用户名: 密码: 验证码:
基于多源信息融合的钻井地质特征参数估计与预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油勘探、开发领域中存在着大量复杂和不确定的因素,尤其在钻井过程中随时可能遇到不同的地质条件,如岩性的变化、可钻性的变化、地层压力的变化等等,这些都将给钻井过程带来复杂多变因素,如果不能准确了解和认识地下复杂的钻井环境,就会影响钻井施工,甚至造成钻井事故危及人身安全。论文对石油勘探开发中的多源信息进行了分析,重点对地层可钻性级值、地层压力、地层岩性等钻井地质特征参数的估计与预测方法进行了深入的研究。论文主要工作如下:
     对石油勘探开发中的信息来源及表达方式进行了研究,分析了它们与钻井地质特征参数的关系,构建了石油勘探开发的多维异构空间模型,将多源信息通过一个知识表达系统进行表征。
     对录井及测井信息与地层可钻性级值的关系进行分析,提出一种基于相关向量机的地层可钻性级值预测新方法,通过训练相关向量机,建立了地层可钻性级值预测的相关向量机模型。将量子粒子群优化算法与支持向量机算法结合形成一种新的信息融合方法,综合考虑地震、测井、录井和钻井各参数与地层可钻性级值的关系,将提出的信息融合方法结合多维异构空间模型应用于地层可钻性级值预测中。
     通过机械钻速方程,利用遗传算法将与钻速有关的钻进特征参数提取出来。根据实时钻进特征参数的变化趋势,提出了一种基于钻进特征参数的异常地层压力识别方法。通过分析钻进特征参数中压差系数与地层压力的关系,提出了一种基于钻速方程的地层压力随钻监测方法。通过分析地震层速度与地层压力的关系,提出了一种改进的Fillippone地层压力预测模型。以地区地质信息及已钻井数据为依据进行模型参数初始化,融合随钻获取的有关地层压力数据及钻井液密度信息利用贝叶斯推理方法对预测模型参数进行实时更新,从而提高了钻头前方地层压力预测的准确性,同时降低了预测的不确定性。
     为了更精确地解决测井岩性识别问题,提出一种改进的Adaboost-SVM方法。首先,利用核主成分分析方法对实际测井数据进行特征提取,然后利用提取的特征和岩性剖面资料训练支持向量机,最后将若干个支持向量机弱分类器通过Adaboost算法进行集成,建立测井岩性识别的Adaboost-SVM模型,并将该岩性识别模型与基于QPSO-SVM的岩性识别模型的岩性识别结果进行了比较。
     在分析了单独利用沃尔什变换或高斯模型进行测井曲线自动分层优缺点的基础上,提出了一种基于沃尔什变换和高斯模型的多测井曲线融合分层方法。该方法融合了沃尔什变换简单、快速的特点,同时又利用了高斯模型对沃尔什变换分层的边界进行校正,实现了测井曲线由粗到细的分层过程。实例应用表明,该方法能够利用多条测井曲线进行自动分层,效果良好,验证了模型的可靠性和实用性。
     将支持向量机和变异函数结合,提出了一种新的空间插值方法,可用于钻井地质特征参数的插值估计。该方法将变异函数作为支持向量机目标函数的约束条件,不但利用了变异函数的空间相关结构重建能力,而且还保留了支持向量机较强的非线性回归能力,同时考虑了空间变量的属性相关性和空间相关性,取得了较好的插值重构效果。
A great quantity of complex and uncertain factors exist in petroleum exploration and exploitation, especially in the drilling engineering. The different geological conditions, such as the change of lithology, formation drillability and pore pressure, may be encountered at any time during drilling, which can bring complex factors to the drilling process. The inaccurate understanding of the complex drilling environment underground will affect the drilling construction, and even cause drilling accidents and endanger the personal safety. In this paper, first the multi-source information in petroleum exploration and exploitation is analyzed, and then the estimation and prediction of drilling geologic characteristic parameters, such as the formation drillability, pore pressure, formation lithology etc, are emphatically investigated in detail. The main contributions are as follows.
     The information source and expression pattern in petroleum exploration and exploitation are studied, and then the relation between the multi-source information and the drilling geologic characteristic parameters is analyzed. After that, the multi-dimensional heterogeneous spatial model is established and the multi-source information is characterized with a knowledge expression system.
     The relation between mud logging, well log data and formation drillability is analyzed, and a novel method for predicting formation drillability based on relevance vector machine (RVM) is proposed. Then the prediction model for formation drillability is established by training the RVM. The quantum particle swarm optimization algorithm (QPSO) and support vector machine (SVM) are combined to form a new information fusion method. Then this method with the multi-dimensional heterogeneous space model is applied to formation drillability prediction.
     The drilling characteristic parameters related to the drilling penetration rate are extracted with genetic algorithm using the drilling rate model. After that, an abnormal formation pressure detection method based on drilling characteristic parameters is proposed by analyzing the trend of these real-time drilling characteristic parameters. Then a pore pressure monitoring while drilling method is proposed by the analysis of the relation between differential pressure coefficient and the pore pressure according to the extracted drilling characteristic parameters. A modified Fillippone pore pressure prediction model is proposed through the analysis of the relation between seismic interval velocity and pore pressure. Firstly, the parameter in the model is initialized according to the region geological information and the data of drilled well. Then the acquired pore pressure data and the mud weight information while drilling are incorporated into the model as the constraint, which makes it possible to update the parameters in the model with Bayesian inference method in real time. Thereby, the pore pressure prediction accuracy is increased and the uncertainty of the prediction is reduced at the same time.
     To address the well log lithology identification issue accurately, a novel modified Adaboost combined with SVM method is proposed. First, the kernel principal component analysis algorithm is utilized to extract the feature of the actual well log data. Then the support vector machine is trained with the extracted feature and lithologic profile data. After that, the lithology identification model is established based on Adaboost-SVM by boosting a number of weak support vector machine classifiers with Adaboost algorithm. Finally, the lithology identification results with Adaboost-SVM algorithm are compared with the results using QPSO-SVM algorithm.
     By analyzing the advantages and disadvantages of each method based on Walsh transform or Gaussian model for automatic segmentation of well logs respectively, a method for joint application of the Walsh transform and Gaussian model for automatic segmentation of multiple well logs is proposed. On one hand, the method maintains the feature of simplicity and rapidity of Walsh transform. On the other hand, it adjusts the segmentation boundary with Walsh transform by Gaussian model. Thereby, a coarse-to-fine segmentation of well logs can be achieved. The experimental results show that the proposed method can better perform the segmentation with multiple well logs and has higher practicability and reliability.
     Based on the combination of support vector machine and the semivariogram, a spatial interpolation method is proposed in the paper, which can be used to the drilling characteristic parameters interpolation estimation. Considering the semivariogram as the constraint of the objective function of support vector machine, this method can not only make use of the spatial correlation structure reconstruction ability of semivariogram, but also retain the strong nonlinear regression ability of support vector machine. The attribute correlation and spatial correlation of the spatial variation are taken into consideration simultaneously, which results in better interpolation results.
引文
[1]《钻井手册(甲方)》编写组.钻井手册(甲方)(上册)[M].北京:石油工业出版社,1990
    [2]陈廷根,管志川.钻井工程理论与技术[M].东营:石油大学出版社,2000
    [3] Nikravesh, M., Aminzadeh, F.. Past, present and future intelligent reservoir characterization trends[J]. Journal of Petroleum Science and Engineering, 2001, 31(2): 67-79
    [4] Malinverno, A., Andrews, B., Bennett, N., et al. Real-time 3D earth model updating while drilling a horizontal well[R]. SPE 77525, 2002
    [5]尹宏锦.实用岩石可钻性[M].东营:石油大学出版社,1989
    [6]刘卫东.利用声波时差预测岩石可钻性新方法[J].钻采工艺,1995,18(2):1-3
    [7]邹徳永,陈永红.利用声波时差资料确定岩石可钻性的研究[J].石油钻采工艺,1996,18(6):1-3
    [8]楼一珊,陈恩强,张厚美.利用测井资料计算岩石可钻性的研究及应用[J].钻采工艺,1997,20(3):14-17
    [9]杨进,高德利,郑权方,等.岩石声波时差与岩石可钻性的关系及其应用[J].钻采工艺,1998,21(2):1-3
    [10]李祖奎,李春城,袁永嵩,等.利用声波测井资料预测地层可钻性及钻速的试验研究[J].焦作工学院学报,1999,18(3):179-181
    [11]赵军,蔡亚西,林元华.声波测井资料在岩石可钻性及钻头选型中的应用[J].测井技术,2001,25(4):305-307
    [12]王忠福,孟金城,张志邦.声波时差测井在岩石可钻性预测中的应用[J].大庆石油地质与开发,2006,25(3):94-96
    [13]张召平,瓮行芳.中原油田岩石可钻性与声波时差关系研究[J].石油钻探技术,2006,34(6):11-13
    [14]董振国,刘玉华,张伯文.新疆麦盖提地区岩石可钻性分析及应用[J].石油钻探技术,1997,25(4):1-2
    [15]路保平,张传进,鲍洪志.利用多测井参数求取岩石可钻性[J].石油钻探技术,1998,26(3):4-6
    [16]高铁红.基于遗传算法和神经网络的钻井参数估计和岩性识别的研究[D].河北:河北工业大学,2000
    [17]张伯文,郭艳洁,陆建宏.简便易行的地层可钻性求取和钻速预测方法[J].天然气工业,2001,21(增):98-101
    [18]李士斌,闫铁,张艺伟.岩石可钻性级值模型及计算[J].大庆石油学院学报,2002,26(3):26-28
    [19]刘向君,罗平亚.利用神经网络技术建立岩石强度预测模型[J].西南石油学院学报,1995,17(3):66-70
    [20]薛亚东,高德利.基于人工神经网络的实钻地层可钻性预测[J].石油钻采工艺,2001,23(1):26-28
    [21]夏宏泉,刘之的,陈平,等.基于BP神经网络的岩石可钻性测井计算研究[J].测井技术,2004,28(2):148-157
    [22]王越之,肖松华.用自组织法确定岩石可钻性的研究[J].钻采工艺,2001,24(6):4-6
    [23]邹徳永,程远方,刘洪祺.岩屑波速法评价岩石可钻性的试验研究[J].岩石力学与工程学报,2004,23(14):3439-2443
    [24]邹徳永,程远方,査永进,等.利用岩屑波速随钻检测地层可钻性及优选钻头类型[J].石油大学学报,2005,29(1):37-40
    [25]李荣,何世明,罗勇,等.钻井工程中岩石可钻性求取综合研究[J].钻采工艺,2004,27(5):1-3
    [26]刘向君,宴建军,罗平亚,等.利用测井资料评价岩石可钻性研究[J].天然气工业,2005,25(7):69-71
    [27]梁启明,邹徳永,张华卫,等.利用测井资料综合预测岩石可钻性的试验研究[J].石油钻探技术,2006,34(1):17-19
    [28]李士斌,闫铁,李玮.地层岩石可钻性的分形表示方法[J].石油学报,2006,27(1):124-127
    [29]李士斌,李玮.岩石可钻性分形法的可行性分析[J].大庆石油学院学报,2006,30(3):24-26
    [30]李士斌,李玮,由洪利,等.基于分形理论的岩石可钻性分级方法[J].天然气工业,2007,27(10):63-66
    [31]张辉,高德利.野猫井岩石可钻性钻前预测方法研究[J].岩石力学与工程学报,2005,24(增1):4755-4759
    [32]张辉,高德利.钻头下部未钻开地层的可钻性预测新方法[J].石油学报,2006,27(1):97-100
    [33]范翔宇,夏宏泉,郑雷清,等.利用地震层速度预测地层可钻性和钻速的新方法[J].钻采工艺,2007,30(1):4-6
    [34]张旭,翟应虎,李祖光,等.利用分形理论评价地层可钻性[J].石油学报,2010,31(1):124-128
    [35]高德利等.复杂地质条件下深井超深井钻井技术[M].北京:石油工业出版社,2004
    [36] [美]G.V.奇林格,V.A.谢列布里亚科夫,小J.O.罗伯逊.异常地层压力成因及预测[M].赵文智,柳广弟,苗继军,等译.北京:石油工业出版社,2004
    [37]瓦尔特H.费特尔.异常地层压力[M].北京:石油工业出版社,1988
    [38] Hottmann, C. E., Johnson, R. K.. Estimation of formation pressures from log-derived shale properties[J]. Journal of Petroleum Technology, 1965, 17(6): 717-722
    [39] Foster, J. B., Whalen, H. E.. Estimation of formation pressures from electrical surveys-Offshore Louisiana[J]. Journal of Petroleum Technology, 1966, 18(2): 165-171
    [40] Boatman, W. A.. Measuring and using shale density to aid in drilling wells in high-pressure areas[J]. Journal of Petroleum Technology, 1967, 19(5): 1423-1429
    [41] Borel, W. J., Lewis, R. L.. Porosity and pressure log performs well in the north sea[J]. Petrol. Petrochem. Int., 1969, 12: 36-38
    [42] Mathews, W. R., Kelly, J.. How to predict formation pressure and fracture gradient[J]. Oil and Gas Journal, 1967, 65(8): 92-106
    [43] Fertl, W. H.. Abnormal formation pressures[M]. Implication to exploration, drilling, and production of oil and gas resources. Amsterdam: Elsevier, 1976
    [44] Magara, K.. Compaction and fluid migration: practical petroleum geology[M]. New York: Elsevier Scientific Publishing Company, 1978
    [45] Bingham, M. G.. A new approach to interpreting rock drillability[J]. Oil and Gas Journal, 1965, 62(46): 80-85
    [46] Jorden, J. R., Shirley, O. J.. Application of drilling performance data to overpressuredetection[J]. Journal of Petroleum Technology, 1966, 18(11): 1387-1394
    [47] Rehm, B., McClendon, R.. Measurement of formation pressure from drilling data[R]. SPE 3601, 1971
    [48] Vidrine, D. J., Benit, E. J.. Field verification of the effect of differential pressure on drilling rate[J]. Journal of Petroleum Technology, 1968, 20(7): 676-682
    [49] Pennebaker, E. S.. Seismic data indicate depth, magnitude of abnormal pressures[J]. World Oil, 1968, 166(7): 73-78
    [50] Eaton, B. A.. The effect of overburden stress on geopressure prediction form well logs[J]. Journal of Petroleum Technology, 1972, 24(8): 929-934
    [51] Eaton, B. A.. The equation for geopressure prediction from well logs[R]. SPE 5544, 1975
    [52] Bellotti, P., Gaicca, D.. Pressure evaluation improves drilling programs[J]. Oil and Gas Journal, 1978, 75: 76-85
    [53] Fillippone, W. R.. Estimation of formation parameters and the pediction of overpressure from seismic data[A]. The 52nd Annual Meeting of SEG, 1982, 502-503
    [54] Stone, D. G.. Predicting pore pressure and porosity from VSP data[A]. The 53rd Annual Meeting of SEG, 1983
    [55] Eberhart-Phillips, D., Han, D. H., Zoback, M. D.. Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone[J]. Geophysics, 1989, 54(1): 82-89
    [56] Martinez, R. D., Schroeder, J. D., King, G. A.. Formation pressure prediction with seismic data from the Gulf of Mexico[J]. SPE Formation Evaluation, 1991, 6(1): 27-32
    [57] Dobrinin, V. M., Serebryakov, V. A.. Geological and geophysical methods for prediction of abnormal reservior pressures[M]. Moscow, Russia, 1989
    [58] Bowers, G. L.. Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion, 1995, 10: 89-95
    [59] Cheli, E., Brancato, C.. Woodie: A tool to support overpressure detection[R]. SPE/IADC 29346, 1995
    [60]孙超,李洪伟,马璐.利用测井资料预测地层三项压力技术[J].国外测井技术,2007,22(3):11-13
    [61] Sayers, C. M., Woodward, M. J., Bartman, R. C.. Seismic pore-pressure predictionusing reflection tomography and 4-C seismic data[J]. The Leading Edge, 2002, 21(2): 188-192
    [62] Malinverno, A., Sayers, C. M., Woodward, M. J., et al. Integrating diverse measurements to predict pore pressure with uncertainties while drilling[J]. SPE 90001, 2004
    [63]戈盾.地层压力的地震预测[J].石油地震地质,1992,(4):65-85
    [64]云美厚.地震地层压力预测[J].石油地球物理勘探,1996,31(4):575-586
    [65]金业权,王越之,李自俊.地震资料预测地层压力的研究[J].石油钻探技术,2001,29(3):28-29
    [66]刘刚,王越之,李自俊.声波时差法预测地层压力分析[J].石油钻探技术,1994,22(2):5-8
    [67]陈永明.压差校正可提高d指数地层压力检测精度[J].钻采工艺,1994,17(4):25-28
    [68]梁红军,樊洪海,贾立强,等.利用声波时差检测地层孔隙压力的新方法[J].石油钻采工艺,1998,20(2):1-5
    [69]杨进,高德利.地层压力随钻监测和预测技术研究[J].石油大学学报,1999,23(1):35-38
    [70]杨进,李贵川,李庆彤.高温高压气井地层压力随钻检测方法研究[J].石油钻采工艺,2005,27(3):18-21
    [71]王振峰,罗晓容.莺琼盆地高温高压地层钻井压力预测监测技术研究[M].北京:石油工业出版社,2004
    [72]彭真明,肖慈珣,杨斌,等.地震、测井联合预测地层压力的方法研究[J].石油地球物理探勘,2000,35(2):170-174
    [73]肖慈珣,彭真明,杨斌,等.预测井底以下地层压力的新方法[J].石油学报,2001,22(1):41-44
    [74]肖慈珣,张学庆,文环明,等.中途测井资料预测井底以下地层压力[J].天然气工业,2002,22(4):23-26
    [75]樊洪海.地层孔隙压力预测检测新方法研究[D].北京:石油大学,2001
    [76]樊洪海.利用层速度预测砂泥岩地层孔隙压力单点算法模型[J].岩石力学与工程学报,2002,21(增刊):2037-2040
    [77]樊洪海.适用于检测砂泥岩地层孔隙压力的综合解释方法[J].石油勘探与开发,2002,29(1):90-91
    [78]张传进.初探井地层孔隙压力预测方法[J].石油钻探技术,2002,30(2):13-14
    [79]杨进.地层压力BP网络预测方法研究及其应用[J].石油钻采工艺,2003,25(3):13-15
    [80]饶蕾,崔杰.用钻井参数实时监测地层压力的新方法[J].石油钻采工艺,2004,26(2):35-37
    [81]祖峰,张宗林,丰全会,等.异常地层压力检测和预测方法[J].石油钻采工艺,2004,26(1):35-38
    [82]王亚东.如何用测井声波时差曲线计算地层压力[J].录井工程,2005,16(4):59-61
    [83]陈学国.三维地层压力预测方法及应用研究[J].石油钻探技术,2005,33(3):13-15
    [84]张辉,高德利.钻头下部未钻开地层的孔隙压力随钻预测[J].天然气工业,2005,25(3):79-80
    [85]左星,龚荣佳,李薇,等.地层孔隙压力的灰色预测及应用[J].石油地质与工程,2007,21(2):84-86
    [86]何世明,安文华,王书琪,等.基于灰色理论的地层孔隙压力随钻预测[J].钻采工艺,2008,31(1):18-19
    [87]王贺林,王庆魁,刘文涛,等.利用测井信息研究开发区块的地层压力[J].石油地球物理勘探,2006,41(5):557-560
    [88]吴超,陈勉,金衍.基于地震属性分析的地层孔隙压力钻前预测模型[J].石油天然气学报(江汉石油学院学报),2006,8(5):66-69
    [89]樊洪海,邢树宾,何辉.二维地层孔隙压力预测方法及应用[J].石油钻探技术,2007,35(4):6-8
    [90]魏茂安,陈潮,王延江,等.地层孔隙压力预测新方法[J].石油与天然气地质,2007,28(3):395-400
    [91]魏茂安,陈潮,马海,等.基于支持向量回归机的地层孔隙压力预测方法[J].石油物探,2007,46(2):151-155
    [92]郭齐军.测井声波时差在地层压力预测中的应用[J].中国海上油气(地质),1997,11(1):66-68
    [93]李舟波.地球物理测井数据处理与综合解释[M].长春:吉林大学出版社,2003
    [94] Wollf, M., Pelissier-Combescure, J. Faciolog-automatic electrofacies determination [A]. SPWLA 23rd Annual Logging Symposium, 1982, 1-23
    [95] Busch, J. M., Fortney, W. G., Berry, L. N.. Determination of lithology from well logs by statistical analysis[J]. SPE Formation Evaluation, 1987, 2(4): 412-418
    [96] Doveton, J. H.. Geologic log analysis using computer methods[M]. AAGP Computer Applications in Geology, Tulsa, 1994
    [97] Yao, Z. H., Wu, L. D.. A clustering approach based on Marr’s operator with its application to lithologic recognition[J]. Pattern Recognition Letters, 1991, 12(8): 451-456
    [98]寻知锋,余继峰.聚类和判别分析在测井岩性识别中的应用[J].山东科技大学学报,2008,27(5):10-13
    [99] Samuel, J. R., Fang, J. H., Karra, C. L., et al. Determination of lithology from well logs using a neural network[J]. AAPG Bulletin, 1992, 76(5): 731-739
    [100] Saggaf, M. M., Nebrija, Ed. L.. Estimation of lithologies and depositional facies from wire-line logs[J]. AAPG Bulletin, 2000, 84(10): 1633-1646
    [101] Anouar, F., Badran, F., Thiria, S.. Self-organized map, A probabilistic approach[A]. Proceedings of the Workshop on Self-Organized Maps[C], Helsinki University of Technology, Espoo, Finland, 1997
    [102] Frayssinet, D., Thiria, S., Badran, F., et al. Use of neural networks in log’s data processing: prediction and rebuilding of lithologic facies[A]. Petrophysics meets Geophysics, Paris, 2000
    [103]张治国,杨毅恒,夏立显.自组织特征映射神经网络在测井岩性识别中的应用[J].地球物理学进展,2005,20(2):332-336
    [104]张平,潘保芝,张莹,等.自组织神经网络在火成岩岩性识别中的应用[J].石油物探,2009,48(1):53-56
    [105]邱颖,孟庆武,李悌,等.神经网络用于岩性及岩相预测的可行性分析[J].地球物理学进展,2001,16(3):76-83
    [106] Zhou, Z. H., Chen, Z. Q., Chen, S. F.. Neural network based lithology identification[A]. Proceedings of the International Conference on Intelligent Information Processing at 16th IFIP World Computer Congress[C], 2000, 139-142
    [107]张洪,邹乐君,沈晓华. BP神经网络在测井岩性识别中的应用[J].地质与勘探,2002,38(6):63-65
    [108] Wang, K. X., Zhang, L. B.. Predicting formation lithology from log data by using a neural network[J]. Petroleum Science, 2008, 6(5): 242-246
    [109] Padron, M., Garcia-Salicetti, S., Barraez, D., et al. A hidden markov model approach for lithology identification from logs[A]. 3rd Conference on Artificial Intelligence Applications to the Environmental Science, 83rd Annual Meeting for American Meteorological Society, 2003
    [110]赵建,高福红.测井资料交会图法在火山岩岩性识别中的应用[J].世界地质,2003,22(2):136-140
    [111]廖太平,张福荣,张志坚.基于模糊聚类算法的复杂岩性识别[J].大庆石油学院学报,2004,28(6):58-60
    [112]覃豪,张超谟.基于粗糙集与模糊学的岩性识别[J].江汉石油学院学报,2004,26(4):60-62
    [113]王淑盛,徐正光,刘黄伟,等.改进的K近邻方法在岩性识别中的应用[J].地球物理学进展,2004,19(2):478-480
    [114]赵宇,王志良,刘冀伟.一种基于支持向量机的测井岩性预测新方法[J].微计算机信息,2004,20(6):50-51
    [115]于代国,孙建孟,王焕增,等.测井识别岩性新方法——支持向量机方法[J].大庆石油地质与开发,2005,24(5):93-95
    [116]宋延杰,张剑风,闫伟林,等.基于支持向量机的复杂岩性测井识别方法[J].大庆石油学院学报,2007,31(5):18-20
    [117]张治国,杨毅恒,夏立显.RPROP算法在测井岩性识别中的应用[J].吉林大学学报(地球科学版),2005,35(3):389-393
    [118]左晓娜,刘冀伟,王志良.基于TAN贝叶斯网络分类器的测井岩性预测[J].微计算机信息,2006,22(9-1):284-286
    [119] Gao, T. H., Cao, J. Y., Zhang, M. L., et al. Lithology recognition during oil well drilling based on fuzzy-adaptive hamming network[A]. Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications[C]. 2006, 574-578
    [120]纪福全,程国建,王潇潇,等.构造性神经网络在测井岩性识别中的应用[J].石油矿场机械,2007,36(4):52-55
    [121]张章华,孟凡卉,王文娟.基于微粒群算法的神经网络在岩性识别上的应用[J].物探化探计算技术,2007,29(2):130-133
    [122]李中亚,韩家新,杜美华.基于生长分层自组织映射网络的岩性识别模型[J].石油矿场机械,2007,36(12):10-13
    [123]刘秀娟,陈超,曾冲,等.利用测井数据进行岩性识别的多元统计方法[J].地质统计情报,2007,26(3):109-112
    [124] Jiang, A. N., Jin, L.. Studying the lithology identification method from well logs based on DE-SVM[A]. 2009 Chinese Control and Decision Conference, 2009, 2314-2318
    [125]郭海峰,李洪奇,孟照旭,等.基于突现自组织映射的数据挖掘:测井岩性识别新方法[J].石油天然气学报,2009,31(2):67-70
    [126]孙健,周魁,冉小丰,等.Bayes判别分析方法在岩性识别中的应用[J].石油天然气学报,2009,31(2):74-77
    [127]潘保芝,李舟波,付有升,等.测井资料在松辽盆地火成岩岩性识别和储层评价中的应用[J].石油物探,2009,48(1):48-52
    [128]汤小燕,刘之的,邹正银,等.准噶尔盆地六九区火成岩岩性识别方法研究[J].西南石油大学学报(自然科学版),2009,31(1):29-32
    [129] Lanning, E. N., Johnson, D. M.. Automated identification of rock boundaries: An application of the Walsh transform to geophysics well-log analysis[J]. Geophysics, 1983, 48(2): 197-205
    [130]林海燕,戴云,肖慈珣.一种基于沃希变换的测井自动分层方法[J].成都理工学院学报,1999,26(1):52-57
    [131]王祝文,刘菁华.沃尔什变换在测井曲线分层中的应用研究[J].地质与勘探,2003,39(4):81-84
    [132] Chen, H. C., Fang, J. H.. A heuristic search method for optimal zonation of well logs[J]. Mathematical Geology, 1986, 18(5): 489-500
    [133]李洪奇,张福明,邵才瑞,等.带有启发式搜索规则的多元测井数据序列最优分割方法[J].测井技术,2002,26(4):273-276
    [134]夏宏泉,陈福煊,黄继祥.电相分析的自动分层取值方法研究[J].西南石油学院学报,1996,18(2):8-14
    [135]张明玉.随钻测井自动分层取值方法研究[J].新疆石油学院学报,2002,14(2):52-55
    [136]张明玉.极值方差聚类法在测井分层取值中的应用[J].新疆石油地质,2002,23(5):429-431
    [137]焦翠华,李冰.零通小波用于测井曲线多尺度分层[J].测井技术,1999,23(3):173-175
    [138]阎辉,李鲲鹏,张学工,等.测井曲线的小波变换特性在自动分层中的应用[J].地球物理学报,2000,43(4):568-573
    [139]马飞宙,余继峰,鲁静,等.测井数据小波变换在层序地层分析中的应用研究[J].中国煤田地质,2007,19(4):70-73
    [140]黄布宙,潘保芝,李舟波.改进的模糊模式识别方法在测井曲线分层中的应用[J].物探化探计算技术,2002,24(2):119-123
    [141]万应明,高峻,董建平,等.多测井曲线的综合处理合成[J].石油地球物理勘探,2005,40(2):243-247
    [142]鲍晓欢.测井曲线的最优分割法自动分层评价[J].海洋石油,2005,25(1):81-84
    [143]郑红军,刘向君,苟迎春,等.用分维模型定量表征储集层非均质性[J].新疆石油地质,2005,26(4):418-420
    [144]李霞,范宜仁,杨立伟,等.测井曲线小波变换特性在层序地层划分中的应用[J].大庆石油地质与开发,2006,25(4):112-114
    [145]房文静,范宜仁,邓少贵,等.测井多尺度分析方法用于准层序自动划分研究[J].地球物理学进展,2007,22(6):1809-1814
    [146]张福明,查明,李洪奇,等.一种流动单元自动分层新方法及其应用[J].中国石油大学学报,2006,30(4):42-46
    [147]史清江,王延江,孙正义,等.小波变换和沃尔什变换在测井曲线分层中的联合应用[J].中国石油大学学报,2006,30(2):138-142
    [148]朱剑兵,赵培坤.利用测井曲线活度划分准层序[J].新疆石油地质,2005,26(4):426-427
    [149]易觉非.利用活度分层法实现测井自动地质分层[J].石油天然气学报,2007,29(1):78-80
    [150]闫建平,蔡进功,赵铭海,等.测井曲线融合方法研究及其在分层中的应用[J].西安石油大学学报,2008,23(6):6-10
    [151]杨磊,刘池洋,张小莉,等.利用测井曲线自动划分层序地层的方法研究[J].西北大学学报,2007,37(1):111-114
    [152]李广场,李江林.有序聚类分析在声波测井自动分层中的应用[J].工程勘察,2007,36(8):73-75
    [153]纪荣艺,樊洪海,杨雄文,等.测井曲线自动分层模型设计与实现[J].石油钻探技术,2007,35(2):24-27
    [154] Danilo, R. Velis. Statistical segmentation of geophysical log data[J]. Mathematical Geology, 2007, 39(4): 409-417
    [155]罗德江,汪兴旺,刘伟.基于相空间重构和改进最优分割法的自动分层模型[J].地球物理学进展,2009,24(2):675-679
    [156] Thiessen, A. H.. Precipitation averages for large areas[J]. Monthly Weather Review, 1911, 39(7): 1082-1084
    [157] Krige, D. G.. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of Chemical, Metallurgical and Mining Society of South Africa, 1951, 52(6) : 119-139
    [158] Grant, F. A.. A problem in the analysis of geophysical data[J]. Geophysics, 1957, 22(2): 309-344
    [159] Krumbein, W. C.. Trend surface analysis of contour-type maps with irregular control-point spacing[J]. Journal of Geophysical Research, 1959, 64(7): 823-834
    [160] Shepard, D. A two-dimensional interpolation function for irregularly-spaced data[A]. Proceedings of the 1968 23rd ACM National Conference[C], ACM, New York, 1968, 517-524
    [161] Briggs, I. C.. Machine contouring using minimum curvature[J]. Geophysics, 1974, 39(1): 39-48
    [162] Stone, C. J.. Consistent nonparametric regression[J]. The Annals of Statistics, 1977, 5(4): 595-620
    [163] Cleveland, W. S.. Robust locally weighted regression and smoothing scatterplots[J]. Journal of the American Statistical Association, 1979, 74(368): 829-836
    [164] Ruppert, D., Wand, M. P.. Multivariate locally weighted least squares regression[J]. The Annals of Statistics, 1994, 22(3): 1346-1370
    [165] Fan, J., Gijbels I.. Local polynomial modeling and its applications[M]. London: Chapman & Hall , First edition, 1996
    [166] Franke R, Nielson G. Smooth Interpolation of Large Sets of Scattered Data[J]. International Journal of Numerical Methods in Engineering, 1980, 15(2): 1691-1704
    [167] Lee, D. T., Schachter, B. J.. Two algorithms for constructing a Delaunaytriangulation[J]. International Journal of Computer and Information Sciences, 1980, 9(3): 219-242
    [168] Finlayson, B. A.. Orthogonal collocation on finite elements-progress and potential [J]. Mathematics and Computers in Simulation, 1980, 22(1): 11-17
    [169] Sibson, R.. A brief description of natural neighbor interpolation[J]. In Vic Barnet, editor, Interpreting Multivariate Data, Chichester: John Wiley & Sons, 1981, 21-36
    [170] Casanova, P. G., Alvarez, R.. Splines in geophysics[J]. Geophysics, 1985, 50(12): 2831-2848
    [171] Mitasova, H., Mitas, L.. Interpolation by regularized spline with tension: I. Theory and implementation[J]. Mathematical Geology, 1993, 25(6): 641-655
    [172] Lajaunie, C., Courrioux, G., Mauel, L.. Foliation fields and 3D cartography in geology: principles of a method based on potential interpolation[J]. Mathematical Geology, 1997, 29(4): 571-584
    [173] Voss, R. F.. Random fractal forgeries[M]. Fundamental algorithms in computer graphics, Berlin: Springer, 1985, 805-835
    [174] Barnsley, M. F.. Fractal functions and interpolaltion[J]. Constructive Approximation, 1986, 2 : 303-329
    [175] Cristakos, G.. A Bayesian/maximum-entropy view to the spatial estimation problem[J]. Mathematical Geology, 1990, 22(7): 763-777
    [176] Lee, Y. M., Ellis, J. H.. On the equivalence of kriging and maximum entropy estimators[J]. Mathematical Geology, 1997, 29(1): 131-152
    [177] Baxter, B. J. C.. The interpolation theory of radial basis functions[D]. Ph.D. thesis, University of Cambridge, 1992
    [178] Singer, D. A., Kouda, R.. Application of a feedforward neural network in the search for Kuroko deposits in the Hokuroku district, Japan[J]. Mathematical Geology, 1996, 28(8): 1017-1023
    [179] Huang, Z., Shimeld, J., Willianson, M., et al. Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada[J]. Geophysics, 1996, 61(2): 422-436
    [180] Dowd, P. A., Sarac, C.. A neural network approach to geostatistical simulation[J]. Mathematical Geology, 1994, 26(4): 491-503
    [181] Rizzo, D. M., Dougherty, D. E.. Characterization of aquifer properties using artificial neural networks: Neural Kriging[J]. Water Resources Research, 1994, 30(2): 483-497
    [182] Kanevsky, M., Arutyunyan, R., Bolshov, L., et al. Artificial neural networks andspatial estimations of Chernobyl fallouts[J]. Geoinformatics, 1995, 7(1-2): 5-12
    [183]李才伟.地学数据的分形插值与成图[J].地球科学—中国地质大学学报,1995,20(2):191-198
    [184]韩崇昭.信息融合理论与应用[J].中国基础科学,2000,(7):14-18
    [185]韩崇昭,朱洪艳.多传感信息融合与自动化[J].自动化学报,2002,28(增刊):117-124
    [186] White, F. E.. Data fusion lexicon[J]. Joint directors of laboratories, Technical Panel for C3, Data fusion sub-panel, naval ocean systems center, San Diego, CA, USA, 1987
    [187] White, F. E.. A model for data fusion[A]. Proceedings of the 1st National Symposium on Sensor Fusion[C]. Orlando, FL, 1988, 2: 5-8
    [188] Hall, D. L., Llinas, J.. Handbook of multisensor data fusion[M]. Boca Raton, FL, USA: CRC Press, 2001
    [189] Hall, D. L.. Mathematical techniques in multisensor data fusion[M]. Norwood, MA: Artech House, 1992
    [190] Llinas, J., Waltz, E.. Multisensor data fusion[M]. Norwood, MA: Artech House, 1990
    [191]康耀红.数据融合理论与应用[M].西安:西安电子科技大学出版社,1997
    [192]刘同明,夏祖勋,解洪成.数据融合技术及其应用[M].北京:国防工业出版社,1998
    [193]何友,王国宏,彭应宁,等.多传感器信息融合及应用[M].北京:电子工业出版社,2000
    [194]韩崇昭,朱洪艳,段战胜,等.多源信息融合[M].北京:清华大学出版社,2006
    [195]赵宗贵,耿立贤,周中元,等.多传感信息融合[M].南京:电子工业部二十八研究所,1993
    [196]赵宗贵.数据融合方法概论[M].南京:电子工业部二十八研究所,1998
    [197] Barron, A., Rissanen, J., Yu, B.. The minimum description length principle in coding and modeling[J]. IEEE Transactions on Information Theory, 1998, 44(6): 2743-2760
    [198] Zhou, Y. F., Leung, H.. Minimum entropy approach for multisensor data fusion [A]. Proceedings of the 1997 IEEE Signal Processing Workshop on Higher-Order Statistics[C]. Los Alamitos, CA, USA: IEEE, 1997, 336-339
    [199] Alspach, D. L., Sorenson, H. W.. Nonlinear bayesian estimation using gaussian sum approximation[J]. IEEE Transactions on Automatic Control, 1972, 17(4): 439-448
    [200] Cordon, N. J., Salmond, D. J., Smith A. F. M.. Novel approach to nonlinear/ non-Gaussian Bayesian state estimation[J]. IEE Proceedings F. Rader and Signal Processing, 1993, 140(2): 107-113
    [201] Rudolph vander Merve, Doucet A, Nando de Freitas, et al. The unscented particle filter. Technical Report CUED/F-INFENG/TR 380. From www.researchindex.com
    [202] Radford, M. N.. Probabilistic infernce using markov chain Monte Carlo Methods. Technicial Report CRG-TR-93-1, Department of Computer Science University of Toronto. From www.google.com
    [203] Shafer, G.. A mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976
    [204]孙怀江,胡钟山,杨静宇.基于证据理论的多分类器融合方法研究[J].计算机学报,2001,24(3):231-235
    [205] Smets, P.. The combination of evidence in the transferable belief model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(5): 447-458
    [206] Beynon, M., Curry, B., Morgan, P.. The Dempster-Shafer theory of evidence: An alternative approach to multicriteria decision modeling[J]. Omega (The International Journal of Management Science), 2000, 28(1): 37-50
    [207] Vapnik, V. N.. Statistical learning theory[M]. New York: Wiley, 1998
    [208]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42
    [209] Vapnik, V. N..统计学习理论的本质[M].张学工译,北京:清华大学出版社,2000
    [210] Vo, B. N., Singh, S., Doucet, A.. Sequential monte carlo methods for multitarget filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245
    [211]邓勇,施文康.随机集理论在数据融合中的应用研究[J].红外与激光工程,2002,31(6):545-549
    [212]彭冬亮,文成林,徐晓滨,等.随机集理论及其在信息融合中的应用[J].电子与信息学报,2006,28(11):2199-2204
    [213]徐晓滨,文成林,刘荣利.基于随机集理论的多源信息统一表示与建模方法[J].电子学报,2008,36(6):1174-1181
    [214] Qu, J., Sun, C. X., Bi, W. M., et al. A steam turbine-generator vibration fault diagnosis method based on rough set[A]. Proceedings of IEEE InternationalConference on Power System Technology[C], 2002, 3: 1532-1534
    [215] Shu, H. C., Sun, X. F., Si, D. J.. A new method for locating faults on transmission lines based on rough set and FNN[A]. Proceedings of IEEE International Conference on Power System Technology[C], 2002, 4: 2584-2588
    [216] Zaden, L. A.. Fuzzy Sets[J]. Information and Control, 1965, 8(3): 338-353
    [217]张晓祥,姚静,李满春.模糊集方法在空间数据处理中的应用综述[J].遥感信息,2005,38(2):47-51
    [218]张震宇,陈鹰,邵永社.一种基于模糊集理论的图像融合方法[J].遥感信息,2008,38(4):7-10
    [219]邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1987
    [220]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990
    [221] Wu, W. D., Pan, Z. L.. Grey relational analyzing the associated elements of gold[J]. The Journal of Grey Systems, 1999, 11(2): 143-146
    [222] Lindley, D. V.. Introduction to probability and statistics from a Bayesian viewpoint, Part 1: Probability; Part 2: Inference[M]. London: Cambridge University Press, 1965
    [223] Gouveia, W. P., Scales, J. A.. Bayesian seismic waveform inversion: Parameter estimation and uncertainty analysis[J]. Journal of Geophysical Research, 1998, 103(B2): 2759-2779
    [224] Bryant, I., Gonfalini, M., Moffat, J., et al. Understanding uncertainty[J]. Oilfield Review, 2002, 14(3): 2-15
    [225] Pearl, J.. Bayesian networks: A model of self-activated memory for evidence reasoning[A]. Proceedings of the 7th Conference of the Cognitive Science Society[C], University of California, Irvine, CA, 1985, 329-334
    [226] Pearl, J.. Fusion, propagation, and structuring in belief networks[J]. Artificial Intelligence, 1986, 29(3): 241-288
    [227] Pearl, J.. Probabilistic reasoning in intelligent systems[M]. San Mateo, CA: Morgan Kaufmann, 1988
    [228] Berger, O. J.. Statistical decision theory and Bayesian analysis[M]. Springer Series in Statistics. New York: Springer-Verlag, 1985
    [229]陆基孟.地震勘探原理[M].东营:石油大学出版社,2004
    [230] H.H.普泽列夫.反射波法地震勘探资料解释[M].林中洋等译,北京:中国工业出版社,1963
    [231]何樵登.地震勘探原理和方法[M].北京:地质出版社,1986
    [232]马在田.三维地震勘探方法[M].北京:石油工业出版社,1989
    [233] JamesD Robertson.地震勘探在油气田开发中的应用[M].北京:石油工业出版社,1992
    [234]李栋明,刘群星.地震技术在油气田开发中的应用[J].内蒙古石油化工,2008,(4):97-99
    [235]洪有密.测井原理与综合解释[M].东营:石油大学出版社,2004
    [236]楚泽涵.地球物理测井原理与方法[M].北京:石油工业出版社,2007
    [237]马正.油气测井地质学[M].北京:中国地质大学出版社,1994
    [238]郭海敏,戴家才,陈科贵.生产测井原理与资料解释[M].北京:石油工业出版社,2007
    [239]张燕娜,张娟娟,安雅丽.录井信息在油气钻探工程中的核心作用[J].电气传动自动化,2007,29(4):63-64
    [240]李丰收.最新石油录井关键技术应用手册[M].北京:石油工业出版社,2007
    [241]谢辉.浅谈录井信息的分类、意义、作用及应用[J].录井工程,2004,15(4):47-51
    [242]张绍槐,张洁.21世纪中国钻井技术发展与创新[J].石油学报,2001,22(6):63-68
    [243]邢立,姬月凤.录井技术现状分析与发展方向[J].录井工程,2004,15(4):40-46
    [244]李田宁.现代石油钻井工程关键技术实用手册[M].北京:石油工业出版社,2006
    [245]于继彬.钻井技术现状及发展趋势[J].中外企业家,2009,(11):180-182
    [246]印兴耀,周静毅.地震属性优化方法综述[J].石油地球物理勘探,2005,40(4):482-489
    [247]杨占龙,彭立才,陈启林,等.地震属性分析与岩性油气藏勘探[J].石油物探,2007,46(2):131-136
    [248]王彦祺.标准化钻速法检测地层压力技术的改进与应用[J].钻采工艺,1998,21(6):16-18
    [249]陈中普,黄国芳.应用NDR计算地层孔隙压力[J].录井技术,2000,11(1):21-27
    [250] Tipping, M. E.. Sparse bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244
    [251] Tipping, M. E.. The relevance vector machine[A]. Proceedings of Advances in Neural Information Processing Systems[C], Cambridge, Mass: MIT Press, 2000,652-658
    [252] Mackay, D. J. C.. Bayesian interpolation[J]. Neural Computation, 1992, 4(3): 415-447
    [253] Bishop, C. M., Tipping, M. E.. Variational relevance vector machines[A]. Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence[C], San Francisco, CA: Morgan Kaufmann, 2000, 46-53
    [254] Chen, S., Gunn, S. R., Harris, C. J.. The relevance vector machine technique for channel equalization application[J]. IEEE Transaction on Neural Networks, 2001, 12(6): 1529-1532
    [255] Wei, L. Y., Yang, Y. Y., Nishikawa, R. M., et al. Relevance vector machine for automatic detection of clustered microcalcifications[J]. IEEE Transaction on Medical Imaging, 2005, 24(10): 1278-1285
    [256]刘遵雄,张德运,孙钦东,等.基于相关向量机的电力负荷中期预测[J].西安交通大学学报,2004,38(10):1005-1008
    [257]罗勇.基于地震解释的地层可钻性及其机械钻速预测研究[D].成都:西南石油学院,2005
    [258] Bernhard, S., Alexander, S., Klaus-Robert, M.. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319
    [259]敬荣中,鲍光淑,林剑,等.一种基于数据融合的地球物理数据联合反演方法[J].地球物理学报,2004,47(1):143-150
    [260]黄鹍,陈森发,亓霞,等.基于粗集理论和支持向量机的多源信息融合方法及应用[J].模式识别与人工智能,2005,18(3):354-358
    [261]金龙,陈小宏,王守东.基于支持向量机与信息融合的地震油气预测方法[J].石油地球物理勘探,2006,41(1):76-80
    [262] Kennedy, J., Eberhart, R. C.. Particle swarm optimization[A]. Proceedings of the IEEE International Conference on Neural Networks[C], Perth, WA, Australia, 1995, 4: 1942-1948
    [263] Kennedy, J.. Bare bones particle swarms[A]. Proceedings of the IEEE Swarm Intelligence symposium[C], Piscataway, NJ: IEEE Press, 2003, 80-87
    [264] Yuan, S. Y., Wang, S. X., Tian, N.. Swarm intelligence optimization and its application in geophysical data inversion[J]. Applied Geophysics, 2009, 6(2): 166-174
    [265] Sun, J., Xu, W. B., Feng, B.. A global search strategy of quantum-behaved particle swarm optimization[A]. Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems[C], Singapore, 2004: 111-116
    [266] Sun, J., Feng, B., Xu, W. B.. Particle swarm optimization with particles having quantum behavior[A]. Proceedings of the IEEE Congress on Evolutionary Computation[C], Portland, USA, 2004, (1): 325-331
    [267] Kan, T. K., Swan, H. W.. Geopressure prediction from automatically-derived seismic velocities[J]. Geophysics, 2001, 66(6): 1937-1946
    [268]艾池,冯福平,李洪伟.地层压力预测技术现状及发展趋势[J].石油地质与工程,2007,21(6):71-76
    [269] Jones, J., Martin, D. M., Standifird, W.. Novel approach for estimating pore fluid pressures ahead of the drill bit[R]. SPE/IADC 104606, 2007
    [270] Sayers, C. M., Johnson, G. M., Denyer, G.. Predrill pore-pressure prediction using seismic data[J]. Geophysics, 2002, 67(4): 1286-1292
    [271]郭燕珩,潘仁芳,申雯龙.用地震层速度预测地层压力的方法[J].内蒙古石油化工,2008,18(5):66-67
    [272]李黔予.地震波速分析地层压力方法及压力预测分析系统介绍[J].中国海上油气(地质),1994,8(2):130-135
    [273]付素英,贾维慎.地层压力随钻监测计算方法改进[J].录井工程,2005,16(4):48-53
    [274]曾义金,樊洪海,张传进,等.一种检测地层压力新方法研究——岩石力学参数法[J].岩土力学,2005,26(12):1977-1980
    [275]樊洪海.测井资料检测地层孔隙压力传统方法讨论[J].石油勘探与开发,2003,30(4):72-74
    [276] Greenwood, J., Russell, R., Dautel, M.. The use of LWD data for the prediction and determination of formation pore pressure[R]. SPE 124012, 2009
    [277]王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西安交通大学出版社,2002
    [278] Fillippone, W. R.. On the prediction of abnormally pressured sedimentary rocks from seismic date[R]. OTC 3662, 1979
    [279] Krohng, R. A.. Gaussian swarm: A novel particle swarm optimization algorithm[A]. Proceedings of the 2004 IEEE Conference on Cybernetics and IntelligentSystems[C], Singapore, 2004: 372-376
    [280]赵瑞艳,李树荣,张晓东.基于混合遗传算法的控制受限热传导系统最优控制问题求解[J].中国石油大学学报,2009,33(2):160-163
    [281]张晓冉,张海娟,高作峰.无失效数据的一类迭代Bayes分析[J].武汉大学学报(理学版),2009,55(4):399-404
    [282] Michael, J. K., Umesh, V. V.. An introduction to computational learning theory[M]. MIT Press, 1994
    [283] Freund, Y., Schapire, R. E.. A short introduction to boosting[J]. Journal of Japanese Society for Artificial Intelligence, 1999, 14(5): 771-780
    [284] Freund, Y., Iyer, R., Schapire, R. E., et al. An efficient boosting algorithm for combining preferences[J]. Journal of Machine Learning Research, 2003, 4: 933-969
    [285]王新,沈峥.Boosting及其在数据挖掘中的应用[J].云南民族大学学报(自然科学版),2004,13(2):91-94
    [286] Freund, Y., Schapire R.E.. A decision-theretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139
    [287] Windeatt, T.. Diversity measures for multiple classifier system analysis and design[J]. Information Fusion, 2005, 6(1): 21-36
    [288]傅春燕,李平,文玉梅,等.一种采用高斯模型的步态轮廓分割算法[J].传感技术学报,2008,21(7):1155-1159
    [289]梁绍华,郑立刚,周昊,等.基于支持向量机与高斯分布估计的低NOx排放[J].化工学报,2009,60(1):223-229
    [290] Hogg, R. V., Mckean, J. W., Craig, A. T.. Introduction to mathematical statistical [M].Prentice Hall, 2004
    [291]侯景儒,尹镇南,李维明,等.实用地质统计学[M].北京:地质出版社,1998
    [292]王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999
    [293]张仁铎.空间变异理论及应用[M].北京:科学出版社,2005
    [294]靳国栋,刘衍聪,牛文杰.距离加权反比插值法和克里金插值法的比较[J].长春工业大学学报,2003,24(3):53-57
    [295] Lu, G. Y., Wong, D. W.. An adaptive inverse-distance weighting spatial interpolation technique[J]. Computer & Geoscience, 2008, 34(9): 1044-1055
    [296]张小浩,周鼎武.径向基函数方法在南泥湾油田勘探中的应用[J].地球物理学进展,2007,22(1):213-217
    [297]李信富,李小凡.分形插值地震数据重建方法研究[J].地球物理学报,2008,51(4):1196-1201
    [298]邵才瑞,关丽,张福明.基于测井数据的地质曲面插值重构方法比较[J].测井技术,2005,29(4):311-315
    [299] Cellura, M., Cirrincione, G., Marvuglia, A., et al. Wind speed spatial estimation for energy planning in Sicily: A neural kriging application[J]. Renewable Energy, 2008, 33(6): 1251-1266
    [300]常文渊,戴新刚,陈洪武.地质统计学在气象要素场插值的实例研究[J].地球物理学报,2004,47(6):982-990
    [301]马云潜,张学工.支持向量机函数拟合在分形插值中的应用[J].清华大学学报,2000,40(3):76-78
    [302]王家华,高海余,周叶.克里金地质绘图技术[M].北京:石油工业出版社,1999
    [303]赵国忠,尹芝林.井间参数预测中的实用变异函数拟合方法[J].石油学报,1998,19(1):75-78
    [304]靳松,朱筱敏,钟大康.变差函数在沉积微相自动识别中的应用[J].石油学报,2006,27(3):57-60
    [305] Koike, K., Matsuda, S., Gu, B.. Evaluation of interpolation accuracy of neural kriging with application to temperature-distribution analysis[J]. Mathematical Geology, 2001, 33(4): 421-448
    [306]邵才瑞,印兴耀,李洪奇,等.储层属性的遗传神经克里金插值方法及其应用[J].中国石油大学学报,2007,31(5):35-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700