用户名: 密码: 验证码:
套建增层预应力钢骨混凝土框架抗震性能试验与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着建筑业的发展,我国的房屋建设已经从“以新建为主”过渡到“新建与维修、加固、改造相结合”的阶段。在现阶段,改造的重要内容之一是既有房屋的增层改造。既有房屋增层改造又分为直接增层、室内增层、套建增层和地下掏建增层。包括哈工大在内的相关单位已开展既有房屋套建增层研究多年。本文在已有研究的基础上继续就既有房屋套建增层问题开展以下研究工作:
     (1)针对施工过程中原房屋屋盖难以承担套建新增结构第一层楼盖流态混凝土自重及施工荷载这一问题,提出一种以内置H型钢预应力混凝土组合梁作为框架梁、以角钢混凝土柱作为框架柱的新型套建增层用框架结构。通过在H型钢下侧挂底模,并以底模为支撑设置侧模,可实现在施工过程中由钢梁承担楼盖流态混凝土及施工荷载,避免将其传递给原房屋屋盖,保证了原房屋的安全与正常使用。这种预应力钢骨混凝土框架还具有梁的内置H型钢及预应力束和喇叭管等方便从柱内置角钢间通过的优点。
     (2)这种新型框架的框架梁为内置实腹型钢的构件,框架柱为内置空腹角钢骨架的构件,其整体抗震性能未见相关报道。为此,完成了两榀剪跨比为5、轴压比为0.1的单层单跨型钢混凝土梁-角钢混凝土柱框架模型在水平低周往复荷载作用下的试验,获取了第一手资料。两榀框架模型在水平峰值荷载下等效粘滞阻尼系数分别为0.2和0.19,高于普通预应力钢筋混凝土框架,与梁柱均为实腹式构件的型钢混凝土框架接近,表明这种新型框架具有良好的抗震性能。
     (3)为全面获取这种新型框架的力学性能,采用有限单元法对单层单跨型钢混凝土梁-角钢混凝土柱框架进行参数分析,获得了各考察参数下框架的滞回性能,建立了单层单跨框架的荷载-位移恢复力模型,为结构的弹塑性动力分析提供参考。针对这种新型套建增层框架存在侧向刚度及质量沿房屋高度分布不均匀、在罕遇地震作用下抗倒塌能力缺乏研究等问题,对按相关规范和标准设计的,位于不同抗震设防区、不同场地类别、采用不同地震设计分组、具有不同底层层高和增层层数的套建增层预应力钢骨混凝土框架进行罕遇地震反应分析。获得了按现行标准的原则设计的套建增层框架在罕遇地震作用下的倒塌规律,并提出了防倒塌措施。
     (4)套建增层可采用(预应力)钢筋混凝土框架、巨型框架及(预应力)钢骨混凝土框架等多种结构,为方便建设单位和设计者决策,编制了“套建增层框架抗震性能决策系统”。该决策系统目前可对套建增层用(预应力)钢骨混凝土框架、(预应力)钢筋混凝土框架和巨型框架进行配筋设计及罕遇地震作用下的时程分析。采用该决策系统,结合具体工程实例,给出了三种套建增层框架的配筋设计、弹塑性验算及性能评价。
With the development of building industry, the stage of housing construction in China has been transmitted from new constrction to combination of new constrction, maintenance, strengthening and reconstruction. At this stage, an important task of reconstruction is adding storyes around exiting buildings. The construction of adding storyes around existing buildings includes adding storyes directly, inside, by jacketing structures, and underground with digging method. Relevant departments including HIT have been carrying on adding storyes by jacketing structures for many years. On the basis of existing research, this paper conducts some research of adding storyes by jacketing structures as follows:
     (1) In the construction of adding storyes around existing building, the roof of the existing building can not carry the fluid concrete weight of the first floor of the jacketing structure and construction load. Therefore, a new style of jacketing frame structure is proposed, making up of encased H-shape steel prestressed concrete composite beams and angle-steel concrete columns. By means of the method that the bottom formwork is hung to H-shape steel and the side formwork is installed on the bottom framework, the first floor fluid concrete weight of the jacketing structure and construction load can be carried by the steel beam. So, they can not be transferred to the roof of the existing building, and the safety and the normal use of the existing building are ensured. In addition, this composite beam has the advantage of making H shape-steel, prestressing tendons, and funnel-tube pass through the space of angle-steel in column conveniently.
     (2) The seismic performance of this new style of frame structure, making up of beams with encased solid steel and the columns with encased open-web angle-steel, is rarely seen in the reports. So two single-storye and single-bay frame specimens of steel reinforced concrete beam and angel-steel concrete column with shear span ratio 3, axial compression ratio 0.1 are tested under horizontal low cyclic loading, and the fist hand results are acquired. Equivalent adhesive damper coefficient under ultimate load of two specimens are 0.2 and 0.19 respectively, which is higher than that of prestressed concrete frame, and closer to that of steel reinforced concrete frame with encased solid steel beams and columns. It indicates that this style of frame structure has good seismic performance.
     (3) In order to achieve the mechanical performance of this new style of frame structure completely, parametric analysis is carried out on these single-storye and single-bay frames with steel reinforced concrete beam and angel-steel concrete column by finite element method, and hysteretic behavior of frames under different parameters is acquired. The hysteretic model for single-storye and single-bay frame is established, which provides reference for the elastic-plastic history analysis of structure. To the question of uneven distribution of lateral stiffness and mass along the vertical direction of building, and the lack of research on anti-collapse ability for jacketing structure, the jacketing prestressed steel reinforced concrete frames, which have different height of the ground floor and different numbers of the added stories, designed under different design earthquake group, situated in different type of venues, are analyzed with infrequent earthquake waves. The laws of collapse for jacketing frames designed according to current standards with infrequent earthquake waves are acquired, and some measures avoiding collapse are proposed.
     (4) (Prestressed) reinforced concrete frame, huge frame, and (prestressed) steel reinforced concrete frame could be used in jacketing frames for adding storyes. In order to make decision conveniently for construction units and designers, the program“decision-making system of seismic performance for jacketing structures for adding storyes”is developed. It can be used to design and take time history analysis under infrequent earthquake for (prestressed) reinforced concrete frame, (prestressed) steel reinforced concrete frame and huge frame for adding storyes. By using this decision-making system around a specific project, reinforcement design, plastic-elastic checking and evaluation for three types of jacketing structure is given.
引文
1郑文忠.黑龙江省科技攻关计划项目“既有房屋套建增层改造、功能改造及加固改造成套技术研究”可行性研究报告.哈尔滨工业大学土木工程学院. 2005:1~11
    2郑文忠.哈尔滨市科学技术计划项目“既有房屋套建增层改造成套技术”可行性研究报告.哈尔滨工业大学土木工程学院. 2005:1~15
    3韩选江.房屋增层改造外框体系设计方法研究.工业建筑. 2004,34(6): 4~12
    4程懋堃,寿光,张美励.北京日报社综合业务楼接层结构设计简介.建筑结构. 1993,(6):16~18
    5陈瑜,高红旗,周兴高.建筑改造中的预应力巨型框架设计与施工要点.建筑科学. 2000,16(3):36~39
    6来庆贵.哈医大实验楼套建增层选型与设计方法研究.哈尔滨工业大学硕士学位论文. 2004:1~66
    7郑文忠,刘铁,王英.哈尔滨制药六厂变电所扩建改造设计研究.哈尔滨工业大学学报. 2005,37(4):459~462
    8郑文忠,周威,田石柱.哈工大动力楼巨型框架增层结构设计与测试.建筑结构. 2004,(9):3~6
    9郑文忠,刘铁,谭军,解恒燕,李忠民.绥芬河青云市场套(扩)建工程结构设计方法与施工措施研究.土木工程学报. 2006,39(11):68~76
    10张春梅.外套框架增层改造设计方案研究.西安建筑科技大学硕士学位论文. 2003:35~47
    11王元清,宋锋,石永久,钱晓键.基础隔振钢结构跃层加层体系地震反应分析.工程抗震与加固改造. 2005,27(3):56~60
    12张鑫,吕西林.外套框架增层结构抗震性能的试验研究.工业建筑. 2006, 36(3):59~62
    13高剑平.砖混房屋整体式外套结构加层研究.哈尔滨工业大学博士学位论文. 2003:38~57
    14韩圣章,邱奎宁,杨建江.增层结构的抗震试验研究.建筑科学. 2001(6):29~32
    15文银平,俞永敏,外套增层协同减震结构.华中理工大学学报. 2000,28 (4): 106~108
    16刘铁.套建增层框架结构房屋抗震设计与施工方法研究及实践.哈尔滨工业大学博士学位论文, 2006:14~35
    17孙绪杰.用巨型框架结构套建增层的房屋设计与施工方法研究.哈尔滨工业大学博士学位论文, 2009:33~63
    18 W. Z. Zheng, X. D. Liu, G. M. Zhang, B. Y. Zhang. Experimental Research on Ultimate Bearing Capacity of Grouted-round-Steel-Tube N-joint. Journal of Harbin Institute of Technology. 2007,14(3):322~329
    19 W. Z. Zheng and J. Ji. Dynamic Performance of Angle-steel Concrete Columns under Cyclic Loading-I: Experimental Study. Earthquake Engineering and Engineering Vibration. 2008,(1):67~75
    20 W. Z. Zheng and J. Ji. Dynamic Performance of Angle-steel Concrete Columns under Cyclic Loading-II: Parametric Study. Earthquake Engineering and Engineering Vibration. 2008,(2):137~146
    21刘军进,吕志涛.预应力钢骨混凝土梁的理论分析和计算方法研究.工程力学. 2000(增刊): 175~181
    22傅传国,李玉莹,梁书亭.预应力型钢混凝土简支梁受弯性能试验研究.建筑结构学报. 2007,28(3):62~73
    23梁晶.预应力型钢混凝土梁的理论分析和计算方法研究.西安建筑科技大学硕士学位论文. 2006.3:17~36
    24李峰,秦士红,杨波等.预应力钢骨混凝土梁受弯性能试验研究.中国预应力技术五十年暨第九届后张预应力学术交流会论文. 2006:120~126
    25薛伟辰,杨枫,苏旭霖,陆平.预应力钢骨混凝土梁低周反复荷载试验研究.哈尔滨工业大学学报. 2007,39(8):1185~1190
    26 J. G. Nie; C. S. Cai, T. R. Zhou; and Y. Li. Prestressed Composite Beams Steel–Concrete Composite Beams Considering Slip Effect. Journal of Structural Engineering, ASCE. 2007,133(4):530~540
    27 R. S. Regan, N. W. Krahl. Behavior of Prestressed Composite Beams. Journal of Structural Engineering, ASCE. 2003,93(6):87~108
    28 H. Saadatmanesh, P. Albrechl, and B. M. Ayywb. Experimental Study of Prestressed Composite Beams. Journal of Structural Engineering, ASCE. 2004,115(9):2364~2381
    29陆平,苏旭霖,薛伟辰.预应力钢骨混凝土梁工程应用及施工监测分析.结构工程师. 2005,21(2):70~74
    30 R. P. Johnson. Composite Construction of Steel and Concrete Columns, Brigges. The Second Edition, 2002:133~242
    31 R. W. Furlong. Steel-concrete Composite Column. Journal of Structural Engineering, ASCE. 1972, 61(12):1042~1049
    32 T. K. Lee and A. D. E. Pan. Analysis of Composite Beam-columns under Lateral Cyclic Loading. Journal of Structural Engineering, ASCE. 2001,127(2):186~193
    33赵鸿铁.钢与混凝土组合结构.科学出版社. 2001:98~114
    34白国良,石启印.空腹式型钢砼框架柱恢复力性能.西安建筑科技大学学报. 1999,31(1):32~39
    35石晶,白国良.空腹式型钢混凝土框架柱的恢复力特性.西安公路交通大学学报. 2000,2(4):94~97
    36赵世春.空腹桁架式型钢混凝土框架柱抗震性能的试验.工业建筑. 2007,(37)2:93~95
    37周颖,吕西林.空腹式劲性钢筋混凝土柱的恢复力模型研究.结构工程师. 2004,20(6):59~65
    38计静.套建增层预应力钢骨混凝土框架抗震性能与设计方法研究.哈尔滨工业大学博士学位论文. 2008:16~91
    39 A. K. Basu. Computation of Failure Loads of Composite Columns. Proceedings Institution of Civil Engineers, March, 1967:305~312
    40 K. S. Virdi, P. J. Dowling. A United Design Method for Composite Columns. CESUC Report CCU, Imperial College, London, 1975:251~293
    41 C. W. Roeder. Composite and Mixed Construction. NewYork: ASCE. 1984:115~168
    42 W. P. Moore. Composite Construction in Steel and Concrete. New York: ASCE, 1987:652~825
    43 ACI. Building Code Requirements for Reinforced Concrete (ACI318-89). American Concrete Institute, Detroit, Michigan, 1989:133~197
    44黄雄军.劲性混凝土结构抗震性能研究.西南交通大学硕士学位论文, 1996:37~127
    45薛建阳,赵鸿铁.型钢混凝土框架模型的弹塑性地震反应分析.建筑结构学报. 2000,21(4):28~33
    46薛伟辰,胡翔.钢骨混凝土框架滞回分析研究.地震工程与工程振动, 2005,5(6):76~80
    47傅传国,娄宇.预应力型钢混凝土结构试验研究及工程应用. 2007: 86~122
    48傅传国,李玉莹等.预应力和非预应力型钢混凝土框架受力及抗震性能试验研究.防灾减灾工程学报. 2007(增刊):372~377
    49唐兴荣,何葆林.空间钢构架混凝土框架结构抗震性能试验研究和设计建议,建筑结构学报. 2009,30(3):45~52
    50唐昌辉.无粘结预应力混凝土梁和型钢混凝土柱的试验与研究.湖南大学博士学位论文, 2003:50~82
    51李玉荣.型钢混凝土梁式转换结构的试验和理论研究.浙江大学博士学位论文, 2005:15~48
    52 H. Muguruma. Study on Hysteretic Behavior of Statically Indeterminate Prestressed Concrete Frame Structure Subjected to Reversed Cyclic Lateral Load. CEB Bulletin D’information. 1979, 132 (4): 37~44
    53 K. Nakano. Experiments on the Behavior of Prestressed Concrete four storied model structure under lateral force. Proc. 3rd WCEE, 1965, 3:572~590
    54 C. C. Chou, C. M. Uang, Cyclic Performance of a Type of Steel Beam to Steel-encased Reinforced Concrete Column Moment Connection. Journal of Constructional Steel Research 2002, 58(5):637~663
    55 T. M. Shiekh. Moment Connections between Steel Beams and Concrete Columns. The University of Texas, 1987:21~54
    56 T. M. Shiekh, G. G. Deierlein. Beam-column moment connection for composite frames: Part 1. Journal of Structural Engineering, ASCE. 1989, 115(11): 2858~2876
    57 G. G. Deierlein, T. M. Shiekh. Beam-column moment connection for composite frames: Part 2. Journal of Structural Engineering, ASCE. 1989, 115(11): 2877~2896
    58 JGJ101-96.建筑抗震试验方法规程.北京:中国建筑工业出版社. 1996: 11~17
    59吕志涛,薛伟辰.预应力混凝土门架及排架结构抗震性能研究.土木工程学报. 1996,25(5):57~62
    60李作勤.预应力混凝土框架抗震性能试验研究及分析.重庆建筑大学硕士学位论文.2006:17~68
    61朱伯芳.有限单元法原理与应用.中国水利水电出版社. 2000:1~31
    62陆新征,叶列平,缪志伟.建筑抗震弹塑性分析—原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践. 2009:1~152
    63王文达.钢管混凝土柱-钢梁平面框架的力学性能研究.福州大学博士学位论文. 2006:135~176
    64 A. Parducci and M. Mczzi. Nonsymmetric Response of Symmetric R/C Structures to Biaxial Seismic Inputs. Seventh World Conference on Earthquake Engineering, 1980,7:984~997
    65 ABAQUS Theory Manual. ABAQUS, Inc. 2006:176~294
    66 J. Xu, J. Daniel Dolan. Development of a Wood-Frame Shear Wall Model in ABAQUS. Journal of Structural Engineering, ASCE. 2009, 135(8):977~984
    67 ABAQUS Analysis User's Manual. ABAQUS, Inc. 2006:88~202
    68 W. F. Chen. Plasticity in Reinforced Concrete. McGran-Hill Book Company, New York, 1982:95~168
    69 W. K. Willam, E. P. Warnke. Constitutive Models for the Triaxial Behavior of Concrete. IABSE Proceeding. 1975,19:36~49
    70 Z. P. Bazant, P. D. Bhat. Endochronic Theory of Inelasticity and Failure of Concrete. Journal of Engineering Mechanics, ASCE. 1976,102(4):701~722
    71 Z. P. Bazant, C. L. Shieh. Hystertic Fracturing Endochronic Theory for Concrete. Journal of Engineering Mechanics, ASCE. 1980,116(5):929~950
    72 K. E. Loland. Continuum Damage Model for Load Response Estimation of Concrete. Cement and Concrete Research. 1980,1:395~402
    73 J. W. Ju. On Energy-based Coupled Elastoplastic Damage Theories: Constitutive Modeling and Computational Aspects. International Journal of Solids Structures. 1989,25(7):803~833
    74 J. Lemaitre. Coupled Elasto-plasticity and Damage Constitutive equation. Computer Methods in Applied Mechanics and Engineering. 1985,51:31~49
    75 X. Y. Tao, D. V. Phillips. A Simplified Isotropic Damage Model for Concrete under Bi-axial Stress States. Cement & Concrete Composites. 2005,27: 716~726
    76 S. Yazdani, H. L. Schreyer. Combined Plasticity and Damage Mechanics Model for Plain Concrete. Journal of Engineering Mechanics ASCE. 1990, 116(7): 1435~1450
    77 J. Lubliner, J. Oliver, S. Oller, E. Onate. A Plastic-Damage Model for concrete. International. Journal of Solids and Structures. 1989,25(3):299~326
    78 J. W. Ju. On Energy-based Coupled Elastoplastic Damage Theories: Constitutive Modeling and Computational Aspects. International Journal of Solids and Structures. 1989,25(7):803~833
    79 P. Grassl, M. Jirasek. Damage-plastic Model for Concrete Failure. International Journal of Solids and Structures, 2006,43:7166~7196
    80 R. Faria, J. Oliver and M. Cervera. A Strain-based Plastic Viscous-damage Model for Massive Concrete Structures. International Journal of Solids and Structures. 1998, 35(14):1533~1558
    81 U. Cicekli, G. Z. Voyiadjis, R. K. Abu Al-Rub. A Plasticity and Anisotropic Damage Model for Plain Concrete. International Journal of Plasticity. 2007, 23:1874~1900
    82 E. Hognestad, N. W. Hanson, D. McHenry. Concrete Stress Distribution in Ultimate Strength Design. ACI Journal, Proceeding. 1955,52(4):455~479
    83 L. P. Saenz. Discussion of Equation for the Stress-strain Curves of Concrete by Desayi and Krishnan. ACI Journal. 1964, 61(9):381~393
    84过镇海.混凝土的强度和变形-试验基础和本构关系.清华大学出版社. 1997:25~63
    85 GB50010-2002混凝土结构设计规范.中国建筑工业出版社. 2002:41~42
    86 A. Hillerborg, M. Modeer, P. E. Petersson. Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracturemechanics and Finite Elements. Cement and Concrete Research. 1976,6:773~782
    87江见鲸,陆新征,叶列平.混凝土结构有限元分析.清华大学出版社. 2005:44~53
    88 J. Lee, G. L. Fenves. Plastic-Damage Model for Cyclic Loading of Concrete Structures. Journal of Engineering Mechanics, 1998,124(8):892~900
    89 D. C. Drucker, and W. Prager. Soil Mechanics and Plastic Analysis or Limit Design. Quarterly of Applied Mathematics. 1952,10:157~165
    90雷拓,钱江,刘成清混凝土损伤塑性模型应用研究.结构工程师. 2008, 24(2):22~27
    91 J. Bauschinger. Variations in the Elastic Limit of Iron and Steel. Journal of Iron and Steel Inst. 1887, 1:442~444
    92 K.W. Karren, Corner Properties of Cold-formed Steel Shapes. Journal of Structural Engineering, ASCE. 1967,93(ST1):401~432
    93 N. Abdel-Rahman, and K. S. Sivakumaran, Material Properties Models for Analysis of Cold-formed Steel Members. Journal of Structural Engineering, ASCE. 1997,123(9):1135~1143
    94 W. Ramberg, and W. R. Osgood. Description of Stress-strain Curves by Three Parameters. Technial note 902, National Advisory Committee on Aeronautics, Wahsington, D. C.1943:21~36
    95张昊宇,郑文忠. 1860级低松弛钢绞线高温下力学性能.哈尔滨工业大学学报. 2007,39(6):861~865
    96 H. Shakir-Khalil and A. Al-Rawdan. Experimental Behavior and Numerical Modeling of Concrete-filled Rectangular Hollow Section Tublar Columns. Proceedings of Engineering Foundation Conference 1997, ASCE, New York, USA. 1997:222~235
    97 S. P. Schneider. Axially Concrete-filled Steel Tubes. Journal of Structural Engineering, ASCE. 1998,124(10):1125~1138
    98 E. Ellobody, B. Young. Design and Behavior of Concrete-filled Cold-formed Strainless Steel Tube Columns. Engineering Structures. 2006,28(5):716~728
    99 A. H. Varma. Seismic Behavior, Analysis, and Desin of High Strength Square Concrete Filled Steel Tube (CFT) Columns. Doctoral Dissectation of Lehigh University, 2000:34~110
    100李亮.部分预应力混凝土受弯构件恢复力模型研究.同济大学硕士学位论文. 2007:18~32
    101陈亚亮.钢纤维预应力混凝土扁梁框架抗震性能研究.福州大学博士学位论文. 2005:80~116
    102郭楠,郑文忠.板柱结构抗震性能研究.沈阳建筑大学学报. 2008,24(5): 729~736
    103庄茁,张帆,芩松等. ABAQUS非线性有限元分析与实例.科学出版社. 2005:210~230
    104 T. J. Wang, T. T. C. Hsu. Nonlinear Finite Element Analysis of Concrete Structures Using New Constitutive Models. Computers and Structure. 2001,79:2781~2791
    105 S. Mazzoni, F. McKenna, M. H. Scott, G. L. Fenves, et al. Open System for Earthquake Engineering Simulation User Command-Language Manual. University of California. Berkeley, 2006:14~105
    106 J. E. Rodgers, S. A. Mahin. Effects of Connection Fractures on Global Behavior of Steel Moment Frames Subjected to Earthquakes. Journal of Structural Engineering, ASCE. 2006,132(1):78~88
    107 R. Park, M. J. N. Priestlely and W. D. Gill. Ductility of Square-confined Concrete Columns. Journal of Structural Division, ASCE. 1982,108(4): 929~950
    108 B. D. Scott, R. Park and M. J. N. Priestley. Stress-strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates. ACI Journal. 1982,79:13~27
    109 I. D. Karsan, J. O. Jirsa. Behavior of Concrete under Compressive Loading. Journal of Structural Division, ASCE. 1969,95:2543~2563
    110 A. Singh, K. H. Gerstle, etal. The Behavior of Reinforcing Steel under Reversal Loading. Journal of ASTM Materials Research and Standards, 1965,5(1):12~17
    111 G. L. Agrawl, L. G. Tulin, K. H. Gerstle. Response of Doubly Reinforced Concrete Beams to Cyclic Loading. Journal of ACI. 1965,62(7):823~836
    112 D. C. Kent and R. Park. Cyclic Load Behavior of Reinforcing Steel. Strain. 1973,9(3): 98~103
    113 R. W. G. Blakeley, R. Park. Prestressed Concrete Sections with Cyclic Flexure, Journal of Structural Division, ASCE. 1973, 99(8): 1717~1742
    114陈学伟,何伟球.基于OpenSEES的预应力混凝土构件弹塑性分析.工业建筑, 2007(增刊)
    115郑文忠,王英,预应力混凝土房屋结构设计统一方法与实例.黑龙江科学技术出版社, 1998:33~50
    116 P. C. Jinnigs. Periodic response of a general yielding structure.Journal of Engineering Mechanical Division, ASCE. 1964, 90(EM2):131~165
    117陈富生,邱国桦,范重.高层建筑钢结构设计(第二版).中国建筑工业出版社, 2004:57~59
    118 R. E. Valles, A. M. Reinhorn, S. K. Kunnath, et al. IDARC 2D Version 4.0: A Program for the Inelastic Damage Analysis of Building. Buffalo: National Center for Earthquake Engineering Research. State University of New York. 1996: 28~131
    119 J. Penizen. Dynamic Response of Elasto-plastic Frames. Journal of Structural Division, ASCE, 1962,88(7):1322~1340
    120 R. W. Clough, S. B. Johnston. Effect of Stiffness Degradation on Earthquake Ductility Requirements. Proc. 2th Jappan Earth. Engng. Symp, Tokyo, Japan. 1966:1971~1983
    121 T. Takeda, M. A. Sozen and N. N. Nielson. Reinforced Concrete Response to Simulated Earthquakes. Journal of Structural Division, ASCE. 1970,96 (12): 2557~2572
    122 M. Saiidi. Hysteresis Models for Reinforced ConcreteJ. Journal of Structural Division, ASCE. 1982, 108(5):1077~1087
    123 Y. J. Park, A. M. Reinhorn and S.K.Kunnath, IDARC: Inelastic Damage analysis of Reinforced Concrete Frame-shear-wall Structures. Technical Report NCEER-87-0008. State University of New York at Buffalo, 1987:16~95
    124沈聚敏.钢筋混凝土结构非线性地震反应分析与倒塌评估,中国地震工程研究进展.地震出版社, 1992:164~177
    125秦为红,惠卓,吕志涛.巨型框架结构的设计方法初探.建筑结构, 2001, 31(7):43~47
    126黄雄军,夏招广.劲性混凝土梁及钢筋混凝土柱构成的柱边节点锚固及抗震性能研究.西南交通大学学报. 1996,31(4):339~406
    127梁柱节点专题组.劲性钢筋混凝土梁柱节点性能及受剪承载力,混凝土研究报告选集(3).中国建筑工业出版社, 1994
    128 YB 9082-97钢骨混凝土结构设计规程.中国建筑工业出版社.1997:55~63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700