用户名: 密码: 验证码:
用叶蜡石和金红石制备Sialon-TiNC及其在出铁沟浇注料中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对目前炼铁高炉出铁沟对高性能、低成本、长寿命耐火材料的需求,采用易得的叶蜡石、金红石、焦炭为主要原料,通过碳热还原以及碳热还原氮化工艺合成Al2O3-SiC-TiNC和Sialon-TiNC复相粉体材料。利用热力学分析、XRD、SEM、EDS等手段系统研究相关工艺因素对还原产物物相的影响,探讨Al2O3-SiC-TiNC和Sialon-TiNC复相粉体材料的抗渣侵蚀性,制备了含Sialon-TiNC的高性能Al2O3-SiC-C质新型铁沟浇注料。
     对不同气氛(埋炭条件;流动氮气条件)、不同配碳量(理论量、过量10%、过量50%、过量100%)、不同还原温度(1300~1600℃;1400~1550℃)和不同金红石配比量对产物物相及微观形貌的影响进行了研究。结果表明:埋炭和焦炭过量100%在1600℃保温4h条件下金红石配比量为10%的产物中主物相为刚玉、β-SiC、TiN0.3C0.7;流动氮气气氛下,焦炭过量50%在1500℃保温4h时金红石配比量为10%的产物中主物相为β-Sialon、TiN0.7C0.3。较高的反应温度和配碳量的增加能促进产物中β-SiC和β-Sialon发育完全;适量金红石配比量(10%)有利于β-SiC和β-Sialon生成,生成的TiNC (TiN0.3C0.7或TiN0.7C0.3)有助于提高试样的抗渣侵蚀能力。
     进行了Al2O3-SiC-TiNC和Sialon-TiNC复相粉体材料的抗渣侵蚀性能的研究,结果表明:不同Ti含量的Al2O3-SiC-TiNC和Sialon-TiNC材料均表现出了较好的抗渣侵蚀能力,生成的TiNC (TiN0.3C0.7或TiN0.7C0.3)对试样的抗渣性能具有增强作用。金红石添加量10%的试样具有较优的抗渣侵蚀性能和抗氧化性能。
     研究了Sialon-TiNC添加量(0、3%、6%、9%、12%)对Al2O3-SiC-C质铁沟料常温物理性能、抗氧化性能及抗渣侵蚀性能等的影响。实验结果表明:添加Sialon-TiNC的Al2O3-SiC-C质铁沟浇注料抗氧化性能和抗渣侵蚀性能均有不同程度提高,Sialon-TiNC添加量为6%的试样具有较优的抗氧化性能,1450℃热处理后氧化层厚度为2.77mm,而未添加Sialon-TiNC试样的氧化层厚度为5.16mm;Sialon-TiNC能阻止高炉渣对浇注料的渗透侵蚀;同时Sialon-TiNC添加量为6%时,试样低温(110℃×24h)和高温抗折强度分别达最高值7.75MPa和7.35MPa,耐压强度达29.53MPa和31.83MPa;1450℃热处理后线变化率仅为0.01%,气孔率13.86%,体积密度2.84g/cm3。在本实验研究条件下,Sialon-TiNC的添加量为6%时Al2O3-SiC-C质浇注料具有最优的综合性能。
     对优化Sialon-TiNC添加量的Al2O3-SiC-C质浇注料进行实际工况应用评价。工业试验结果表明:采用叶蜡石、金红石和焦炭合成的Sialon-TiNC复相粉体原料可以替代传统Al2O3-SiC-C质浇注料中30%的高成本刚玉、碳化硅以及氧化铝等微粉,达到了良好的使用效果。本研究工作为研发高性能出铁沟浇注料提供理论依据和新的技术路线,可以用改性廉价矿物原料替代高能耗的碳化硅和刚玉原料,降低铁沟料的成本,对缓解我国铝土矿等资源枯竭和节约能源具有重要的意义。
In this work, aiming to meet the requirement for high-performance, low cost and the long-life refractory of blast furnace iron runner, Sialon-TiNC and Al2O3-SiC-TiNC composite powder were synthesized by using pyrophyllite, rutile and coke as raw materials during the carbothermal reduction and the carbothermal reduction and nitridation process. The influence of relevant technological conditions on phase was studied by thermodynamic analysis, XRD, SEM and EDS; the property of erosion resistance of Sialon-TiNC and Al2O3-SiC-TiNC composite materials was investigated and the high performance Al2O3-SiC-C iron runner castable adding Sialon-TiNC was prepared.
     The influence of different atmosphere (buried carbon conditions and flowing nitrogen atmosphere), different carbon content (the theoretical carbon content, exceeding 10%, exceeding 50% and exceeding 100%), different temperature range (1300~1600℃and 1400~1550℃) and the proportions of rutile on the phase composition and microstructure of the products was investigated. The results show that during the buried carbon condition the main phases in product with 10% rutile addition are corundum,β-SiC and TiN0.3C0.7 under 1600℃for 4 hours, whereas in flowing nitrogen atmosphere the main phases in product with 10% rutile addition areβ-Sialon and TiNi.7C0.3. The increasing in temperature and carbon content is beneficial for the forming ofβ-SiC andβ-Sialon. Besides, the existence of TiNC (TiN0.3C0.7 and TiN0.7C0.3) is contribute to improve the erosion resistance property of samples.
     The property of slag resistance of Al2O3-SiC-TiNC and Sialon-TiNC composite materials was studied. The results show that samples with different Ti content possessed high resistance to slag erosion due to the TiNC (TiN0.3C0.7 and TiN0.7C0.3) can enhance the resistance to slag erosion in samples. Particularly, samples with 10% rutile addition have the optimum performance of slag erosion resistance and oxidation resistance.
     The influence of Sialon-TiNC addition (0、3%,6%,9%,12%) on the physical properties at room temperature, oxidation resistance and resistance to slag erosion of Al2O3-SiC-C iron runner castable was investigated. The result shows that, the oxidation resistance and resistance to slag erosion of Al2O3-SiC-C iron runner castable containing different Sialon-TiNC addition are improved to some degrees. More specifically, the specimen with 6% Sialon-TiNC addition having optimum oxidation resistance, the thickness of oxide layer in samples treated under 1450℃is 2.77mm, while the thickness of oxide layer in sample without adding Sialon-TiNC is 5.16mm. Besides, Sialon-TiNC could prevent slag erosion and penetration to the iron runner castable. And the specimen with 6% Sialon-TiNC addition have optimum low temperature (110℃×24h) and high temperature modulous of rupture which are 7.75MPa and 7.35MPa, and cold crushing strength which are 29.53MPa and 31.83MPa, respectively. The permanent linear change of specimen treated under 1450℃is just 0.01%, and the apparent porosity is 13.86%, bulk density is 2.84g/cm3. Under the condition of experiment, Al2O3-SiC-C castable with 6% Sialon-TiNC addition possesses optimum comprehensive performance.
     Industrial application of Al2O3-SiC-C castable added Sialon-TiNC with optimize amount was evaluated. The result shows that Sialon-TiNC composite powder materials, obtained from easily available pyrophyllite, rutile and coke, can substitute 30wt% micropowder of the high-cost corundum, SiC and alumina in traditional Al2O3-SiC-C castable, which achieving good application effect. Because the high energy consumption corundum and SiC can be replaced by the modified cheap mineral materials, the cost for producing castable could be reduced, which means this work can provide scientific basis and a technical route for the research and development of high performance iron runner castable, and play a pivotal role in relief the bauxite resources shortage and energy conservation.
引文
[1]周渝生,钱晖,张友平,等.现有主要炼铁工艺的优缺点和研发方向.钢铁,2009,44(2):1-10
    [2]薛正良.钢铁冶金概论.北京:冶金工业出版社,2008
    [3]李慧.钢铁冶金概论.北京:冶金工业出版社,1993
    [4]吴靖斌.高炉铁沟料的发展.马钢科研,1995,1(4):31-38
    [5]邢春山Al2O3-SiC-C质高炉出铁沟浇注料的研究:[硕士学位论文].鞍山:鞍山科技大学,2006
    [6]刘麟瑞,林彬荫.工业窑炉用耐火材料手册.北京:冶金工业出版社,2001.154,171-178
    [7]王战民,李再耕.高炉出铁沟用耐火材料的发展.耐火材料,1996,30(2):109-112
    [8]吕春燕.原位生成Sialon增强Al2O3-SiC-C铁沟浇注料研究:[硕士学位论文].武汉:武汉科技大学,2004
    [9]余鸿林.热喷补工艺在首钢高炉主铁沟上的应用.炼铁技术通讯,2003,(12):5-6
    [10]王伟.氧化铝基复合材料出铁沟预制件的研制与开发:[硕士学位论文].重庆:重庆大学,2001
    [11]王战民,何霞.高炉出铁沟用Al2O3-SiC-C质免烘烤捣打料的研制与应用.见:全国不定形耐火材料学术会议,编.全国不定形耐火材料学术会议论文集.北京:北京工业出版社,2001.109-115
    [12]徐惠娟.高炉出铁钩用耐火浇注料.耐火材料,2000,4(6):73-75
    [13]Xu G T, Zhang H L. Application of sol self-clean bonded Al2O3-SiC-C castable for iron runner. China's Refractories,2006,15(3):10-12
    [14]栾舰,曲殿利,陈俊宏Al2O3-SiC-C质铁沟浇注料性能的研究.冶金能源,2005,24(3):109-115
    [15]邓小玲Si3N4-Fe对Al2O3-SiC-C质浇注料性能影响的研究:[硕士学位论文].北京:北京科技大学,2004
    [16]罗茂华.昆钢高炉炉前耐火材料的开发应用.炼铁,2002,21(3):77-80
    [17]全荣.添加尖晶石对Al2O3-SiC-C质浇注料的影响,国外耐火材料,1999,(6),49-53
    [18]Li W, Cheng B, Huang Z, et al. Development of self-flowing Al2O3-SiC-C castable and its application to trough of large blast furnaces. China's Refract,1998(3):22-26
    [19]刘清才,张丙怀,林静Al2O3-SiC-C耐火材料在熔融还原熔体中的侵蚀.耐火材料,1996,(3):4-5
    [20]刘素健.金属硅在Al2O3-SiC-C质浇注料中的添加效果.国外耐火材料,1998,(5):60
    [21]Sasan 0, Mohammad A.B, Fatollah M. The effect of deflocculants on the self-flow of ultra low-cement castable characteristic in Al2O3-SiC-C systems. Ceramics International,2005, (31):647-653
    [22]黄刚,彭云涛,方昌荣.添加剂对Al2O3-SiC-C铁沟浇注料性能的影响.见:高炉炼铁学术年会,编.2007年中小高炉炼铁学术年会论文集.武汉:炼铁,2007.574-576
    [23]甘菲芳,石洪志,夏欣鹏.硅溶胶结合Al2O3-SiC-C浇注料的抗侵蚀性能.耐火材料,2008,42(3):190-192
    [24]陈俊红,孙加林,邓小玲,等.氮化硅铁在Al2O3-SiC-C质铁沟浇注料中的防氧化行为.耐火材料,2005,39(1):50-53
    [25]黄军同,赵凯,杨景周,等.一种高炉出铁沟用耐火材料浇注料及其制备方法.200510012224.5
    [26]江泓,戚真健,童胜利,等.改良的高炉出铁沟用耐火浇注料.200410103085.2
    [27]顾华志,汪厚植,张文杰,等.一种Al2O3-SiC-C铁沟浇注料的制备方法.200410012778.0
    [28]章荣会.铁沟免烘烤浇注料及单铁口高炉出铁沟浇注料造衬工艺.200610086925.8
    [29]Grishpun E.M, Pivinskij Yu.E, Rozhkov E.V, et al. Production and utilization of high-alumina ceramic concrete. Ramming mass on basis of highly concentrated bauxite binders. Ogneuporyi Tekhnicheskaya Keramika,2000, (3):37-41
    [30]王维邦.耐火材料工艺学,北京:冶金工业出版社,1990,35
    [31]柴剑玲.添加NiO对高炉铁沟浇注料中SiC氧化行为的影响.耐火材料,2004,30(4):164
    [32]钟香崇.展望新一代优质高效耐火材料.耐火材料,2003,37(1):1-10
    [33]Mandal H. New developments in α-SiAlON. Ceramics. J Eur Ceram Soc,1999,19(13): 2349-2357
    [34]Jack K H, Wilson W I. Ceramics based on the SiAlON and related systems. Nature PhysSci, 1972,238:28-29
    [35]Jack K H. Review sialons and related nitrogen ceramics. J Mater Sci,1976,11:1135-1158
    [36]Van dijen F K, Metselaar R, Helmholdt R B. Neutron diffraction study of β'-SiAlON. J Mater Sci Lett,1987,6:1101-1104
    [37]Oyama Y, Kamigaito K. Solid solubility of some oxides in Si3N4. J Appl Phys,1971, (10): 1637-1642
    [38]Ekstrom T, Kall P 0, Nygren M. Dense single phase β-SiAlON ceramics by glass encapsulated hot isostatic pressing. J Mater Sci 1989,24:1853-1861
    [39]Ekstrom T, NygrenM. SiAlON ceramic. JAm Ceram Soc,1992,75(2):259-276
    [40]于三三,都兴红,李永锐等.天然原料碳热还原氮化合成β-SiAlON的研究进展.硅酸盐通报,2006,25(3):111-115
    [41]都兴红.由天然原料合成耐火材料的研究.沈阳:东北大学,1998
    [42]万隆,唐绍裘,余润洲,等.高岭土的化学组成对碳热还原-氮化法合成β-Sialon粉末的影响.硅酸盐学报,1999,27(1):116-119
    [43]张宏泉,杨忠民.用不同粘土矿物合成Sialon粉末的研究.中国陶瓷,1998,34(1):16-19
    [44]Zeng J, Miyamoto Y. Combustion synthesis of sialon powders (Si6-zAlzOzN8-z, z= 0.3,0.6). J Am Ceram Soc,1990,73 (12):3700-3702
    [45]Ramesh P D, Rao K J. Preparation and characterization of single phase p-SiAlON. J Am Ceram Soc,1995,78 (2):395-400
    [46]Ramesh P D, Rao K J. Preparation of β-SiAlON from silica-alumina gel. J Mater Res 1994,9 (8):1929-1931
    [47]Wild S. A novel route for the production of P-sialon powders. J Mater Sci Lett,1976,11: 1972-1974
    [48]Lee J K, Culter IB. Sinterable sialon powder by reaction of clay with carbon and nitrogen. Am Ceram Soc Bull,1979,58(9):869
    [49]Lee H L, Lim H J, Kim S, et al. Thermomechanical properties of β-Sialon synthesized from kaolin. J Am Ceram Soc Bull,1989,72(8):1458-1461
    [50]Dijen F K V, Metselaar R. Reaction-rate-limiting steps in carbothennal reduction processes. J Am Ceram Soc,1985,68(1):16-19
    [51]Perera D S. Silicon nitride and β-sialon made from New Zealand raw material. J Aust Ceram Soc,1987,23(1):11-17
    [52]Yoshimatsu H, Kawasakiy H. Carbon-thermal reduction and nitridation of mixtures of SiO2 and Al2O3.2H2O. J Mater Sci,1989,24:3280-3284
    [53]黄莉萍,徐友仁,唐铮,等.以高岭土制备β-sialon粉料.硅酸盐学报,1991,1:11-18
    [54]刘仲毅,孙洪巍,钟香崇.高岭土在碳热还原氮化过程中的相变.耐火材料,2004,1:18-20
    [55]都兴红,张广荣,张伟民β-SiAlON粉体的反应动力学研究.耐火材料,1997,4:191-193
    [56]I. Higgins, A. Hendry. Production of β-Sialon from by carbothermal Reduction of Kaolinit, Br. Ceram. Trans. J,1986,85:161-166
    [57]张宏泉,戴英,李凝芳Sialon的合成技术与应用.陶瓷研究,1996,2(11):83-87
    [58]钱扬保,王福明,徐利华,等.粘土碳热还原氮化二步法制备(3-Sialon结合刚玉复相材料.耐火材料,2002,36(2):77-79
    [59]石玉敏,赵婷,都兴红,等SiAlON粉体合成的研究进展.耐火材料,2004,38(1):46-49
    [60]谈国强,吴建鹏(3-Sialon粉体的制备及表征.陕西科技大学学报,2004,22(4):5-9
    [61]张海军,李文超,钟香崇.天然原料合成O-Sialon-ZrO2-SiC复合材料及性能分析.稀有金属.2000,24(1):25-29
    [62]董鹏莉,张梅,郭敏,等.不同Z值β-SiAlON的显微结构与力学性能.耐火材料,2009,43(1):23-26
    [63]姜涛,李江,薛向欣,等.碳热还原氮化高钛渣合成TiN/β'-Sialon导电陶瓷粉体.东北大学学报(自然科学版),2008,29(6):857-860
    [64]吕春燕,汪厚植,顾华志,等SiAlON增强Al2O3-SiC-C铁沟料用后分析.耐火材料,2009,43(3):183-186
    [65]巫俊斌,姜涛,薛向欣,等.富硼渣碳热还原氮化合成(Ca, Mg)-a'-SiAlON-BN复合粉体.耐火材料,2009,43(2):106-109
    [66]马北越,孙勇,于景坤,等.利用天然原料合成β-Sialon及其复合材料的研究进展.材料研究与应用,2009,3(2):69-72
    [67]陈南春,梁桂彰,徐丰平.高岭土制备β-sialon粉体的影响因素.硅酸盐学报,2008,36(S1):107-109
    [68]曹洪林.工艺条件对粘土碳化还原氮化合成β-sialon粉体的影响.耐火材料,2001,35(5):252-254
    [69]刘明,高立春,徐利华,等.碳热还原氮化法制备β-Sialon粉体的研究.人工晶体学报,2008,37(5):1260-1263
    [70]赛音巴特尔,岳昌盛,张梅,等.碳热还原氮化法合成MgAlON/β-SiAlON复相材料的研究.科学技术与工程,2009,9(16):4624-4629
    [71]于景坤,戴文斌,戴淑平.赛隆-碳化硅系复合材料的合成及其应用.东北大学学报:自然科学版,2003,24(9):824-827
    [72]黄朝晖,孙加林,王金相,等.1500℃工业条件合成β'-Sialon的研究.耐火材料,2001,35(3):125-127,130
    [73]Chao Y W, Charles J A. Synthesis of nitrogen ceramic powders by carbothermal reduction and nitridation Part 2:Silicon aluminium oxynitride (Sialon). Mater Sci Technol,1991,7: 399-406
    [74]Panda P K, Mariappan L, Kannan T S. Carbothermal reduction of kaolinite under nitrogen atmosphere. Ceramics International,2000,26:455-461
    [75]Kokmeijer E, Scholte C,Blomer F, et al. The influence of process parameters and starting composition on the carbothermal production of sialon. J Mater Sci,1990,25:1261-1267
    [76]Zheng J, Forslund B. Carbothermal preparation of β-Sialon powder at elevated nitrogen pressures. J Eur Ceram Soc,1999,19:175-185
    [77]Mazzoni A D, Aglietti E F, Pereira E. Carbonitriding reaction of clay:Involved phases and mechanism. Mater Chem Phys,1992,31:325-331
    [78]杨建,薛向欣,刘欣,等.碳热还原氮化法合成O-Sialon粉.中国有色金属学报,2002,12(2):347-352
    [79]曹林洪,蒋明学,张军战.工艺条件对粘土碳热还原氮化合成β'-Sialon粉体的影响.耐火材料,2001,35(5):252-254
    [80]曹林洪,蒋明学,郝英.粘土碳热还原氮化合成β-Sialon粉末的研究.西南工学院学报,2001,16(4):29-32
    [81]王瑞生,谷小华.用吉林球粘土制备β-SiAlON材料的研究.金属材料与冶金工程,2007,35(3):3-5,13
    [82]周华梅,乔秀臣,于建国.低品位高岭土制备莫来石的研究.武汉理工大学学报,2011,33(3):121-125
    [83]陈朝华.钛白粉生产及应用技术.北京:化学工艺出版社,2006
    [84]龚家竹.钛白粉生产工艺技术进展.无机盐工业,2003,35(6):5-7
    [85]尹玉成,梁永和,吴芸芸,等.Ti02在Al2O3-SiO2系耐火材料中的作用.耐火材料,2006,40(2): 139-142
    [86]聂建华,李亚伟,甘明亮,等.铝热还原法合成TiN/刚玉复合陶瓷的研究.稀有金属材料与工程,2007,36(S1):734-737
    [87]徐娜,李志坚,吴锋,等.TiN提高镁碳砖抗渣侵蚀机理的研究.硅酸盐通报,2008,27(5):1044-1047
    [88]孙俊赛,陈庆华,韩长菊.自蔓延高温合成A12O3-TiC导电蜂窝陶瓷材料.中国陶瓷,2008,44(4):24-27
    [89]华旭军,朱伯铨,李雪冬,等TiC-C复合粉体的制备及其对低碳镁碳砖抗氧化性能的影响.武汉科技大学学报(自然科学版),2007,30(2):145-148
    [90]李慈颖,李亚伟,高运明,等.高钛渣提取碳氮化钛的研究.钢铁钒钛,2006,27(3):5-9
    [91]李远兵,李楠,阮国智.还原性气氛下铝热还原法制备Al2O3-TiB2复合陶瓷的热力学分析.武汉科技大学学报(自然科学版),2004,27(3):227-229
    [92]阮国智,李远兵,李楠.还原气氛下Si-B2O3-TiO2系反应的热力学分析.硅酸盐通报,2003,(5):86-88
    [93]杨炳飞,王礼胜,王吉中.我国叶蜡石矿物材料研究方向及其进展.超硬材料工程,2007,19(3):35-37
    [94]徐传云,许凤林,等.叶蜡石开发利用.武汉:中国地质大学出版社,2001:78-113
    [95]姚文君,张培萍,李书法,等.叶蜡石矿产资源及其应用开发研究现状.世界地质,2007,26(1):124-129
    [96]Yu J K, Ueno S. Synthesis of β-Sialon whiskers from pyrophyllite. J Ceram Soc Jpn,1997, 105(9):821-823
    [97]于景坤,戴文斌,戴淑平.赛隆-碳化硅系复合材料的合成及其应用.东北大学学报(自然科学版),2003,24(9):824-827
    [98]工兆敏.中国菱镁矿现状与发展趋势.中国非金属矿工业导刊,2006,(5):2-8
    [99]任强,武秀兰.煤矸石-滑石-菱镁矿低温合成堇青石研究.非金属矿,2006,29(2):29-31
    [100]郭红丽,孙庚辰,石干,等.尖晶石对不烧MgO-MA-C及Al2O3-MA-C质耐火材料抗氧化性的影响.耐火材料,2004,38(6):393-395
    [101]丁贺玮,黄朝晖,秦开明,等Al2O3-MgO(尖晶石)-Sialon复合耐火材料的制备.稀有金属材料与工程,2007,36(S2):383-385
    [102]桑绍柏,李亚伟,杨纯艳,等.原位反应制备Mg-α-Sialon结合镁质耐火材料研究.武汉科技大学学报(自然科学版),2005,28(4):338-342
    [103]孙洪巍,刘仲毅,钟香崇.叶蜡石在碳热还原氮化过程中的相变.耐火材料,2004,38(5):331-333
    [104]王朝胜,邵珊,邹正光,等.高岭石-C体系高温碳热反应过程.粉末冶金材料科学与工程,2011,15(4):317-323
    [105]于仁红.Ti02碳热还原氮化法制备TiN粉末及TiN-Al2O3复合材料研究:[博士学位论文].西安:西安建筑科技大学.2005
    [106]陈肇友.化学热力学与耐火材料.北京:冶金工业出版社,2005
    [107]梁英教,车荫昌.无机物热力学数据手册.沈阳:东北大学出版社,1993
    [108]叶大伦.实用无机物热力学数据手册.北京:冶金工业出版社,2001
    [109]刘明,徐利华,邸云萍,等.合成Fe3Si-Ti(C, N)多相材料的热力学研究.硅酸盐通报,2008,27(4):667-671
    [110]皮尔斯[英].硅化学及其应用.华东师范大学化学系翻译组,译.上海:上海教育出版社,1984:13-15
    [111]刘阳.微波合成氮化钛的氧化.陶瓷学报,2010,31(3):468-470
    [112]宋希文,安胜利.耐火材料概论.北京:化学工业出版社,2009
    [113]Xiang J H, Xie Z P, Huang Y, et al. Synthesis of Ti(C, N) ultrafine powders by carbothermal reduction of TiO2 derived from sol-gel process. Journal of the European Ceramic Society,2000,20(7):933-938
    [114]侯新梅,钟香崇.高铝矾土碳热还原氮化合成SiAlON的反应过程.耐火材料,2006,40(4):310-311
    [115]魏存弟,马鸿文,杨殿范,等.煅烧煤系高岭石相转变的实验研究.硅酸盐学报,2005,33(1):77-81
    [116]吴义权,张玉峰,郭景坤,等Si-Al-O-N系中的新型耐火材料.耐火材料,2001,35(1):40-42
    [117]覃显鹏Ti(C,N)在含碳耐火材料中的应用研究:[硕士学位论文].武汉:武汉科技大学.2008
    [118]甘明亮.氮化钛、碳化钛和碳氮化钛的合成及其在炭砖中的应用:[硕士学位论文].武汉:武汉科技大学.2006
    [119]李义尧,赵志江,孙伟,等Sialon/Al2O3复相材料的氧化行为研究.陶瓷研究,1998,13(2):3-5
    [120]顾华志,吕春燕,汪厚植,等.原位生成Sialon增强Al2O3-SiC-C铁沟浇注料抗渣机理研究.武汉科技大学学报(自然科学版),2004,27(1):18-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700