用户名: 密码: 验证码:
金属墨水法制备CuInS_2薄膜及太阳电池
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能光伏作为一种无污染、寿命长且不受地理限制的绿色能源,被认为是解决未来能源问题的有效途径之一。近年来,世界光伏市场迅猛发展,但是,光伏发电的成本相对还比较高,因此降低发电成本就成为关键。由于薄膜电池技术具有原材料消耗少、能耗低、可大面积快速生产等优点,成为国际学术界和产业界研究的热点领域。
     CuInS2以其接近太阳光最佳匹配的禁带宽度(1.5 eV)、较大的吸收系数、较高的理论转换效率等优点,是一种非常有潜力的薄膜电池材料。但是,目前CuInS2薄膜制备技术多采用真空方法,制造成本相对较高。本文探索了应用金属颗粒墨水制备CuInS2薄膜及太阳电池的方法。首先采用多元醇还原法制备铜、铟及铜铟合金金属颗粒,然后进行金属颗粒墨水、前驱体薄膜的制备和硫化过程等工艺的研究,制备了CuInS2薄膜太阳电池。全文取得了如下具有创新意义的结果:
     (1)采用多元醇还原法制备了铜、铟及铜铟合金纳米颗粒。研究发现:反应温度和反应速度是制备铟颗粒的主要因素,NaBH4在溶剂中的分解速度决定了生长时间,高分子添加剂能起到空间位阻作用但也会影响到颗粒的均匀性。基于以上的认识,采用三乙醇胺(TEA)作为添加剂,结合快速热注入法,在140℃高温下制备了直径为10nm甚至更小的均匀的铟颗粒,反应温度及TEA的量会影响到颗粒的尺寸。研究还指出:快速注入能一次形成大量形核中心并迅速长大,高温条件可以加速了NaBH4的分解,缩短生长时间,使得还原性环境被破坏,导致铟颗粒被钝化从而限制其进一步生长。另外,采用快速热注入法也制备得到颗粒尺寸在100nm以下、分布较窄的铜铟合金颗粒,同铟颗粒的制备类似,温度和时间对颗粒的形貌没有影响,但会提高结晶性。
     (2)研究了金属颗粒的高温稳定性。实验指出:铜铟颗粒及铟颗粒即便是在充满还原性气氛的高真空CVD腔体中氧化也比较严重,说明制备得到的金属颗粒在高温条件下不稳定。通过形貌、结构分析,发现铜铟颗粒在高温热处理后转变为氧化铟纳米线,而铟颗粒则有向氧化铟空心球转变的趋势。对比在玻璃衬底及铜衬底上的铟颗粒经过热处理后的形貌差异,认为铜在氧化铟纳米线的生长过程中起到了催化作用。
     (3)利用制备的金属颗粒制备了前驱体薄膜,进而硫化烧结成CuInS2薄膜。利用CBD法制备的多孔的硫化铜或硫化铟薄膜进行补铟或补铜,最后硫化制备成致密的CuInS2薄膜。采用硫化铜补铟法制备的CuInS2薄膜制备的电池得到了2%的光电转换效率。应用铜颗粒墨水、铟颗粒墨水依次制备了铜/铟或铟/铜叠层前驱体薄膜,用铜铟颗粒制备了混合前驱体薄膜。通过硫化均能制备结构致密、晶粒较大的CuInS2薄膜。发现混合前驱体薄膜制备的CuInS2薄膜杂相相对较少,该薄膜制备的电池具有0.7%的光电转换效率。
     (4)研究了铜铟合金颗粒的硫化过程,指出杂质Na、中间相等对薄膜性能和结构的影响。发现随着在金属前驱体膜中铜/铟比的增大,CuInS2薄膜晶粒越大、结晶性越好。钠对富铟前驱体薄膜的作用要比富铜薄膜大:铜/铟比为0.6的前驱体薄膜,以含钠的玻璃为衬底,硫化后杂相为Na2In2S4;以不含钠的钼片为衬底时,其杂相为CuIn5S8。而在铜铟比在0.9和1.3的前驱体膜中,无论是衬底中的钠还是在铜铟合金中掺入的钠,都对其结构没有大的影响。研究还发现:在硫化过程中有CuIn5S8中间相参与反应,这是由于铜、铟的扩散速度及与硫反应的速度不同导致的富铜相(CuS)与富铟相(CuIn5S8)的暂时分相,在温度升高时两者作用生成CuInS2。另外,制备的CuInS2薄膜截面均为双层结构:上层薄膜由大晶粒组成,而下层薄膜的晶粒较小。这可能是由铜铟颗粒中的活性部分和非活性部分形成的。
     (5)成功利用金属颗粒墨水制备了CuInS2薄膜电池,并探讨了其中一些关键步骤对电池性能的影响。研究表明:合适厚度的CdS缓冲层及i-ZnO阻挡层能降低器件的暗电流,提高电池的开路电压;经过200℃的空气退火能有效提高器件性能,而光浴则对电池的开压有少许提高。基于以上对电池器件的认识,采用铜铟颗粒墨水法,制备出了转换效率为1.43%的CuInS2薄膜电池。
Photovoltaic technology is considered as one of effective approaches to solve the energy problems, for it is a green energy with little pollution, long service time and no geographical limitations. Recent years have witnessed the booming development of world PV market, steady increment of installed capacity and vigorous stage of PV industry. However, there's no doult that the cost of PV power is relatively so high that policy subsidies are needed to support it. Cost cutting plays the key role in the large-scale commercial application of PV power.
     It depends on technological innovations and developments to cut the cost. The thin film soalr cell technologies provide this potential. Compared with custom technologies for crystal silicon solar cells, the thin film soalr cell technologies have the following advantages:low consumption of both raw materials and manufacturing energies, rapid production on large scale, etc. Among the familiar materials for thin film solar cells, CuInS2 is endowed with nearly optimal bandgap (1.5 eV) for solar spectrum, high absorption coefficient and theoretical light-to-electricity conversion efficiency. Therefore, it can become a very promising material for thin film solar cells. Unfortunately, preparation methods for CuInS2 films are mostly based on vacuum, which certainly will increase the manufacturing cost.
     This thesis researched on the preparation of CuInS2 films and soalr cells based on metal inks. Firstly Cu, In and Cu-In nanoparticles were synthesized by the polyol-reduction method. Then metal inks and precursor films were fabricated from these nanoparticles. Sulfurization processes were investigated and CuInS2 film solar cells were prepared finally. The primary significant results were summarized as follows:
     (1) Cu, In and Cu-In nanoparticles were synthesized by the polyol-reduction method. It was found that the reaction temperature and rate are two dominant points in the synthesis of In nanoparticles, the decomposition rate of NaBH4 determined the growth time, and polymer additives acted as steric hindrance and influence the uniformity of In nanoparticles as well. Based on thes knowledge, In nanoparticle with diameter of 10 nm or even smaller could be synthesized at 140℃by combining the hot-injection method and using triethanolamine (TEA) as additives. The particle size was controlled by the reaction temperature and the amount of TEA. The hot-injection method were able to form numerous nuclei simultaneously and growth rapidly. However, the high reaction temperature could speed up the decomposition of NaBH4, shorten the growth time, disrupt the reductive environment, lead to the passivation of In nanoparticles and limit their further growth. By employing the similar hot-injection method, Cu-In nanoparticles with size of below 100 nm and narrow distributions could be synthesized. The reaction temperature and time had little effects on the morphology of Cu-In nanoparticles, but could enhance their crystallinty.
     (2) The Cu-In and In nanoparticles were ready to be oxidized enven in high vacuum CVD chamber filled with H2, indicating their instability at high temperature. By morphological and structural investigation, after high temperature annealing the Cu-In nanoparticles were turned to In2O3 nanowires, whereas the In nanoparticles were inclined to hollow spheres. By comparing the morphological differences of the products of In nanoprticle on glass and Cu substrates after annealing, it was proved that Cu acted as catalyst during the growth of In2O3 nanowires.
     (3) Metal nanoparticles were used to prepare precursor films and sulfurized to form CuInS2 films. By using the porous CuxS and InxSy films by Chemical Bath deposition (CBD), In or Cu nanoparticles were supplemented on copper or indium sulfide films respectively, then sulfurized to form compact CuInS2 films. CuInS2 film solar cells with an efficiency of about 2% were fabricated on CuInS2 films by In supplement on CuxS films. Metal precursor films with Cu/In or In/Cu stacking layers were prepared with Cu and In nanoparticle inks, those with Cu-In mixing layers were directly prepared with Cu-In nanoparticles. After sulfurization, these two kinds of precursor films were transformed to compact CuInS2 films with large grains. CuInS2 films from mixing layers had fewer impurity phases and solar cells from these films acquired an efficiency of 0.7%.
     (4) The sulfurization processes of Cu-In nanoparticles were investigated. With the increasing of Cu/In ratios in metal precursor films, the grain sizes of CuInS2 films were larger and crystallinity better. Na played a more significant role in the In-rich precursor films than in Cu-rich precursor films:For precursor films with a Cu/In ratio of 0.6, when they were sulfurized on Na-containing glass substrates, the impurity phases were Na2In2S4, on Mo substrates without Na, the impurity phases were CuIn5S8; for precursor films with Cu/In ratios of 0.9 and 1.3, Na had little influences on the structures of the sulfurized films, no matter Na were from the substrates or doped in metal inks. The intermediate phase of CuIn5S8 took part in the sulfurization process. This was due to the different diffusion rates and sulfurization rates of Cu and In, which resulting in the temporary phase segregation of Cu-rich phase (CuS) and In-rich phase (CuIn5S8). However, CuS and CuIn5S8 phases could react with each other to form CuInS2 phase. The cross section image of CuInS2 films were displayed as two-layer structures:the upper layer with large grains and bottom layer with small grains, which were probably sulfurized from active and inactive Cu-In nanparticles respectively.
     (5) CuInS2 thin film solar cells were fabricated and the effects of some key processes on the performances of solar cells were investigated. Appropriate thickness of CdS buffer layer and i-ZnO barrier layer could suppress dark current and increase open voltage of the devices. Device performances were able to be effectively improved by a 200℃air-annealing. The open voltage could be increased a bit with light-soaking. Based on the above-mentioned knowledge on devices, CuInS2 thin film solar cells with an efficiency of 1.43% were fabricated based on Cu-In metal inks.
引文
[1]Wei S.-H.,Zhang S. B. and Zunger A., Band structure and stability of zinc-blende-based semiconductor polytypes. Physical Review B 1999,59 (4), R2478-R2481.
    [2]Watanabe T. and Yamamoto T., Control of defects in CuInS2 thin films by incorporation of Na and O. Japanese Journal of Applied Physics Part 2-Letters 2000, 39(12B),L1280-L1282.
    [3]Rudigier E.,Djordjevic J.,von Klopmann C.,Barcones B.,Perez-Rodriguez A. and Scheer R., Real-time study of phase transformations in Cu-In chalcogenide thin films using in situ Raman spectroscopy and XRD. Journal of Physics and Chemistry of Solids 2005,66 (11),1954-1960.
    [4]Watanabe T.,Nakazawa H.,Matsui M.,Ohbo H. and Nakada T., The influence of sodium on the properties of CuInS2 thin films and solar cells. Solar Energy Materials and Solar Cells 1997,49 (1-4),357-363.
    [5]Chapin D. M.,Fuller C. S. and Pearson G. L., A new silicon p-n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics 1954, 25 (5),676-677.
    [6]Shockley W. and Queisser H. J., Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics 1961,32 (3),510-&.
    [7]Redfield D., Mutiple-pass thin-film silicon solar cell. Applied Physics Letters 1974, 25(11),647-648.
    [8]Green M. A.,Blakers A. W.,Shi J.,Keller E. M. and Wenham S. R.,19.1-percent efficient silicon solar-cell. Applied Physics Letters 1984,44 (12),1163-1164.
    [9]Blakers A. W.,Wang A.,Milne A. M.,Zhao J. H. and Green M. A.,22.8-percent efficient silicon solar-cell. Applied Physics Letters 1989,55 (13),1363-1365.
    [10]Zhao J.,Wang A.,Altermatt P. and Green M. A.,24 percent efficient silicon solar-cells with double-layer antireflection coatings and reduced resistance loss. Applied Physics Letters 1995,66 (26),3636-3638.
    [11]Zhao J. H.,Wang A. H.,Green M. A. and Ferrazza F.,19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters 1998,73 (14),1991-1993.
    [12]Green M. A.,Emery K.,Hishikawa Y. and Warta W., Solar cell efficiency tables (version 35). Progress in Photovoltaics 2010,18 (2),144-150.
    [13]王晓晶,班群and沈辉,硅太阳电池材料的研究进展.能源工程2002,(4),28-31.
    [14]赵富鑫and魏彦章,太阳电池及应用.国防工业出版社,1985.
    [15]怡舒,非晶硅薄膜成为太阳能发展主流.技术与市场2010,(2),64-64.
    [16]张志坚,俞德庆,张玉林and许开芳,太阳能电池能源成本分析与薄膜电池技术发展.云南冶金2008,(6),65-69,77,88.
    [17]邹红叶,硅薄膜太阳能电池的原理及其应用.物理通报2009,(5),56-57.
    [18]伍沛亮,王红林and陈砺,叠层太阳能电池研究进展和发展趋势.科技导报2009,(3),95-98.
    [19]杨德仁,太阳能电池材料.北京:化学工业出版社,2006.
    [20]沈镇平,我国铜铟镓硒薄膜太阳电池研制取得突破.化工时刊2009, (2),9-9.
    [21]马光耀,康志君and谢元锋,铜铟镓硒薄膜太阳能电池的研究进展及发展前景.金属功能材料2009,(5),46-49.
    [22]Wagner S.,Shay J. L.,Migliora.P and Kasper H. M., CuInSe2-CdS heterojuction photovoltaic detectors. Applied Physics Letters 1974,25 (8),434-435.
    [23]Su D. S.,Neumann W.,Hunger R.,Schubert-Bischoff P.,Giersig M.,Lewerenz H. J.,Scheer R. and Zeitler E., CuAu-type ordering in epitaxial CuInS2 films. Applied Physics Letters 1998,73 (6),785-787.
    [24]Su D. S. and Wei S. H., Transmission electron microscopy investigation and first-principles calculation of the phase stability in epitaxial CuInS2 and CuGaSe2 films. Applied Physics Letters 1999,74 (17),2483-2485.
    [25]Tell B.,Shay J. L. and Kasper H. M., Electrical properties, optical properties, and band structure of CuGaSe2 and CuGaS2. Physical Review B 1971,4 (8),2463-2471.
    [26]Zhang S. B.,Wei S. H. and Zunger A., A phenomenological model for systematization and prediction of doping limits in Ⅱ-Ⅳ and Ⅰ-Ⅲ-Ⅵ2 compounds. Journal of Applied Physics 1998,83 (6),3192-3196.
    [27]Tell B.,Shay J. L. and Kasper H. M., Room-temperature electrical properties of 10 Ⅰ-Ⅲ-Ⅵ2 semiconductors. Journal of Applied Physics 1972,43 (5),2469-2470.
    [28]Kazmerski L. L.,Ayyagari M. S. and Sanborn G. A., CuInS2 thin-films: preparation and properties. Journal of Applied Physics 1975,46 (11),4865-4869.
    [29]Rajaram P.,Thangaraj R.,Sharma A. K.,Raza A. and Agnihotri O. P., Structural and optical properties of sprayed CuInS2 films. Thin Solid Films 1983,100 (2), 111-116.
    [30]Pamplin B. and Feigelson R. S., Spray pyrolysis of CuInSe2 and related ternary semiconducting compounds. Thin Solid Films 1979,60 (2),141-146.
    [31]Tell B. and Kasper H. M., Optical and Electrical Properties of AgGaS2 and AgGaSe2. Physical Review B 1971,4 (12),4455.
    [32]Calderon C.,Bartolo-Perez P.,Clavijo J.,Oyola J. S. and Gordillo G., Morphological characterization and AES depth profile analysis of CuInS2 thin films. Solar Energy Materials and Solar Cells 2010,94 (1),17-21.
    [33](a) Hunger R.,Scheer R.,Diesner K.,Su D. and Lewerenz H. J., Heteroepitaxy of CuInS2 on Si(111). Applied Physics Letters 1996,69 (20),3010-3012; (b) Metzner H.,Hahn T.,Bremer J. H. and Conrad J., Epitaxial growth of CuInS2 on sulphur terminated Si(111). Applied Physics Letters 1996,69 (13),1900-1902.
    [34](a) Kondo K.,Nakamura S.,Sano H.,Hirasawa H. and Sato K., Growth and characterization of CuInS2 films grown by rf ion-plating. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 1997,36 (11),6668-6671; (b) Bleyhl S.,Saad M.,Diesner K.,Jager-Waldau A. and Lux-Steiner M. C., Preparation of CuInS2 thin films by sequential evaporation of In2S3 and CuS. Solid State Phenomena 1999,67-8,367-372; (c) Yamamoto Y.,Yamaguchi T.,Tanaka T.,Tanahashi N. and Yoshida A., Characterization of CuInS2 thin films prepared by sputtering from binary compounds. Solar Energy Materials and Solar Cells 1997,49 (1-4),399-405.
    [35]Cayzac R.,Boulc'h F.,Bendahan M.,Lauque R. and Knauth P., Direct preparation of crystalline CuInS2 thin films by radiofrequency sputtering. Materials Science and Engineering B-Advanced Functional Solid-State Materials 2009,157 (1-3),66-71.
    [36]Nanu M.,Reijnen L.,Meester B.,Schoonman J. and Goossens A., CuInS2 thin films deposited by ALD. Chemical Vapor Deposition 2004,10 (1),45-49.
    [37]Djessas K.,Masse G. and Ibannaim M., CuInS2 thin films for solar cell applications. Journal of the Electrochemical Society 2000,147 (4),1235-1239.
    [38]Wada T.,Negami T. and Nishitani M., Preparation of CuInS2 films by sulfurization of Cu-In-O films. Applied Physics Letters 1993,62 (16),1943-1945.
    [39]Binsma J. J. M. and van der Linden H. A., Preparation of thin CuInS2 films via a two-stage process. Thin Solid Films 1982,97 (3),237-243.
    [40](a) Ogawa Y.,Uenishi S.,Tohyama K. and Ito K., Preparation and properties of CuInS2 thin films. Solar Energy Materials and Solar Cells 1994,35,157-163; (b) Dzionk C.,Metzner H.,Hessler S. and Mahnke H. E., Phase formation during the reactive annealing of Cu-In films in H2S atmosphere. Thin Solid Films 1997,299 (1-2),38-44.
    [41]Park G. C.,Chung H. D.,Kim C. D.,Park H. R.,Jeong W. J.,Kim J. U.,Gu H. B. and Lee K. S., Photovoltaic characteristics of CuInS2/CdS solar cell by electron beam evaporation. Solar Energy Materials and Solar Cells 1997,49 (1-4),365-374.
    [42](a) Klaer J.,Bruns J.,Henninger R.,Seimer K.,Klenk R.,Ellmer K. and Braunig D., Efficient CuInS2 thin-film solar cells prepared by a sequential process. Semiconductor Science and Technology 1998,13 (12),1456-1458; (b) Siemer K.,Klaer J.,Luck I.,Bruns J.,Klenk R. and Braunig D., Efficient CuInS2 solar cells from a rapid thermal process (RTP). Solar Energy Materials and Solar Cells 2001,67 (1-4),159-166; (c) Muller K.,Milko S. and Schmeisser D., Preparation of stoichiometric CuInS2 surfaces-an XPS and UPS study. Thin Solid Films 2003,431,312-316.
    [43]Okamoto H., Commont on Cu-In (Copper-Indium). Journal of Phase Equilibria 1994,15,226.
    [44]Agrawal K. Thermally activated sulfurization for copper indium sulfide solar cells. [Master Thesis], The University of Texas at Arlington,2007,7-9.
    [45]Nakano T.,Mizuhashi H. and Baba S., Transition of roughness evolution in Cu-In alloy films by the formation of intermetallic compounds. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 2005,44 (4A),1932-1938.
    [46]Keppner W.,Klas T.,Korner W.,Wesche R. and Schatz G., Compound Formation at Cu-In Thin-Film Interfaces Detected by Perturbed gamma-gamma Angular Correlations. Physical Review Letters 1985,54 (21),2371.
    [47]von Klopmann C.,Djordjevic J. and Scheer R., Real-time studies of phase transformations in Cu-In-Se-S thin films-1. Intermetallic phase transformations. Journal of Crystal Growth 2006,289 (1),113-120.
    [48]Gossla M.,Metzner H. and Mahnke H. E., Coevaporated Cu-In films as precursors for solar cells. Journal of Applied Physics 1999,86 (7),3624-3632.
    [49]Rudigier E.,Barcones B.,Luck I.,Jawhari-Colin T.,Perez-Rodriguez A. and Scheer R., Quasi real-time Raman studies on the growth of Cu-In-S thin films. Journal of Applied Physics 2004,95 (9),5153-5158.
    [50]von Klopmann C.,Djordjevic J.,Rudigier E. and Scheer R., Real-time studies of phase transformations in Cu-In-Se-S thin films 2. Sulfurization of Cu-In precursors. Journal of Crystal Growth 2006,289 (1),121-133.
    [51]Rodriguez-Alvarez H.,Koetschau I. M.,Genzel C. and Schock H. W., Growth paths for the sulfurization of Cu-rich Cu/In thin films. Thin Solid Films 2009,517 (7), 2140-2144.
    [52]Fukuzaki K.,Kohiki S.,Yoshikawa H.,Fukushima S.,Watanabe T. and Kojima I., Changes in the electronic structure of CuInS2 thin films by Na incorporation. Applied Physics Letters 1998,73 (10),1385-1387.
    [53]Fukuzaki K.,Kohiki S.,Yamamoto T.,Oku M. and Watanabe T., Co-incorporation effects of O and Na with CuInS2 thin films. Applied Physics Letters 2000,77 (17), 2713-2715.
    [54]Yamamoto T.,Watanabe T. and Hamashoji Y, Effects of codoping using Na and O on Cu-S divacancy in p-type CuInS2-Physica B-Condensed Matter 2001,308, 1007-1010.
    [55]Watanabe T.,Nakazawa H. and Matsui M., Sulfurization in gas mixture of H2S and O-2 for growth of CuInS2 thin films. Japanese Journal of Applied Physics Part 2-Letters 1999,38 (4B), L430-L432.
    [56]Zribi M.,Kanzari M. and Rezig B., Effects of Na incorporation in CuInS2 thin films. European Physical Journal-Applied Physics 2005,29 (3),203-207.
    [57]Rudigier E.,Pietzker C.,Wimbor M.,Luck I.,Klaer J.,Scheer R.,Barcones B.,Colin T. J.,Alvarez-Garcia J.,Perez-Rodriguez A. and Romano-Rodriguez A., Real-time investigations of the influence of sodium on the properties of Cu-poor prepared CuInS2 thin films. Thin Solid Films 2003,431,110-115.
    [58]Luck I.,Kneisel J.,Siemer K.,Bruns J.,Scheer R.,Klenk R.,Janke N. and Braunig D., Influence of Na on the properties of Cu-rich prepared CuInS2 thin films and the performance of corresponding CuInS2/CdS/ZnO solar cells. Solar Energy Materials and Solar Cells 2001,67 (1-4),151-158.
    [59]Ortega-Lopez M. and Morales-Acevedo A., Characterization of CuInS2 thin films for solar cells prepared by spray pyrolysis. Thin Solid Films 1998,330 (2),96-101.
    [60]Sahal M.,Mari B. and Mollar M., CuInS2 thin films obtained by spray pyrolysis for photovoltaic applications. Thin Solid Films 2009,517 (7),2202-2204.
    [61](a) Krunks M.,Bijakina O.,Varema T.,Mikli V. and Mellikov E., Structural and optical properties of sprayed CuInS2 films. Thin Solid Films 1999,338 (1-2),125-130; (b) Krunks M.,Mikli V.,Bijakina O. and Mellikov E., Growth and recrystallization of CuInS2 films in spray pyrolytic process. Applied Surface Science 1999,142 (1-4), 356-361; (c) Zouaghi M. C.,Ben Nasrallah T.,Marsillac S.,Bernede J. C. and Belgacem S., Physico-chemical characterization of spray-deposited CuInS2 thin films. Thin Solid Films 2001,382 (1-2),39-46; (d) Krunks M.,Kijatkina O.,Rebane H.,Oja I.,Mikli V. and Mere A., Composition of CuInS2 thin films prepared by spray pyrolysis. Thin Solid Films 2002,403,71-75.
    [62]Moller J.,Fischer C. H.,Muffler H. J.,Konenkamp R.,Kaiser I.,Kelch C. and Lux-Steiner M. C., A novel deposition technique for compound semiconductors on highly porous substrates:ILGAR. Thin Solid Films 2000,361-362,113-117.
    [63]Qiu J. J.,Jin Z. G.,Qian J. W.,Shi Y. and Wu W. B., ILGAR CuInS2 films from various preparation conditions. Materials Letters 2005,59 (22),2735-2740.
    [64]Padam G. K. and Rao S. U. M., Preparation and Characterization of Chemically Deposited CuInS2 Thin-Films. Solar Energy Materials 1986,13 (4),297-305.
    [65]Tang H. X.,Yan M.,Zhang H.,Ma X. Y.,Wang L. and Yang D. R., Preparation and characterization of CuInS2 thin films for solar cells by chemical bath deposition. Chemical Research in Chinese Universities 2005,21 (2),236-239.
    [66]Cui F. M.,Wang L.,Xi Z. Q.,Sun Y. and Yang D. R., Fabrication and characterization of CuInS2 films by chemical bath deposition in acid conditions. Journal of Materials Science-Materials in Electronics 2009,20 (7),609-613.
    [67]Cui F. M.,Wang L.,Chen X. F.,Sheng X.,Yang D. R. and Sun Y, Effect of heat treatment on the property of CuInS2 thin film prepared by chemical bath deposition. Thin Film Physics and Applications, Sixth International Conference 2008,6984, A9841.
    [68]Bini S.,Bindu K.,Lakshmi M.,Kartha C. S.,Vijayakumar K. P.,Kashiwaba Y. and Abe T., Preparation of CuInS2 thin films using CBD CuxS films. Renewable Energy 2000,20(4),405-413.
    [69]Bhattacharya R. N.,Cahen D. and Hodes G, Electrodeposition of Cu---In---S layers and their photoelectrochemical characterization. Solar Energy Materials 1984, 10(1),41-45.
    [70]Hodes G.,Engelhard T.,Cahen D.,Kazmerski L. L. and Herrington C. R., Electroplated CuInS2 and CuInSe2 layers:Preparation and physical and photovoltaic characterization. Thin Solid Films 1985,128 (1-2),93-106.
    [71]Gupta A.,Tiwari A. N. and Murthy A. S. N., CuInS2 Films Prepared by Sulfurization of Electroless Deposited Cu-in Alloy. Solar Energy Materials 1988,18 (1-2),1-8.
    [72](a) Sebastian P. J.,Sanchez A. and Fernandez A. M., CuInSe2 based solar-cell structures by CVTG. Applied Energy 1995,52 (2-3),199-207; (b) Calixto E.,Sebastian P. J. and Fernandez A., Electro/electroless deposition and characterization of Cu-In precursors for CIS (CuInSe2) films. Journal of Crystal Growth 1996,169 (2),287-292; (c) Fernandez A. M.,Calixto M. E.,Sebastian P. J.,Gamboa S. A.,Hermann A. M. and Noufi R. N., Electrodeposited and selenized (CuInSe2) (CIS) thin films for photovoltaic applications. Solar Energy Materials and Solar Cells 1998,52 (3-4),423-431; (d) Bhattacharya R. N.,Hiltner J. F.,Batchelor W.,Contreras M. A.,Noufi R. N. and Sites J. R.,15.4% CuIn1-xGaxSe2-based photovoltaic cells from solution-based precursor films. Thin Solid Films 2000,361, 396-399.
    [73]Todorov T.,Cordoncillo E.,Sanchez-Royo J. F.,Carda J. and Escribano P., CuInS2 films for photovoltaic applications deposited by a low-cost method. Chemistry of Materials 2006,18 (13),3145-3150.
    [74]Lee S.-Y. and Park B.-O., CuInS2 thin films deposited by sol-gel spin-coating method. Thin Solid Films 2008,516 (12),3862-3864.
    [75]Li L.,Coates N. and Moses D., Solution-Processed Inorganic Solar Cell Based on in Situ Synthesis and Film Deposition of CuInS2 Nanocrystals. Journal of the American Chemical Society 2010,132 (1),22-23.
    [76]Lee S. Y.,Kim K. H. and Park B. O., Oxidation effect on densification of CuInS2 absorber layer by paste coating. Thin Solid Films 2008,516 (15),4709-4712.
    [77]Guo Q.,Ford G. M.,Hillhouse H. W. and Agrawal R., Sulfide Nanocrystal Inks for Dense Cu(Inl-xGax)(S1-ySey)2 Absorber Films and Their Photovoltaic Performance. Nano Letters 2009,9 (8),3060-3065.
    [78](a) Panthani M. G.,Akhavan V.,Goodfellow B.,Schmidtke J. P.,Dunn L.,Dodabalapur A.,Barbara P. F. and Korgel B. A., Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal "Inks" for Printable Photovoltaics. Journal of the American Chemical Society 2008,130 (49),16770-16777; (b) Guo Q.,Kim S. J.,Kar M.,Shafarman W. N.,Birkmire R. W.,Stach E. A.,Agrawal R. and Hillhouse H. W., Development of CuInSe2 Nanocrystal and Nanoring Inks for Low-Cost Solar Cells. Nano Letters 2008,8 (9),2982-2987.
    [79](a) Kaigawa R.,Uesugi T.,Yoshida T.,Merdes S. and Klenk R., Instantaneous preparation of CuInSe2 films from elemental In, Cu, Se particles precursor films in a non-vacuum process. Thin Solid Films 2009,517 (7),2184-2186; (b) Ahn S.,Kim K.,Chun Y. and Yoon K., Nucleation and growth of Cu(In,Ga)Se2 nanoparticles in low temperature colloidal process. Thin Solid Films 2007,515 (7-8),4036-4040; (c) Kaelin M.,Rudmann D.,Kurdesau F.,Zogg H.,Meyer T. and Tiwari A. N., Low-cost CIGS solar cells by paste coating and selenization. Thin Solid Films 2005,480, 486-490; (d) Kapur V. K.,Bansal A.,Le P. and Asensio O. I., Non-vacuum processing of CuIn1-xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks. Thin Solid Films 2003,431,53-57; (e) Basol B. M., Low cost techniques for the preparation of Cu(In,Ga)(Se,S)2 absorber layers. Thin Solid Films 2000,361,514-519.
    [80]Basol B. M.,Kapur V. K.,Norsworthy G.,Halani A.,Leidholm C. R. and Roe R., Efficient CuInSe2 solar cells fabricated by a novel ink coating approach. Electrochemical and Solid State Letters 1998,1 (6),252-254.
    [81]Kaelin M.,Rudmann D.,Kurdesau F.,Meyer T.,Zogg H. and Tiwari A. N., CIS and CIGS layers from selenized nanoparticle precursors. Thin Solid Films 2003,431, 58-62.
    [82]Wada T. and Kinoshita H., Preparation of CuIn(S,Se)2 by mechanochemical process. Thin Solid Films 2005,480,92-94.
    [83]Norsworthy G.,Leidholm C. R.,Halani A.,Kapur V. K.,Roe R.,Basol B. M. and Matson R., CIS film growth by metallic ink coating and selenization. Solar Energy Materials and Solar Cells 2000,60 (2),127-134.
    [84]Weil B. D.,Connor S. T. and Cui Y., CuInS2 Solar Cells by Air-Stable Ink Rolling. Journal of the American Chemical Society 2010,132 (19),6642-6643.
    [85]Dhere N. G., Present status and future prospects of CIGSS thin film solar cells. Solar Energy Materials and Solar Cells 2006,90 (15),2181-2190.
    [86]Olsen L. C.,Eschbach P. and Kundu S., Role of buffer layers in CIS-based solar cells. Conference Record of the Twenty-Ninth Ieee Photovoltaic Specialists Conference 2002 2002,652-655.
    [87]Jahagirdar A. H.,Kadam A. A. and Dhere N. G., Role of i-ZnO in optimizing open circuit voltage of CIGS2 and CIGS thin film solar cells. Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Vols 1 and 22006,557-559.
    [88]Winkler M.,Griesche J.,Konovalov I.,Penndorf J.,Wienke J. and Tober O., CISCuT-solar cells and modules on the basis of CuInS2 on Cu-tape. Solar Energy 2004,77 (6),705-716.
    [89]Kaiser I.,Ernst K.,Fischer C. H.,Konenkamp R.,Rost C.,Sieber I. and Lux-Steiner M. C., The eta-solar cell with CuInS2:A photovoltaic cell concept using an extremely thin absorber (eta). Solar Energy Materials and Solar Cells 2001,67 (1-4),89-96.
    [90]Kazmerski L. L. and Sanborn G. A., CuInS2 thin-film homojunction solar-cells. Journal of Applied Physics 1977,48 (7),3178-3180.
    [91]Kazmerski L. L.,White F. R.,Ayyagari M. S.,Juang Y. J. and Patterson R. P., Growth and characterization of thin-film compound semiconductor photovoltaic heteroj unctions. Journal of Vacuum Science & Technology 1977,14 (1),65-68.
    [92]Russak M. A. and Creter C., N-CuInS2/Sulfide-Polysulfide Electrochemical Photovoltaic Cells. Journal of the Electrochemical Society 1985,132 (7),1741-1745.
    [93]Lewerenz H. J.,Goslowsky H.,Husemann K. D. and Fiechter S., Efficient solar-energy conversion with CuInS2. Nature 1986,321 (6071),687-688.
    [94]Mitchell K. W.,Pollock G. A. and Mason A. V. In 7.3% efficient CuInS2 solar cell, Photovoltaic Specialists Conference,1988., Conference Record of the Twentieth IEEE,1988; 1988; pp 1542-1544 vol.2.
    [95]Scheer R.,Walter T.,Schock H. W.,Fearheiley M. L. and Lewerenz H. J., CuInS2 based thin-film solar-cell with 10.2-percent efficiency. Applied Physics Letters 1993, 63 (24),3294-3296.
    [96]Braunger D.,Hariskos D.,Walter T. and Schock H. W., An 11.4% efficient polycrystalline thin film solar cell based on CuInS2 with a Cd-free buffer layer. Solar Energy Materials and Solar Cells 1996,40 (2),97-102.
    [97]Ram P. R.,Thangaraj R.,Sharma A. K. and Agnihotri O. P., Totally Sprayed CuInSe2/Cd(Zn)S and CuInS2/Cd(Zn)S Solar-Cells. Solar Cells 1985,14 (2), 123-131.
    [98]John T. T.,Mathew M.,Kartha C. S.,Vijayakumar K. P.,Abe T. and Kashiwaba Y., CuInS2/In2S3 thin film solar cell using spray pyrolysis technique having 9.5% efficiency. Solar Energy Materials and Solar Cells 2005,89 (1),27-36.
    [99]Nanu M.,Schoonman J. and Goossens A., Nanocomposite three-dimensional solar cells obtained by chemical spray deposition. Nano Letters 2005,5 (9), 1716-1719.
    [100]Nanu M.,Schoonman J. and Goossens A., Inorganic nanocomposites of n-and p-type semiconductors:A new type of three-dimensional solar cell. Advanced Materials 2004,16 (5),453-456.
    [101]Balamurugan B.,Kruis F. E.,Shivaprasad S. M.,Dmitrieva O. and Zahres H., Size-induced stability and structural transition in monodispersed indium nanoparticles. Applied Physics Letters 2005,86 (8).
    [102]Soulantica K.,Maisonnat A.,Fromen M. C.,Casanove M. J.,Lecante P. and Chaudret B., Synthesis and self-assembly of monodisperse indium nanoparticles prepared from the organometallic precursor [In(eta(5)-C5H5)]. Angewandte Chemie-International Edition 2001,40 (2),448-451.
    [103]Li Z. W.,Tao X. J.,Cheng Y. M.,Wu Z. S.,Zhang Z. J. and Dang H. X., A simple and rapid method for preparing indium nanoparticles from bulk indium via ultrasound irradiation. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2005,407 (1-2),7-10.
    [104]Tsai K. L. and Dye J. L., Nanoscale metal particles by homogeneous reduction with alkalides or electrides. Journal of the American Chemical Society 1991,113 (5), 1650-1652.
    [105]Zhao Y. B.,Zhang Z. J. and Dang H. X., A novel solution route for preparing indium nanoparticles. Journal of Physical Chemistry B 2003,107 (31),7574-7576.
    [106]Wang Y. L. and Xia Y. N., Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Letters 2004, 4 (10),2047-2050.
    [107]Singh P.,Kumar S.,Katyal A.,Kalra R. and Chandra R., A novel route for the synthesis of indium nanoparticles in ionic liquid. Materials Letters 2008,62 (25), 4164-4166.
    [108]Chou N. H.,Ke X. L.,Schiffer P. and Schaak R. E., Room-temperature chemical synthesis of shape-controlled indium nanoparticles. Journal of the American Chemical Society 2008,130 (26),8140-8141.
    [109]Hammarberg E. and Feldmann C., In0 Nanoparticle Synthesis Assisted by Phase-Transfer Reaction. Chemistry of Materials 2009,21 (5),771-774.
    [110]Katari J. E. B.,Colvin V. L. and Alivisatos A. P., X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface. The Journal of Physical Chemistry 1994,98 (15),4109-4117.
    [111]Chou N. H. and Schaak R. E., Shape-controlled conversion of beta-Sn nanocrystals into intermetallic M-Sn (M=Fe, Co, Ni, Pd) nanocrystals. Journal of the American Chemical Society 2007,129 (23),7339-7345.
    [112]Peng X.,Wickham J. and Alivisatos A. P., Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ Colloidal Semiconductor Nanocrystal Growth:"Focusing" of Size Distributions. Journal of the American Chemical Society 1998,120 (21),5343-5344.
    [113]Peng Z. A. and Peng X., Mechanisms of the Shape Evolution of CdSe Nanocrystals. Journal of the American Chemical Society 2001,123 (7),1389-1395.
    [114]Peng Z. A. and Peng X. G., Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes:Nucleation and growth. Journal of the American Chemical Society 2002,124 (13),3343-3353.
    [115]Barcones B.,Perez-Rodriguez A.,Calvo-Barrio L.,Romano-Rodriguez A.,Morante J. R.,Rudigier E.,Luck I.,Djordjevic J. and Scheer R., In situ and ex situ characterisation of thermally induced crystallisation of CuInS2 thin films for solar cell. Thin Solid Films 2005,480,362-366.
    [116]Zeng F. H.,Zhang X.,Wang J.,Wang L. S. and Zhang L. N., Large-scale growth of In2O3 nanowires and their optical properties. Nanotechnology 2004,15 (5), 596-600.
    [117]Hibberd C. J.,Ernits K.,Kaelin M.,Muller U. and Tiwari A. N., Chemical Incorporation of Copper into Indium Selenide Thin-films for Processing of CuInSe2 Solar Cells. Progress in Photovoltaics 2008,16 (7),585-593.
    [118]Joswig A.,Gossla M.,Metzner H.,Reislohner U.,Hahn T. and Witthuhn W., Sulphurization of single-phase Cu11In9 precursors for CuInS2 solar cells. Thin Solid Films 2007,515 (15),5921-5924.
    [119]Gossla M.,Mahnke H. E. and Metzner H., Investigation of thin films of the Cu-In and CuInS2 system. Thin Solid Films 2000,361,56-60.
    [120]Jeong S.,Woo K.,Kim D.,Lim S.,Kim J. S.,Shin H.,Xia Y. and Moon J., Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Advanced Functional Materials 2008,18 (5),679-686.
    [121](a) Rudigier E.,Luck I. and Scheer R., Quality assessment of CuInS2-based solar cells by Raman scattering. Applied Physics Letters 2003,82 (24),4370-4372; (b) Scheer R.,Klenk R.,Klaer J. and Luck I., CuInS2 based thin film photovoltaics. Solar Energy 2004,77 (6),777-784.
    [122](a) Abaab M.,Kanzari M.,Rezig B. and Brunei M., Structural and optical properties of sulfur-annealed CuInS2 thin films. Solar Energy Materials and Solar Cells 1999,59 (4),299-307; (b) Henninger R.,Klaer J.,Siemer K.,Bruns J. and Braunig D., Electroreflectance of CuInS2 thin film solar cells and dependence on process parameters. Journal of Applied Physics 2001,89 (5),3049-3054.
    [123]Scheer R.,Diesner K. and Lewerenz H. J., Experiments on the microstructure of evaporated CuInS2 thin films. Thin Solid Films 1995,268 (1-2),130-136.
    [124]Rodriguez-Alvarez H.,Ko" tschau I. M. and Schock H. W., Pressure-dependent real-time investigations on the rapid thermal sulfurization of Cu-In thin films. Journal of Crystal Growth 2008,310 (15),3638-3644.
    [125]Mouler J. F.,Stickle W. F.,Sobol P. E. and Bomben K. D., Handbook of X-ray Photoelectron Spectroscopy, A reference book of standard spectra for identification and interpretation of XPS data. Chastain, J., Ed, Perkin-Elmer Corporation, Eden Prairie:1992.
    [126]Scheer R. and Lewerenz H. J., Photoemission-study of evaporated CuInS2 thin-films.1. surface stoichiometry and phase segregation. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 1994,12 (1),51-55.
    [127]Courtel F. M.,Paynter R. W.,Marsan B. and Morin M., Synthesis, Characterization, and Growth Mechanism of n-Type CuInS2 Colloidal Particles. Chemistry of Materials 2009,21 (16),3752-3762.
    [128]Kaigawa R.,Wada T.,Bakehe S. and Klenk R., Three-stage evaporation of Cu(In,Ga)S2 solar cell absorber films without KCN treatment and Na control. Thin Solid Films 2006,511,430-433.
    [129]Oja I.,Nanu M.,Katerski A.,Krunks M.,Mere A.,Raudoja J. and Goossens A., Crystal quality studies of CuInS2 films prepared by spray pyrolysis. Thin Solid Films 2005,480,82-86.
    [130](a) Schmid T.,Camus C.,Lehmann S.,Abou-Ras D.,Fischer C. H.,Lux-Steiner M. C. and Zenobi R., Spatially resolved characterization of chemical species and crystal structures in CuInS2 and CuGaxSey thin films using Raman microscopy. Physica Status Solidi a-Applications and Materials Science 2009,206 (5),1013-1016; (b) Alvarez-Garcia J.,Marcos-Ruzafa J.,Perez-Rodriguez A.,Romano-Rodriguez A.,Morante J. R. and Scheer R., MicroRaman scattering from polycrystalline CuInS2 films:structural analysis. Thin Solid Films 2000,361,208-212.
    [131]Izquierdo-Roca V.,Perez-Rodriguez A.,Romano-Rodriguez A.,Morante J. R.,Alvarez-Garcia J.,Calvo-Barrio L.,Bermudez V.,Grand P. P.,Ramdani O.,Parissi L. and Kerrec O., Raman microprobe characterization of electrodeposited S-rich CuIn(S,Se)2 for photovoltaic applications:Microstructural analysis. Journal of Applied Physics 2007,101(10).
    [132]Alvarez-Garcia J.,Perez-Rodriguez A.,Barcones B.,Romano-Rodriguez A.,Morante J. R.,Janotti A.,Wei S. H. and Scheer R., Polymorphism in CuInS2 epilayers:Origin of additional Raman modes. Applied Physics Letters 2002,80 (4), 562-564.
    [133]Rudigier E.,Alvarez-Garcia J.,Luck I.,Klaer J. and Scheer R., Quality assessment of chalcopyrite thin films using Raman spectroscopy. Journal of Physics and Chemistry of Solids 2003,64 (9-10),1977-1981.
    [134]Camus C.,Abou-Ras D.,Allsop N. A.,Gledhill S. E.,Kohler T.,Rappich J.,Lauermann I.,Lux-Steiner M. C. and Fischer C. H., Formation of CuInS2-carbon multilayers in the spray ILGAR process. Physica Status Solidi a-Applications and Materials Science 2010,207 (1),129-131.
    [135]Zribi A.,Kanzari M. and Rezig B., Post-growth annealing treatment effects on properties of Na-doped CuInS2 thin films. Materials Science and Engineering B-Advanced Functional Solid-State Materials 2008,149 (1),1-6.
    [136]Contreras M. A.,Romero M. J.,To B.,Hasoon F.,Noufi R.,Ward S. and Ramanathan K., Optimization of CBD CdS process in high-efficiency Cu(In,Ga)Se2-based solar cells. Thin Solid Films 2002,403-404,204-211.
    [137]Rau U. and Schock H. W., Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells-recent achievements, current understanding, and future challenges. Applied Physics a-Materials Science & Processing 1999,69 (2),131-147.
    [138](a) Noufi R.,Matson R. J.,Powell R. C. and Herrington C., The role of oxygen in CuInSe2 thin-films and CdS/CuInSe2 devices. Solar Cells 1986,16 (1-4),479-493; (b) Cahen D. and Noufi R., Defect chemical explanation for the effect of air annealing on CdS/CuInSe2 solar-cell performance. Applied Physics Letters 1989,54 (6),558-560; (c) Rau U.,Braunger D.,Herberholz R.,Schock H. W.,Guillemoles J. F.,Kronik L. and Cahen D., Oxygenation and air-annealing effects on the electronic properties of Cu(In,Ga)Se2 films and devices. Journal of Applied Physics 1999,86 (1),497-505.
    [139](a) Ruberto M. N. and Rothwarf A., Time-dependent open-circuit voltage in CuInSe2/CdS solar-cells:theory and experiment. Journal of Applied Physics 1987,61 (9),4662-4669; (b) Kontges M.,Reineke-Koch R.,Nollet P.,Beier J.,Schaffler R. and Parisi J., Light induced changes in the electrical behavior of CdTe and Cu(In,Ga)Se2 solar cells. Thin Solid Films 2002,403,280-286; (c) Igalson M. and Platzer-Borkman C., The influence of buffer layer on the transient behavior of thin film chalcopyrite devices. Solar Energy Materials and Solar Cells 2004,84 (1-4),93-103; (d) Lany S. and Zunger A., Light-and bias-induced metastabilities in Cu(In,Ga)Se2 based solar cells caused by the (V-Se-V-Cu) vacancy complex. Journal of Applied Physics 2006, 100(11).
    [140]Topper K.,Bruns J.,Scheer R.,Weber M.,Weidinger A. and Braunig D., Photoluminescence of CuInS2 thin films and solar cells modified by postdeposition treatments. Applied Physics Letters 1997,71 (4),482-484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700