初期裂纹较多,不适宜工程直接应用。同时,通过对试验过程及结果进行观察,分析得出新型钢筋套筒连接节点形式的破坏机理。说明牛腿在试验过程中,对于破坏形态的影响。
     (2)针对同一梁柱节点形式,分别进行了梁端与柱端低周往复加载试验,对比了两种试验方法获得的节点滞回性能以及不同加载方式所反应的受力特性的差别,分析说明了柱端加载方式更加吻合节点在地震过程中的受力特性,而梁端加载由于在加载过程中约束了沿梁方向的移动,使梁内部受到了拉力,钢筋与混凝土之间出现明显的滑移现象。建议在未来进行节点抗震性能试验研究时,采用柱端低周往复加载,以代替梁端加载的方式,从而获得更加真实的响应特点,以及为工程提供更可靠的参考依据,同时以利于不同节点的抗震性能对比。
     (3)通过有限元程序对钢管混凝土节点抗震试验进行了有限元模拟验证,结果吻合良好。并对新型钢筋套筒连接节点形式进行了一系列参数分析,分析了,梁、柱、牛腿以及环板等构件各主要的几何及材性影响因素。通过分析发现,柱截面的设计、牛腿上下翼缘厚度以及环板厚度等对节点滞回性能影响很小。而混凝土梁截面的设计抗弯强度对节点抗震性能影响较大。
     (4)提出了新型钢筋套筒连接节点的三段式骨架曲线模型。通过梁柱理论以及极限平衡等方法,给出了获得各阶段参数值的计算方法。并与有限元分析结果进行对比,验证该模型可以较好的描述节点的骨架曲线。
     (5)除了地震灾害对结构的危害较大,结构连续性倒塌近些年来也造成了较严重的结构破坏。本文通过对结构进行不同层级的简化分析,给出了简化的结构抗连续性倒塌性能的判定方法。并通过有限元分析进行了验证。此外,本文还对拟静力简化分析方法进行了验证与拓展,经验证适合于考虑楼板效应以及同时多个柱失效的结构连续倒塌工况。并依此提出了2D楼板效应放大系数。
     (6)采用以上所提出的方法,对采用新型钢筋套筒连接节点的钢管混凝土框架进行了拟静力分析,分析了不同影响因素对结构抗倒塌性能的影响。
The concrete-filled-steel-tube (CFST) structure, which is a kind of composite structure, shows a variety of excellent mechanical properties and good resistance to extreme loading capacity. The CFST beam-to-column joint plays an important role when the structure subjected to extreme loading. In this paper, several kinds of reinforced concrete beam to CFST column joint has been investigated with both experimental and finite element methods, and the influences of these joints in seismic and structural progressive collapse has been analyzed. Moreover, the simplified progressive collapse analysis method is proposed.
     The main contents are as follows:
     (1) The seismic performance of three kinds of reinforced concrete beam to CFST column joints are studied with experimental methods. The joint types include welded joints, lap joints and new joint with reinforcement sleeve. The force-displacement hysteresis curves of these joints are obtained with experimental methods, and the influence of different bracket lengths are also studied as a parameter in the tests. The skeleton curves, ductility coefficient, viscos damping coefficient are obtained from the hysteresis curves. According to the test results, the welded joint and new joint with reinforcement sleeves show good performance in hysteretic loading and energy dissipation. However, the lap joints still meet the ductility requirement in seismic design, except for a great number of intial cracks in the beginning of the test, and it is not recommended for pratical use. Moreover, the failure mechanism of new joint with reinforced sleeves is discussed from the observation of the specimens during the tests, and the influence of steel bracket on the failure mode is also analyzed.
     (2) Cyclic loading on beam end and column top are carried on the same kind of joint. The hysteretic behavior obtained from the above two kinds of loading methods are compared and discussed. It is concluded that the loading on column top is more realistic than the other loading method, since the RC beam may subjected to tensile force when vertical load is applied on the beam end and the lateral displacement is restrained. The slippage of reinforcement is thus introduced obviously during the test. Accordingly, the experimental method with cyclic loading on column top is recommended in the future seismic experiments to replace the loading method with vertical loading on beam end. The previous loading method will provide more realistic joint response during earthquake, which will provide an important reference for practical design and for comparison.
     (3) Finite element analysis is carried on the specimens in the test, and the numerical results are in good agreement with the test results. A series of parametric analysis are conducted on the new joint with reinforcement sleeves, in which the beam, column, bracket and annular plate are investigated as geometry or material properties parameters. According to the FEA results, the design of column section, the thickness of steel bracket and the thickness of annular plate has little influence on the hysteretic behavior of the joints, while the design bending capacity of beam plays a more important role in seismic performance.
     (4) A three-stage skeleton curve model is proposed for the new joint with reinforcement sleeves. The calculation methods of the parameters in these stages are provided from the beam-column theory and limit equilibrium methods. FEA results are compared with the theoretical results, which show good agreement on the skeleton curves.
     (5) In addition to the great damage caused by the seismic hazard, the structural progressive collapse has also become a kind of severe structural damage reason in recent years. In this paper, several levels of simplified analysis methods are proposed for evaluating the potential of structural progressive collapse, and verified with finite element analysis method. Moreover, the simplified pseudo-static analysis method is also verified and developed in this paper, which is proven to be suitable for the situation with the membrane action of floor and the cases with several column deleted simultaneously. 2D floor membrane action amplification factor is thus proposed for the structures with floor.
     (6) The pseudo-static analysis method presented above are utilized to study the behavior of CFST structure with new reinforcement sleeve joint, and the influence of different factors on the potential of structural progressive collapse are analyzed based on the framework presented above.
引文
1 B. Kato, M. Kimura, H. Ohta, N. Mizutani. Connection of Beam Flange to Concrete-Filled Tubular Column. Publ by ASCE, Potosi, MO, USA, 1992:528-538
    2 Y. M. Alostaz, S. P. Schneider. Analytical Behavior of Connections to Concrete-Filled Steel Tubes. Journal of Constructional Steel Research. 1996, 40(2):95-127
    3 S. P. Schneider, Y. M. Alostaz. Experimental Behavior of Connections to Concrete-Filled Steel Tubes. Journal of Constructional Steel Research. 1998, 45(3):321-352
    4 A. Azizinamini, S. P. Schneider. Moment Connections to Circular Concrete-Filled Steel Tube Columns. Journal of Structural Engineering. 2004, 130(2):213-222
    5 S. P. Chiew, C. W. Dai. Experimental Study of Steel I-Beam to Cft Column Connections. 1999:291-303
    6 S. P. Chiew, S. T. Lie, C. W. Dai. Moment Resistance of Steel I-Beam to Cft Column Connections. Journal of Structural Engineering. 2001, 127(10):1164-1172
    7 M. S. Choi, B. I. Shin, H. C. Eom, K. D. Kim, J. D. Kim. An Experimental Study On the Strength and Stiffness of Concrete Filled Steel Column Connections with External Stiffener Rings. Proc.,4th Pacific Struct.Steel Conf., Pergamon,U.K., 1995:1-8
    8 I. Nishiyama, T. Fujimoto, T. Fukumoto, K. Yoshioka. Inelastic Force-Deformation Response of Joint Shear Panels in Beam-Column Moment Connections to Concrete-Filled Tubes. Journal of Structural Engineering. 2004, 130(2):244-252
    9 T. Fujimoto, I. E., K. M., M. K, M. O, I. Nishiyama. Behavior of Beam-to-Column Connection of Cft Column System. The 12th WCEE. 2000(2197):1-8
    10 C. Cheng, P. S. Hwang, L. Y. Lu, L. Chung. Connection Behaviors of SteelConference, Los Angeles, USA, 2000:581-589
    11 C. Cheng, L. Chung. Seismic Performance of Steel Beams to Concrete-Filled Steel Tubular Column Connections. Journal of Constructional Steel Research. 2003, 59(3):405-426
    12 J. M. Ricles, S. W. Peng, L. W. Lu. Seismic Behavior of Composite Concrete Filled Steel Tube Column-Wide Flange Beam Moment Connections. Journal of Structural Engineering. 2004, 130(2):223-232
    13 J. W. Park, S. M. Kang, S. C. Yang. Experimental Studies of Wide Flange Beam to Square Concrete-Filled Tube Column Joints with Stiffening Plates Around the Column. Journal of Structural Engineering. 2005, 131(12):1866-1876
    14张大旭,张素梅.钢管混凝土梁柱节点动力性能试验研究.哈尔滨建筑大学学报. 2001(01):21-27
    15张素梅,张大旭.钢管混凝土柱与梁节点荷载-位移滞回曲线理论分析.哈尔滨建筑大学学报. 2001(04):1-6
    16陈鹃,王湛,袁继雄.加强环式钢管混凝土柱-钢梁节点的刚性研究.建筑结构学报. 2004(04):43-49
    17陈曦,王湛.加强环式钢管混凝土节点梁柱连接刚度的有限元分析.四川建筑科学研究. 2007(05):9-11
    18李志刚,曹玉生.新型钢管混凝土柱钢梁刚性节点性能研究.内蒙古工业大学学报(自然科学版). 2004(04):309-313
    19曹玉生,李志刚,杨蔚彪.新型钢管混凝土柱-钢梁节点非线性有限元分析.工业建筑. 2006(S1):585-590
    20秦庚,王文达.钢管混凝土环板节点设计的关键问题探讨.华中科技大学学报(城市科学版). 2008(04):321-324
    21李帼昌,刘麟,邢忠华.牛腿外加强环—钢管煤矸石混凝土柱与钢梁节点的试验研究.沈阳建筑大学学报(自然科学版). 2008(03):407-410
    22许凤美,徐梦琴,许成祥,卢海林.外加强环式圆钢管混凝土柱-钢梁框架节点有限元分析.长江大学学报(自然科学版)理工卷. 2009(04):98-100
    23洪适,吴轶群,林于东,宗周红.矩形钢管混凝土柱与钢梁连接节点试验分析.福建建材. 2004(03):16-19
    24林于东,林杰,宗周红.低周反复荷载作用下矩形钢管混凝土柱与钢梁连接节点的受力性能.地震工程与工程振动. 2004(04):62-69
    25熊维,陈志华.连接方钢管混凝土柱与H钢梁的一种新型节点的研究.沈阳理工大学学报. 2006(02):69-71
    26姜忻良,苗纪奎,陈志华.方钢管混凝土柱-钢梁隔板贯通节点抗震性能试验.天津大学学报. 2009(03):194-200
    27凡红,徐礼华,杜国锋.方钢管混凝土柱-钢梁节点静力性能试验研究.湖南大学学报(自然科学版). 2007(09):11-15
    28徐礼华,凡红,刘胜兵,邢丹.方钢管混凝土柱-钢梁节点抗震性能试验研究与有限元分析.工程力学. 2008(02):122-131
    29周学军,曲慧.方钢管混凝土框架梁柱节点在低周往复荷载作用下的抗震性能研究.土木工程学报. 2006(01):38-42
    30钟善桐.高层钢管混凝土结构.黑龙江科学技术出版社, 1999
    31钟善桐.高层建筑组合结构框架梁柱节点分析与设计.北京:人民交通出版社, 2006
    32 R. Kanno, N. Shimizu. Strength of Cft Connection Stiffened with T-Shaped Interior Diaphragms. American Society of Civil Engineers, Mpumalanga, South africa, 2006:431-442
    33王先铁,郝际平,王丰平,潘阳,任青青,李娜.锚定式方钢管混凝土柱与钢梁节点抗震性能试验研究.地震工程与工程振动. 2007(05):95-102
    34王湛,袁继雄,陈鹃.钢管混凝土柱节点刚度影响因素分析.哈尔滨工业大学学报. 2005, 37(增刊):330-332
    35陈曦,袁继雄,王湛.钢梁-钢管混凝土柱穿心节点力学性能研究.工业建筑. 2005(11):17-20
    36李琼,王秀丽.钢梁贯穿式方钢管砼梁柱节点滞回性能分析.兰州理工大学学报. 2008(03):117-121
    37 H. Shakir-Khalil. Full-Scale Tests On Composite Connections. Composite Construction in Steel and Concrete II. 1993:539-554
    38 H. Shakir-Khalil. Connection of Steel Beams to Concrete-Filled Tubes. 5th Int. Symp. on Tubular Structures, Nottingham, England, UK, 1993:195-203
    39 H. Shakir-Khalil. Finplate Connections to Concrete-Filled Tubes. 4th Int. Conf. on Steel-Concrete Composite Structure, Kosice, Slovakia, 1994:181-185
    40 H. Shakir-Khalil. Beam Connection to Concrete-Filled Tubes. 6th Int. Symp. on Tubular Structures, Monash, Australia, 1994:357-364
    41 Al-Rodan, Abdel-Kareem. T-Cleat Connections to Concrete-Filled Tubular Internal Columns. Journal of Structural Engineering. 2004, 130(5):725-731
    42陈洪涛,吴时适,肖永福,张金龙,吕明翔.钢管混凝土框架钢筋贯通式刚性节点的实验研究.哈尔滨建筑大学学报. 1999(02):21-25
    43吕西林,李学平.方钢管混凝土结构应用技术研究.建筑施工. 2000(03):48-54
    44李帼昌,赵兴,杨景利,聂尧,柏吉.钢筋贯通式钢管煤矸石混凝土节点的试验.沈阳建筑大学学报(自然科学版). 2009(04):699-703
    45石启印,陆鸣,李爱群,秦卫红.钢-混凝土组合梁与钢管混凝土柱节点的非线性有限元分析.建筑科学与工程学报. 2009(04):73-79
    46管品武,孟会英,刘立新,邢国兴.钢管混凝土柱新型节点受力性能试验研究.世界地震工程. 2001(04):148-153
    47韩小雷,陈晖,季静.穿心暗牛腿钢管混凝土柱节点的试验研究.华南理工大学学报(自然科学版). 1999, 27(10):96-101
    48季静,陈庆军,韩小雷.穿心暗牛腿钢管混凝土柱节点的模型试验研究.华南理工大学学报(自然科学版). 2001(07)
    49韩小雷,王永仪,季静,陈庆军.穿心暗牛腿钢管混凝土柱节点的试验研究.工业建筑. 2002(07)
    50韩小雷,贺锐波,季静.带环板的穿心暗牛腿钢管混凝土柱节点试验研究.工业建筑. 2005(11):21-23
    51季静,吴爱明,王燕珺,韩小雷.新型穿心暗牛腿钢管混凝土柱节点试验及分析.华南理工大学学报(自然科学版). 2008(03):114-120
    52梅力彪,周云,阴毅.穿心暗牛腿钢管混凝土柱单梁节点空间非线性有限元分析.工业建筑. 2004(09):81-83
    53梅力彪,周云,阴毅.钢管混凝土柱不同构造单梁穿心节点的有限元分析.钢结构. 2006(01):57-61
    54梅力彪,周云,张春梅.钢管混凝土柱单梁节点空间非线性有限元分析.哈尔滨工业大学学报. 2003(10):1267-1270
    55吴家平,钟善桐.钢管混凝土多层框架结构梁柱刚性节点的研究.哈尔滨建筑工程学院学报. 1986(04):1-15
    56周云,钟善桐.多层框架现浇梁与钢管混凝土柱节点的试验研究.中国黑龙江哈尔滨, 1991:页码
    57李至钧,阎善章.钢管混凝土框架梁柱刚性抗震节点的试验研究.工业建筑. 1994(02)
    58孙修礼. RC梁—钢管混凝土柱框架节点试验研究.河北理工大学学报(自然科学版). 2008(03):96-100
    59曲慧,陶忠,韩林海. CFST柱-RC梁钢筋环绕式节点抗震性能试验.工业建筑. 2006(11):27-31
    60钟善桐,刘志斌.钢管混凝土柱钢筋混凝土双梁节点的刚性研究.哈尔滨建筑大学学报. 2001(04):26-29
    61王文达,王旭生,于清.地下工程中钢管混凝土柱—RC梁节点选型及力学性能研究.铁道建筑. 2009(08):66-70
    62汤文锋,王毅红,史耀华.新型钢管混凝土节点的非线性有限元分析.长安大学学报(自然科学版). 2004(05):60-63
    63王毅红,汤文锋.新型钢管混凝土节点-芯钢管边柱节点的试验研究.工业建筑. 2005(01):59-61
    64王春英,王毅红,杜建军.芯钢管混凝土节点的芯管壁厚与节点承载力关系的数值分析.基建优化. 2006(02):95-97
    65杜建军,王毅红.方钢管混凝土结构芯钢管节点的有限元分析.基建优化. 2006(02):87-90
    66卢先军,王毅红,付敏,郭增辉.芯钢管连接的钢管混凝土半连通角节点非线性有限元分析.建筑结构. 2008(03):38-41
    67王秀丽,师伟,刘明路.方钢管混凝土柱十字型节点力学性能试验研究.甘肃科学学报. 2006(02):103-107
    68王秀丽,刘明路,师伟.新型方钢管混凝土柱与混凝土梁的节点破坏机理.兰州理工大学学报. 2006(06):131-135
    69王秀丽,黄明,师伟.方钢管混凝土柱与钢筋混凝土梁新型节点试验研究.中国河北保定, 2006:页码
    70刘明路,杜云晶,王秀丽.新型方钢管混凝土柱梁节点有限元分析.低温建筑技术. 2008(06):68-70
    71 S. M. Baldridge, F. K. Humay. Multi Hazard Approach to Progressive Collapse Mitigation. ASCE, New York, New York, 2005:222
    72 B. S. Institute. Structural Use of Concrete: Part 1:Code of Practice for Design and Construction, 1997.
    73 ASCE. Minimum Design Loads for Buildings and Other Structures, Asce-7, 2002. Reston, Va.
    74 U. S. G. S. GSA. Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects, 2003. Washington, D.C.
    75 D. O. Defense. Unified Facilities Criteria (Ufc): Design of Structures toResist Progressive Collapse, 2005. Washington, D.C.
    76 N. R. C. O. Canada. National Building Code of Canada, 1975. Ottawa, Canada.
    77 U. Unified Facilities Criteria. Draft Dod Minimum Antiterrorism Standards for Buildings, 2002. Defense D O,
    78 O. A. Mohamed. Progressive Collapse of Structures: Annotated Bibliography and Comparison of Codes and Standards. Journal of Performance of Constructed Facilities. 2006, 20(4):418-425
    79 R. S. Nair. Preventing Disproportionate Collapse. Journal of Performance of Constructed Facilities. 2006, 20(4):309-314
    80 J. Munshi. State-of-the-Art Vs. State-of-the Practice in Blast and Progressive Collapse Design of Reinforced Concrete Structures. ASCE, Nashville, Tennessee, USA, 2004:18
    81 C. Pearson, N. Delatte. Lessons From the Progressive Collapse of the Ronan Point Apartment Tower. ASCE, San Diego, California, USA, 2003:21
    82 P. P. Smith, M. P. Byfield, D. J. Goode. Building Robustness Research During World War Ii. Journal of Performance of Constructed Facilities. 2010, 1(1):59
    83 W. G. Corley, P. F. Mlakar Sr., M. A. Sozen, C. H. Thornton. The Oklahoma City Bombing: Summary and Recommendations for Multihazard Mitigation. Journal of Performance of Constructed Facilities. 1998, 12(3):100-112
    84 Z. P. Bazant, J. Le, F. R. Greening, D. B. Benson. What Did and Did Not Cause Collapse of World Trade Center Twin Towers in New York?. Journal of Engineering Mechanics. 2008, 134(10):892-906
    85 Z. P. Bazant, M. Verdure. Mechanics of Progressive Collapse: Learning From World Trade Center and Building Demolitions. Journal of Engineering Mechanics. 2007, 133(3):308-319
    86 A. S. Usmani, Y. C. Chung, J. L. Torero. How Did the Wtc Towers Collapse: A New Theory. Fire Safety Journal. 2003, 38(6):501-533
    87叶列平,陆新征,李易,梁益,马一飞.混凝土框架结构的抗连续性倒塌设计方法.建筑结构. 2010(02):1-7
    88梁益,陆新征,李易,叶列平.国外RC框架抗连续倒塌设计方法的检验与分析.建筑结构. 2010(02):8-12
    89陆新征,李易,叶列平,马一飞,梁益.钢筋混凝土框架结构抗连续倒塌设计方法的研究.工程力学. 2008(S2):150-157
    90钱稼茹,胡晓斌.多层钢框架连续倒塌动力效应分析.地震工程与工程振动. 2008(02):8-14
    91胡晓斌,钱稼茹.单层平面钢框架连续倒塌动力效应分析.工程力学. 2008(06):38-43
    92胡晓斌,钱稼茹.结构连续倒塌分析改变路径法研究.四川建筑科学研究. 2008(04):8-13
    93舒赣平,凤俊敏,陈绍礼.对英国防结构倒塌设计规范中拉结力法的研究.钢结构. 2009(06):51-56
    94 S. Marjanishvili, E. Agnew. Comparison of Various Procedures for Progressive Collapse Analysis. Journal of Performance of Constructed Facilities. 2006, 20(4):365-374
    95 S. M. Marjanishvili. Progressive Analysis Procedure for Progressive Collapse. Journal of Performance of Constructed Facilities. 2004, 18(2):79-85
    96 M. Tsai, B. Lin. Investigation of Progressive Collapse Resistance and Inelastic Response for an Earthquake-Resistant Rc Building Subjected to Column Failure. Engineering Structures. 2008, 30(12):3619-3628
    97 P. Ruth, K. A. Marchand, E. B. Williamson. Static Equivalency in Progressive Collapse Alternate Path Analysis: Reducing Conservatism while Retaining Structural Integrity. Journal of Performance of Constructed Facilities. 2006, 20(4):349-364
    98易伟建,何庆锋,肖岩.钢筋混凝土框架结构抗倒塌性能的试验研究.建筑结构学报. 2007(05):104-109
    99 J. Demonceau, J. Jaspart. Experimental and Analytical Investigations On the Response of Structural Building Frames Further to a Column Loss. ASCE, Austin, Texas, 2009:199
    100 C. Lee, S. Kim, K. Lee. Parallel Axial-Flexural Hinge Model for Nonlinear Dynamic Progressive Collapse Analysis of Welded Steel Moment Frames. Journal of Structural Engineering. 2010, 136(2):165-173
    101 Y. Alashker, S. El-Tawil, F. Sadek. Progressive Collapse Resistance of Steel-Concrete Composite Floors. Journal of Structural Engineering. 2010, 1(1):157
    102 S. Tan, A. Astaneh-Asl. Cable-Based Retrofit of Steel Building Floors to Prevent Progressive Collapse. Berkeley: University of California 2003
    103 M. Yu, X. Zha, J. Ye. The Influence of Joints and Composite Floor Slabs OnEffective Tying of Steel Structures in Preventing Progressive Collapse. Journal of Constructional Steel Research. 2010, 66(3):442-451
    104 M. Sasani, S. Sagiroglu. Progressive Collapse Resistance of Hotel San Diego. Journal of Structural Engineering. 2008, 134(3):478-488
    105 M. Sasani. Response of a Reinforced Concrete Infilled-Frame Structure to Removal of Two Adjacent Columns. Engineering Structures. 2008, 30(9):2478-2491
    106 T. Matthews, K. J. Elwood, S. Hwang. Explosive Testing to Evaluate Dynamic Amplification During Gravity Load Redistribution for Reinforced Concrete Frames. ASCE, Long Beach, California, USA, 2007:10
    107 B. I. Song, H. Sezen, K. A. Giriunas. Experimental and Analytical Assessment On Progressive Collapse Potential of Two Actual Steel Frame Buildings. ASCE, Orlando, Florida, 2010:107
    108 B. I. Song, H. Sezen. Evaluation of an Existing Steel Frame Building Against Progressive Collapse. ASCE, Austin, Texas, 2009:208
    109 S. Bae, R. A. LaBoube, A. Belarbi, A. Ayoub. Progressive Collapse of Cold-Formed Steel Framed Structures. Thin-Walled Structures. 2008, 46(7-9):706-719
    110 Y. Bao, S. Kunnath, S. El-Tawil. Development of Reduced Structural Models for Assessment of Progressive Collapse. ASCE, Austin, Texas, 2009:187
    111 K. Khandelwal, S. El-Tawil, F. Sadek. Progressive Collapse Analysis of Seismically Designed Steel Braced Frames. Journal of Constructional Steel Research. 2009, 65(3):699-708
    112 K. Khandelwal, S. El-Tawil, S. K. Kunnath, H. S. Lew. Macromodel-Based Simulation of Progressive Collapse: Steel Frame Structures. Journal of Structural Engineering. 2008, 134(7):1070-1078
    113 S. El-Tawil, K. Khandelwal, S. Kunnath, H. S. Lew. Macro Models for Progressive Collapse Analysis of Steel Moment Frame Buildings. ASCE, Long Beach, California, USA, 2007:66
    114 K. Khandelwal, S. El-Tawil. Progressive Collapse of Moment Resisting Steel Frame Buildings. ASCE, New York, New York, 2005:220
    115 D. Williams, E. B. Williamson. Approximate Analysis Methods for Modeling Structural Collapse. ASCE, Vancouver, BC, Canada, 2008:245
    116 H. Zhao, S. K. Kunnath, Y. Yuan. Simplified Nonlinear Response Simulationof Composite Steel-Concrete Beams and Cfst Columns. Engineering Structures. , In Press, Corrected Proof
    117 E. B. Williamson, D. J. Stevens. Modeling Structural Collapse Including Floor Slab Contributions. ASCE, Austin, Texas, 2009:226
    118 F. Sadek, S. El-Tawil, H. S. Lew. Robustness of Composite Floor Systems with Shear Connections: Modeling, Simulation, and Evaluation. Journal of Structural Engineering. 2008, 134(11):1717-1725
    119 L. Kwasniewski. Nonlinear Dynamic Simulations of Progressive Collapse for a Multistory Building. Engineering Structures. 2010, 32(5):1223-1235
    120马人乐,黄鑫,陈俊岭.钢框架梁柱节点在结构连续倒塌中的性能分析.青岛理工大学学报. 2009(02):31-35
    121 J. L. Liu. Preventing Progressive Collapse through Strengthening Beam-to-Column Connection, Part 1: Theoretical Analysis. Journal of Constructional Steel Research. 2010, 66(2):229-237
    122 J. L. Liu. Preventing Progressive Collapse through Strengthening Beam-to-Column Connection, Part 2: Finite Element Analysis. Journal of Constructional Steel Research. 2010, 66(2):238-247
    123 B. A. Izzuddin, A. G. Vlassis, A. Y. Elghazouli, D. A. Nethercot. Progressive Collapse of Multi-Storey Buildings Due to Sudden Column Loss -- Part I: Simplified Assessment Framework. Engineering Structures. 2008, 30(5):1308-1318
    124 A. G. Vlassis, B. A. Izzuddin, A. Y. Elghazouli, D. A. Nethercot. Progressive Collapse of Multi-Storey Buildings Due to Sudden Column Loss--Part Ii: Application. Engineering Structures. 2008, 30(5):1424-1438
    125 B. A. Izzuddin, D. A. Nethercot. Design-Oriented Approaches for Progressive Collapse Assessment: Load-Factor Vs Ductility-Centred Methods. ASCE, Austin, Texas, 2009:198
    126韩林海.钢管混凝土结构—理论与实践.科学出版社, 2004
    127中华人民共和国建设部. GB 50010-2002.混凝土结构设计规范.中华人民共和国建设部.
    128过镇海.混凝土的强度和本构关系:原理与应用.中国建筑工业出版社, 2004: 247
    129钟善桐.钢管混凝土结构.北京:清华大学出版社. 2003
    130 H. Yu, B. A. Izzuddin, X. Zha. Progressive Collapse of Steel-FramedBuildings: Influence of Modelling Approach. Advanced Steel Construction. 2010, 6(4):932-948
    131 B. A. Izzuddin. Nonlinear Dynamic Analysis of Framed Structures. Imperial College, University of London. 1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700