用户名: 密码: 验证码:
网络化结构实验室NetSLab的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在结构工程与地震工程领域,结构试验占有相当重要的角色。由于地震机制和结构抗震性能的复杂性,结构试验成为研究人员了解结构抗震性能最直接且有效的方法。随着现代工程结构日趋复杂化和大型化,现有的结构实验室,甚至是大型结构实验室,由于资源有限,都逐渐面临着无法满足大规模复杂试验要求的挑战。互联网的快速发展为此提供了新的机遇。基于互联网的通讯技术可以为异地实验室之间提供数据传输和共享的功能及远程控制和反馈的通讯手段。
     本文旨在利用高速发展的互联网技术,通过网络实时传输控制和反馈数据,将异地的实验室连接起来,形成网络化结构实验室,开展远程协同试验研究工作,达到试验资源和科技资源共享,以及提高综合试验能力的目的。结合国家自然科学重点资助课题“现代结构拟动力地震模拟协同试验方法与系统”(50338020)及“大型建筑及桥梁结构动力损伤过程的实时混合试验方法与技术”( 90715036),对基于网络的结构远程协同试验理论和方法进行了研究,主要成果如下:
     1、完善了网络化结构实验室的概念,进一步构建了网络化结构实验室NetSLab系统的框架。NetSLab系统包含一个相对独立的网络通讯平台和基于该网络通讯平台开发的各种远程应用程序两部分。应用程序提供了与各种不同试验设施控制系统的连接。
     2、从远程试验的角度出发,进一步开发了基于网络的NetSLab通讯平台,它能够在远程结构试验室之间通过互联网传送控制和反馈数据。NetSLab通讯平台提供了功能强大的底端通讯能力,采用统一的动态数据包和通用的数据通讯代理,使得平台数据通讯简洁可靠,管理维护方便,并可由用户进一步开发。
     3、针对国内网络层次复杂、防火墙众多等情况,提出了利用通讯平台进行远程协同试验的两种通信框架,使NetSLab得以推广应用;建立了试验网上发布系统,使得试验进程和结果可以通过Web浏览的方式为更多的研究人员提供服务;介绍了基于NetSLab通讯平台的编程方法,供远程试验程序开发者参考。
     4、结合大型复杂结构远程协同试验的需要,构建了一个基于客户机/服务器概念的框架体系,用于开发标准化的开放式远程协同试验应用程序。应用程序包括控制中心、真实试验机、虚拟试验机和远程观察器四个模块。控制中心相当于服务器,负责整个试验进程的控制及参与者之间的数据通讯,并存储或公布试验结果;真实试验机是指利用试验设备获取试验子结构的恢复力及其它试验结果;虚拟试验机不连接试验设备进行真实试验,而是利用计算机模拟子结构的非线性特性;远程观察器是提供对远程试验感兴趣的人实时获得试验结果的功能,它不能干预试验进程,也不影响试验结果。
     5、针对不同的结构模型,采用Visual Basic语言开发了多个远程协同拟动力试验程序,包括单层结构远程协同试验程序SDOF-module、多层剪切型结构远程协同试验程序MDOF-module及考虑扭转情况的远程协同试验程序Torsion-module。分别用于单层和多层剪切型结构地震反应分析及单层框架单向偏心的地震扭转反应分析。通过在湖南大学、哈尔滨工业大学、清华大学、南加州大学之间开展的多个结构远程协同试验,验证了本文开发的远程应用程序的有效性,同时检验了NetSLab系统的网络协作能力。
     6、实现了网络化结构实验室NetSLab系统与目前常用拟动力试验设备MTS系统的接口,包括利用MTS动态链接库开发了标准的ActiveX控件,利用MTS提供的硬件资源外接采集卡实现接口等。
     7、针对网络化结构实验室NetSLab系统分析功能不足的问题,利用子结构分析技术,建立了NetSLab系统与加州大学伯克利分校的有限元程序OpenSees的接口,进一步开发了混合模拟系统。通过虚拟试验验证了该混合模拟系统的可靠性。
     总之,本文的研究目标是利用现有结构试验设施的局域和广域的联网,提出相应的试验理论和方法,建立一个通用开放及共享的网络化结构试验系统,在更广的范围内实现协同结构试验。
In the field of Earthquake Engineering, structural experiments are still important means for understanding behaviors of structures and their components. Due to the complexity of earthquake mechanism and the highly nonlinear performance of structures under extreme earthquake loading, experimental research has been a direct and effective way to study seismic performance of structures. As the scale and complexity of modern engineering structures increase, existing structural laboratories, even those large-scale ones, are facing increasing difficulties to satisfy various types of demands of experiments with their limited resources. The rapid development of internet technology provides a new opportunity. The mechanics of communication based on network can apply not only the function of data communication and sharing, but also real-time control and feedback among distributed laboratories.
     With the rapid development of internet technology, a networked structural laboratory is established through real-time control and feedback via network to connect distributed laboratories aiming at more efficient sharing of the resources and advance capability. Sponsored by the National Natural Science Foundation under the National Key Project“The modern method and system for remote pseudo dynamic testing of structures under earthquake simulation”(50338020) and“Real-time hybrid testing method and technology of dynamic damage on large-scale building and bridge”(90715036), some studies on the method for remotely collaborative hybrid dynamic testing of substructures and structural elements via network have been carried out. The main research achievements are summarized as followings:
     1. The concept of networked structural laboratory is further advanced and the framework of the networked structural laboratory system NetSLab is built. The system is composed of a relatively independent network communication platform and various application programs developed based on this network communication platform. Application programs could provide the interface with various different control systems of testing facility.
     2. From the remote testing point of view, a network communication platform NetSLab which is capable of transferring control and feedback data and signals among remotely located structural testing laboratories connected by Internet and facilitating data communication through firewall and network address translation is further developed. The communication platform NetSLab can apply powerful communication capacity. Dynamic unified data packet and generalized data communication agency are introduced to make data communication in a testing procedure become clear and simple, management and maintenance convenient, and further development by users.
     3. Aiming at the complicated network and commonly deployed firewalls in domestic, two communication frames are proposed for remotely collaborative tests to make sure NetSLab could apply widely. An on-line issue system is built to make testing process and result share with more researchers in the world via Web. The programming method based on NetSLab is introduced as a sample to remotely testing programmer.
     4. A framework based on the client/server concept is proposed for developing robust standardized application programs for remotely collaborative testing of large-scale structure systems. All the application programs are composed of four modules, named as control center, physical tester, virtual tester, and remote observer. ControlCtr plays as the server of the platform. It organizes the testing procedure, controls the testing progress and data communication among all participants, and stores or publishes the testing results. PhysicalTester operates the actual testing equipment to generate testing results. VirtualTester uses computation to provide restoring force of substructures instead of physical equipments. Observer monitors the process and shares the testing results without any interference of the test processing. It can join or quit a test at any time during testing.
     5. Aiming at different structural models, several remotely collaborative hybrid dynamic testing programs are developed with Visual Basic program language, such as SDOF-module for remotely collaborative testing of single story structures, MDOF-module for multiple degree of freedom system of shear type frames and Torsion-module for remotely collaborative testing considering torsional effects. Successful applications of several structural experiments among Hunan University, Tsinghua University, Harbin Institute of Technology and University of Southern California have verified the validity and efficiency of application programs and the collaborative capability of NetSLab.
     6. The communication interface between NetSLab and MTS system which is widely used in structural testing is realized by many ways, such as developing standard ActiveX control through Dynamic Link Library and making use of acquisition board control.
     7. Aiming at the lack of analysis function in networked structural laboratory system NetSLab, the communication interface between NetSLab and the finite element software OpenSees developed by University of California at Berkeley has realized to develop a hybrid simulation system using substructure technology. Several validated simulation tests have been conducted.
     In summary, the objective of this research work is to build an open and shared networked testing system which would allow for more collaborative hybrid tests through linking exiting facilities via Intranet or Internet and corresponding methods are proposed.
引文
[1] Pauschke J, Anderson T L, Goldstein S N, et al. Construction status of the GeorgeE. Brown, Jr. network for earthquake engineering simulation. In: Proceedings of the Seventh U.S. National Conference on Earthquake Engineering. Boston, 2002, 33-35
    [2] Reitherman K R. Development of the network for earthquake engineering simulation. In: Proceedings of 2003 Pacific Conference on Earthquake Engineering. New Zealand, 2003, 178-186
    [3] Buckle I, Reitherman R. The consortium for the George E. Brown, Jr. network for earthquake engineering simulation. In: Proceedings of 13th World Conference on Earthquake Engineering. Vancouve, 2004, Paper No. 4016
    [4] NEES. Network for earthquake engineering simulation. http://www.nees.org/, 2004-05-08
    [5] EUROSEISMICNET. European network for seismic risk mitigation. http://www.forum.e-core.org, 2000-08-16
    [6] Yang Y S, Wang K J, Wang S J, et al. Networked pseudo-dynamic testing partⅠ: database approach. Earthquake Engineering and Structural Dynamics, 2007, 36: 2291-2306
    [7] Wang S J, Wang K J, Yang Y S, et al. Networked pseudo-dynamic testing partⅡ: application protocol approach. Earthquake Engineering and Structural Dynamics, 2007, 36: 2307-2323
    [8] Kim J K. KOCED collaboratory program. In: Proceedings of ANCER Annual Meeting: Networking of Young Earthquake Engineering Researchers and Professionals. Hawaii, 2004, 658-674
    [9] Ohtani K, Ogawa N, Katayama T, Shibata H. Project“E-Defense”(3-D Full-Scale Earthqyake Testing Facility). In: Proceedings of Joint NCREE/JRC Workshop on International Collaboration on Earthquake Disaster Mitigation Research. Taipei, 2003, 321-343
    [10] NZNEES. New zealand network for earthquake engineering simulation. http://www.nznees.auckland.ac.nz, 2006-11-17
    [11] UK-NEES. The UK network for earthquake engineering simulation. http://research.cen.bris.ac.uk/uknees, 2008-09-27
    [12]茹继平,肖岩.美国地震工程模拟网系统NEES计划及在我国实现远程协同结构试验的设想.建筑结构学报, 2002, 23(6): 91-94
    [13]肖岩,易伟建,郭玉荣等.结构远程协同试验的探讨(特邀报告).见:第12届全国结构工程学术会议论文集.北京:清华大学出版社, 2003, 102-106
    [14] Xiao Y, Hu Q, Guo Y R, et al. Development of a network platform for remote hybrid dynamic testing. In: 13th world conference on earthquake engineering. Vancouver, 2004, Paper No.3048
    [15] Xiao Y, Hu Q, Guo Y R, et al. Networked structural laboratories-NetSLab. In: Proceedings of the first international conference on advances in experimental structural engineering. Japan: Nagoya University Aichi Institute of Technology, 2005, 441-448
    [16]肖岩,胡庆,郭玉荣等.结构拟动力远程协同试验网络平台的开发研究.建筑结构学报, 2005, 26(3): 122-128
    [17] Xiao Y, Hu Q, Guo Y R, et al. Network platform for remote hybrid dynamic testing and shared use of laboratories. Progress in natural science, 2005, 15(12):1135-1142
    [18] Sugiura K, Nagata N, Suzuka Y, et al. Internet related structural testing. In: Proceedings of the Eighth KKNN Seminar on Civil Engineering. Singapore, 1998, 219-224.
    [19] Yun C B, Lee I W, Part D U, et al. Remote parallel pseudo-dynamic testing using Internet on base-isolated bridge. In: Proceedings of the 13th KKNN Symposium on Civil Engineering. Taipei, 2000, 87-92
    [20] Watanabe E, Sugiura K, Nagata K. Parallel computing for non-linear response of large structural systems. In: Proceedings of the 6th NTU-KU-KAIST Tri-lateral Seminar/Workshop on Civil Engineering. Taejon, 1996, 143-148
    [21] Watanabe E, Sugiura K, Nagata K, et al. Development of parallel pseudo-dynamic testing system and its verification. In: Proceedings of the 10th Earthquake Symposium of Japan. Japan, 1998, 2205-2210
    [22] Watanabe E, Yun C B, Sugiura K, et al. On-line interactive testing between Kyoto university and KAIST. In: Proceedings of the 14th KKNN Seminar on Civil Engineering. Kyoto, 2001, 369-374
    [23] Spencer B F, et al. NEESGRID: A distributed collaboratory for advanced earthquake engineering experiment and simulation. In: Proceedings of 13th World Conference on Earthquake Engineering. Vancouve, 2004, Paper No.1674
    [24] Tom Prudhomme. NEESgrid system overview. In: Technical report of NEESgrid.USA: National Center for Supercomputing Applications, 2002, 1-12
    [25] Spencer B F, et al. The MOST experiment: earthquake engineering on the grid. In: Technical Report NEESgrid-2004-26. USA: NEESgrid team, 2004, 1-13
    [26] Narutoshi Nakata, Guangqiang Yang, Billie F, et al. System requirements for mini-most experiment. In: Report of NEESgrid. Urbana: University of Illinois at Urbana-Champaign, 2003, 1-12
    [27] Gilberto M, Bozidar S, Jason H, et al. Fast hybrid simulation with geographically distributed substructures. In: Proceedings of the First International Conference Advances in Experimental Structural Engineering. Japan, 2005, 449-456
    [28] Gilberto M, Bozidar S, Jason H, et al. Hybrid seismic response simulation on a geographically distributed bridge model. Journal of Structural Engineering, 2008, 134(4):535-543
    [29] Stojadinovic B, Mosqueda G, Mahin S A. Event-driven control system for geographically distributed hybrid simulation. Journal of Structural Engineering, 2006, 132(1): 68–77
    [30] Spencer B F, et al. Multi-site soil-structure-foundation interaction test (MISST). http://www.nees.lehigh.edu/projects/misst, 2005-04-10
    [31] Mahin A S. International hybrid simulation of tomorrow’s steel braced frame. http://research.eerc.berkeley.edu/projects/tomorrows_bracedframes/cbf1/Welcome.html, 2009-10-22
    [32] Fenves G L. An object-oriented software environment for collaborative network simulation. In: 13th world conference on earthquake engineering. Vancouver, 2004, Paper No.1492
    [33] McKenna F. Object-oriented finite element analysis: frameworks for analysis, algorithms and parallel computing: [dissertation]. Berkeley: University of California, 1997, 10-12
    [34] OpenSees. Open System for Earthquake Engineering Simulation. http://opensees.berkeley.edu, 2008-02-19
    [35] Tony Yang. OpenSees Navigator. http://peer.berkeley.edu/OpenSeesNavigator, 2008-11-16
    [36] Schellenberg A, Mahin S A, Fenves G L. Application of an experimental software framework for international hybrid simulation. In: Proceddings of 4th International Conference on Earthquake Engineering. Taiwan, 2006, Paper No. 261
    [37] Takahashi Y , Fenves G L. Software framework for distributed experimental–computational simulation of structural systems. Earthquake Engineering and Structural Dynamics, 2005, 35: 267-291
    [38] Kwon S O, Nakata N. A framework for multi-site distributed simulation and application to complex structural systems. Journal of Earthquake Engineering, 2005, 9(5):741-753
    [39] Yang Y S, Wang S J, Wangk J, et al. ISEE: Internet-based Simulations for earthquake engineering, Part I: the database approach. In: 13th world conference on Earthquake Engineering. Canada, 2004, Paper No.1910
    [40] Wang K J, Wang S J, Yang Y S, et al, ISEE: Internet-based simulations for earthquake engineering, Part II: the application protocol approach. In: 13th world conference on Earthquake Engineering. Canada, 2004, Paper No.1548
    [41] Tsai K C, Huang Y C. Experimental responses of large scale buckling restrained braced frame. In: CEER Report/R91. Taiwan: National Center for Research on Earthquake Engineering, 2002, 67-78
    [42] Tsai K C, Yeh C C. Networked substructure pseudo-dynamic tests of double-skinned CFT bridge piers under bi-directional earthquakes. In: Technical report NCREE-03-021. Taipei: National Center for Research on Earthquake Engineering, 2003, 23-25
    [43] Tsai K C, Hsiao B C, Lai J W, et al. Pseudo-dynamic experimental response of a full scale CFT/BRB composite frame. In: Technical report NCREE-05-001 Taipei: National Center for Research on Earthquake Engineering, 2005, 124-141
    [44] Chang Y Y, Yang Y S, Wang S J, etc. Hybrid testing of a multi-span bridge. In: Proceedings of the First International Conference Advances in Experimental Structural Engineering. Japan, 2005, 307-314
    [45] Takashi Y, Kazutoshi N, Eiichi W, et al. International collaborative pseudo-dynamic testing method for continuous elevated bridges by using Internet. In: Proceedings of the First International Conference Advances in Experimental Structural Engineering. Japan, 2005, 371-376
    [46] Ian Buckle. NEES/E-Defense bridge research collaboration. In: NEES/ E-Defense Planning Meeting. Kyoto, 2006, 432-448
    [47] Stephen M, Kazuhiko K. NEES/E-Defense collaborative research on bridge columns. In: George Brown Jr. Network for Earthquake Engineering Simulation Fifth Annual Meeting. Snowbird, 2007, 1312-1332
    [48]肖岩,易伟建,茹继平.现代结构试验及远程协同与资源共享专家研讨会-论文资料集.湖南长沙:湖南大学, 2002, 5-7
    [49]何庆锋,易伟建,肖岩.远程协同试验中的数据库方法应用研究,湖南大学学报(自然科学版), 2006, 33(3)增刊: 47-51
    [50]易伟建,何庆锋,肖岩.工程结构试验数据库模型设计研究,湖南大学学报(自然科学版), 2006, 33(2):22-25.
    [51]刘一江,谭凯,刘玉清.结构试验远程协同控制系统的设计与实现.实验室研究与探索, 2004, 23(9):13-15
    [52]刘一江,谭凯,童桦.网络结构试验异地协同控制平台的开发与研究,湖南大学学报(自然科学版), 2005, 32(6): 97-102
    [53]刘一江,谭凯,童桦.基于结构异地协同控制试验网络平台的开发与研究,实验技术与管理, 2006, 23(1): 45-49
    [54]蔡新江,田石柱,王大鹏. CFRP加固桥梁RC短柱远程协同拟动力实验,湖南大学学报, 2008, 35(11): 6-11
    [55]蔡新江,田石柱.多跨桥梁结构的网络协同拟动力实验研究,华中科技大学学报(城市科学版), 2008, 25(3): 74-77
    [56] Wang D P, Tian S Z, Cai X J, et al. Internet-based collaborative pseudo-dynamic testing of multi-span bridge structure, Progress in Natural Science, 2009, 19(5): 623-633
    [57] Qiu F W, Zhang Y F, Liu Z T, et al. A study on Internet-based structural pseudo-dynamic test method. In: Proceedings of the First International Conference Advances in Experimental Structural Engineering. Japan, 2005, 458-462
    [58] Wang T, Nakashima M, Pan P. On-line hybrid test combining with general-purpose finite element software. Earthquake Engineering and Structural Dynamics, 2005, 35(12): 1471-1488
    [59] Kwon O, Elnashai A S, Spencer B F, Park K. UI-SimCor : a global platform for hybrid distributed simulation. In: Ninth Canadian Conference on Earthquake Engineering. Ottawa, 2006, 26-29
    [60] Pan P, Tada M, Nakashima M. Online hybrid test by Internet linkage of distributed test-analysis domains. Earthquake Engineering and Structural Dynamics, 2005, 34: 1407-1425
    [61] Pan P, Tomofuji H, Wang T, et al. Development of peer-to-peer (P2P) Internet online hybrid test system. Earthquake Engineering and Structural Dynamics, 2006, 35: 867-890
    [62] Guo Y R,Hu Q, Xiao Y. Discussion of paper, online hybrid test by Internetlinkage of distributed test-analysis domains by Peng Pan, Motohide Tada and Masayoshi Nakashima, Earthquake Engineering and Structural Dynamics 2005;34:1407-1425. Earthquake Engineering and Structural Dynamics, 2006, 35(12): 1581–1583
    [63] Mosqueda G, Stojadinovic B, Mahin S. Implementation and accuracy of continuous hybrid simulation with geographically distributed substructures. In: Report of UBC/EERC 2005-02. Berkeley: Earthquake Engineering Research Center, 2005, 1-183
    [64] Guo Y R, Xiao Y, Hu Q. NetSLab-based remote hybrid testing in current hierarchical network environment. In: Proceedings of the 4th International Conference on Earthquake Engineering. Taipei, 2006, Paper No.255
    [65] Hu Q, et al. UniPipe: User’s Manual. Future-Net Inc, 2001, 1-88
    [66]吕建民.桥梁结构的远程协同拟动力试验: [湖南大学硕士学位论文].长沙:湖南大学, 2008, 32-36
    [67] Takanashi K, et al. Non-linear earthquake response analysis of structures by a computer-actuator online system-Part 1: detail of the system. Transactions of the Architectural Institute of Japan, 1975, 229: 77-83
    [68] Dermizalds S N, Mahin S A. Development of Substructure Techniques for On-line Computer Controlled Seismic Performance Testing. In: Report No. UCB/EERC-85/04. Berkeley: Earthquake Engineering Research Center, 1985, 1-152
    [69] Nakashima M, Takai H. Use of Substructure Techniques in Pseudo-Dynamic Testing. In: BRI Research Paper No. 111. Japan: Buliding Research institute, 1985, 114-115
    [70] Nakashima M, et al. Feasibility of Pseudo-Dynamic Test Using Substructure Techniques. In: Proceedings of the Ninth World Conference on Earthquake Engineering. Japan, 1988, 124-129
    [71] Newmark N M. A method of computation for structural dynamics. Journal of Engineering Mechanics, 1959, 85(3): 67-94.
    [72] Dokainish M A and Subbaraj K A. Survey of Direct Time-intergration methods in computational structural dynamics-Ⅰ, Explicit methods. Computer and Structures, 1989, 32(6): 1371-1386
    [73] Dokainish M A and Subbaraj K A. Survey of Direct Time-intergration methods in computational structural dynamics-Ⅱ, Implicit methods. Computer and Structures, 1989, 32(6): 1387-1401
    [74] Shing P B and Vanan T M. Implicit Time Intergration for Pseudodynamic Test. EESD, 1991, 20(6): 518-529
    [75]俞载道.结构动力学基础.上海:同济大学出版社, 1987, 1-381
    [76] Shing P B, Mahin S A. Computational Aspects of a Seismic Performance Test Method Using On-Line Computer Control. Earthquake Engineering and Structural Dynamics, 1985, 13(4): 507-526
    [77] Nakashima M. PartⅠ: Relationship between integration time interval and response stability in pseudodynamic testing. Journal of Structural Construction Engineering, 1985, 353: 29-34
    [78] Nakashima M. PartⅡ: Relationship between integration time interval and response stability in pseudodynamic testing. Journal of Structural Construction Engineering, 1985, 353, 35-40
    [79] Hughes T R, Pister K S, Taylor R L. Implicit-explicit finite elements in nonlinear transient analysis. Computer Methods in Applied Mechanics and Engineering, 1979, 17:159-182
    [80] Hibler H M, Hughes, T R, Taylor R L. Improved numerical dissipation for time integration in structural dynamics. Earthquake Engineering and Structural Dynamic, 1977, 5: 283-292
    [81] Combescure D, Pegon, P.α-Operator Splitting time integration for pseudodynamic testing error progation analysis. Soil Dynamic and Earthquake Engineering, 1997, 16: 427-443
    [82] Pegon P, Pinto A V. Pseudo-dynamic testing with substructuring at the ELSA Laboratory. Earthquake Engineering and Structural Dynamic, 2000, 29: 905-912
    [83]范云蕾,郭玉荣,肖岩等.单层结构远程协同拟动力试验平台开发.地震工程与工程振动, 2007, 27(3):77-88
    [84]郭玉荣,张国伟,肖岩.单自由度结构远程分析及拟动力试验平台.湖南大学学报(自然科学版), 2006, 33(2): 18-21
    [85]李宏男.结构多维抗震理论与设计方法.北京:科学出版社, 1998, 1-182
    [86]刘季.在多维地震动复合作用下结构的反应和建筑结构扭转地震效应.哈尔滨建筑工程学院学报, 1986, 2(2): 59-71
    [87]李宏男,王苏岩.多维地震动作用下偏心结构扭转耦联随机反应分析.建筑结构学报, 1992, 13(6): 12-20
    [88]江宜城,唐家祥.单轴偏心的单层隔震框架结构地震扭转反应分析.世界地震工程,1999, 15(4): 57-61
    [89]刘大海,杨翠如,钟锡根.高层建筑抗震设计.北京:中国建筑工业出版社,1993, 78-97
    [90]郭玉荣.钢筋混凝土房屋结构空间协同非线性地震反应: [湖南大学硕士论文].长沙:湖南大学, 1995, 1-78
    [91] Chopra A K. Dynamics of Structures Theory and Applications to Earthquake Engineering. New Jersy: Prentice Hall, 1995, 255-280
    [92] Ogata K. Modern Control Engineering (Third Edition). Beijing: Publishing House of Electronics Industry, 2000, 1-1056
    [93] Jun Y M, Eric M L. Torsional effects on short-span highway bridges. Computers and Structures, 2000, 75, 619-629
    [94]邱法维,钱嫁茹.结构在多维多点地震输入下的拟动力实验方法.土木工程学报, 1999, 32(5): 28-35
    [95]邱法维,钱嫁茹.多点地震输入下的拟动力实验方法.地震工程与工程振动, 2000, 18(2): 38-47
    [96]范云蕾,董旭华,郭玉荣.基于NetSLab远程协同平台的桥梁抗震研究.湖南大学学报(自然科学版), 2006, 33(3): 27-33
    [97]范云蕾,肖岩,郭玉荣.多层框架结构远程协同拟动力试验方法研究.湖南大学学报(自然科学版), 2009, 36(4): 19-23
    [98]田石柱.结构抗震拟动力试验方法与光纤在土木工程应用的研究.见:哈尔滨工业大学博士后研究工作报告.哈尔滨:哈尔滨工业大学, 2004, 1-49
    [99] Wang D P, Tian S Z. Remote collaborative pseudo-dynamic testing system based on acquisition board control. Progress in Natural Science, 2007, 17(12): 1487-1493
    [100] Kruglinski D J, Wingo S, Shepherd G.希望图书创作室译. Programming Visual C ++6.0技术内幕(第五版).北京:希望电子出版社, 2002, 509-538
    [101]何文辉.方钢管混凝土柱-钢梁组合框架抗震性能研究: [湖南大学博士学位论文].长沙:湖南大学, 2009, 73-75
    [102] Priestley M J N, Xiao Y, et al. I-10-Fairefax/Washington Undercrossing. In: Structural Systems Research Report. San Diego: University of California, San Diego, 1994, 23-48
    [103] Schellenberg A, et al. A software framework for hybrid simulation of large structural systems. In: Proceedings of 2007 Structures Congress. Long Beach, 2007, 28-37
    [104] Saouma V, Sivaselvan V M. Hybrid Simulation: Theory, Implementation and Applications. London: Taylor & Francis, 2008, 25-26
    [105] Fenves G L. Objected-oriented programming for engineering softwaredevelopment. Engineering with Computers, 1990, 6: 1-15
    [106] Baugh J J, Rehak D R. Data abstraction in engineering software development. Journal of Computing in Civil Engineering, 1992, 6(3): 282-301
    [107] Forde B W, et al. Objected-oriented finite element analysis. Computers and Structures, 1990, 34(1): 355-374
    [108] Schellenberg, A. Advanced implementation of hybrid simulation: [dissertation]. Berkeley: University of California, Berkeley, 2008, 69-79
    [109] Yang T Y. Performance evaluation of innovative steel braced frames: [dissertation]. Berkeley: University of California, Berkeley, 2006, 245-246
    [110] Sivaselvan M V. A unified view of hybrid seismic simulation algorithms. In: Technical report CU-NEES-06-1. Boulder: NEES at CU-Boulder, 2006, 1-40
    [111]李雁军.基于OpenFresco的远程协同试验方法的研究: [哈尔滨工业大学硕士学位论文].长春:哈尔滨工业大学, 2007, 39-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700