用户名: 密码: 验证码:
拜耳法赤泥高温相转变规律及铁铝钠回收研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤泥是从铝土矿中提取氧化铝之后的废渣。赤泥产量大、颗粒小、碱度高,目前以筑坝堆存为主,容易造成环境污染及安全事故。赤泥综合利用是一项世界性难题。
     本文以中国铝业公司山东企业第二氧化铝厂产生的拜耳法赤泥为研究对象,在详细分析赤泥样品基本性质的基础上,提出了先粒径分级预处理然后回收利用的技术路线,重点针对分级后细赤泥的利用问题展开了研究。论文在两种不同还原气氛下制得海绵铁与磁铁矿,并在这两种还原气氛下分别开展了碱石灰烧结实验研究。对拜耳法赤泥高温烧结过程进行了模拟和实验分析,探讨了烧结气氛、体系组成对体系相产物及铁铝钠回收率的影响规律。
     (1)在系统分析了赤泥中主要元素和矿物在不同粒径颗粒中的分布规律后,提出了赤泥可以分为两部分进行回收利用:粒径大于0.075 mm的粗赤泥,粒径小于0.075mm的细赤泥。其中,粗赤泥可以通过磁选或重选工艺富集赤铁矿,粗砂用作建材;细赤泥可用于回收铁、铝、钠,残渣用于建材生产。
     (2)拜耳法赤泥单独回收海绵铁的初步探索实验表明,焙烧温度1300℃,炭粉:赤泥为18:100,添加剂:赤泥为6:100,焙烧时间110 min时,磁选精矿中总铁含量达到89.05%,金属化率96.98%,回收率81.40%。细赤泥联合回收铁铝的初步探索实验表明,在1100℃左右的焙烧条件下,Al的回收率可以达到80%,但精矿中铁的含量和铁的回收率仅为34.46%和45.83%。烧结温度的提高有利于获得较高的铁回收率和铁矿质量,但过高的温度不利于铝钠的回收。
     (3)以磁铁矿为目标产物的拜耳法赤泥还原烧结实验表明,以煤焦为还原剂,煤焦用量为赤泥质量的0.4%-0.5%,1000℃焙烧1h,可以得到磁铁矿为主的尖晶石结构固溶体。在该还原条件下,碱石灰焙烧后Al和Na的溶出率分别为75.74%和88.42%,赤泥中钠回收率为80.70%。残渣经磁选后,铁回收率和精矿总铁分别为50.01%,50.29%。溶出渣中的Na2O含量较低(1.55%),有利于后续资源化利用。
     (4)应用MPE (Multi Phase Equlibrium)热力学模拟计算软件对拜耳法赤泥高温烧结过程进行了模拟分析,并对模拟数据进行了实验验证。不同还原气氛下的赤泥焙烧过程的模拟结果表明,体系的平衡产物主要包括铝硅酸钠(Na2Al(Al,Si)O4)、黄长石((Ca, Na)2(Al, Mg, Fe2+)[(Al, Si)SiO7])、尖晶石(包括磁铁矿(Fe3O4)和铝尖晶石(FeAl2O4)及其固溶体)、赤铁矿(Fe2O3)、方铁矿(FeO)及单质铁(Fe)等,其中尖晶石、赤铁矿、方铁矿及单质铁的产生有赖于体系的还原气氛。1000℃时,氧分压在1×10-5atm至1×10-13 atm之间时,可以保持尖晶石的稳定。实验结果表明,样品中的尖晶石为磁铁矿(Fe304)、铝尖晶石(Fe(Fe,Al)2O4)和钛铁尖晶石(Fe(Fe,Ti)2O4或(Ti,Fe)Fe2O4)的固溶体,可以验证模拟结果。
     模拟和实验分析表明,氧化钙和氧化钠的适量加入将降低尖晶石类矿物的稳定性,还原气氛有利于铝的回收。体系中的钙硅比与铝硅酸钠体系中的硅含量及铝硅酸钠中铝和钠的溶出性能之间存在相关性,体系中CaO的加入可以降低铝硅酸钠体系中的硅含量,提高铝和钠的溶出率;Na2O的增加可以降低尖晶石固溶体中铝尖晶石的含量,从而有利于提高铝的溶出率和铁精矿的质量。850℃-1000℃温度范围内时,体系的平衡产物为铝硅酸钠、斜硅钙石、尖晶石等。
     拜耳法赤泥先经粒径分级预处理,粗赤泥经物理处理分离铁矿和粗砂,细颗粒采用还原碱石灰烧结联合回收铁、铝、钠,低碱残渣用于生产建材,可以实现赤泥的零排放。反应气氛及体系组成对赤泥碱石灰烧结体系相转变及铁铝钠回收影响的研究将为实现拜耳法赤泥的零排放奠定一定的理论基础。
Bauxite residue, or red mud, is the largest environmental concern of alumina refineries mainly because of the fine particle sizes of this waste stream and its caustic nature. This waste presents serious problems for storage and potential environmental pollution. The treatment and utilization of high volume red mud waste has been a major challenge for the alumina industry.
     For this study, the Bayer red mud sample was supplied by the No.2 alumina plant of Shandong Aluminum Company, a branch of Chinalco. Based on analysis on elements and mineral phase distributions in red mud particles with different sizes, the thesis proposed that, the separation pretreatment of red mud by particle sizes was beneficial to red mud utilization. The study focused on the recovery of Al, Na and Fe from fine red mud with soda-lime roasting under reductive atmosphere. Both of direct reductive iron (DRI) and magnetite were considered as desirable products in different reductive atmospheres. Optimizing experiments for soda-lime roasting and leaching processes were carried out. The reductive soda-lime roasting process of Bayer red mud at high temperature was modeled, and the effect of PO2 and composition of the system on phase transformation and recovery of Fe, Al and Na were discussed.
     (1) Based on the distributions of elements and mineral phases in red mud particles with different sizes, the thesis proposed that, the red mud sample can be divided into two parts, i.e. bulk red mud particles, with particle sizes above 0.075 mm, and fine red mud particles, with sizes below 0.075 mm. Iron ore and sand can be separated out from the bulk red mud with physical beneficial technologies. Fe, Al and Na can be recovered from fine red mud particles.
     (2) The optised conditions for DRI recovery from red mud are sintering temperature of 1300℃,110 min, with 18 g carbon and 6 g addition for 100 g red md. Under these conditions,81.40% Fe was recovered from red mud with 89.05% of total Fe contents (TFe). When the samples were roasted at 1100℃, over 80% Al were concentrated into the solution, however, the TFe and recovery ratio of Fe were 34.46% and 45.83%, respectively. A serial of experimental results showed that, the temperature requirements of recovery of Fe and Al were much different.
     (3) For recovery of magnetite from the fine red mud, the coal char was used as reductive agent. When the fine red md was roasted with coal char (0.4-0.5 g/100 g red mud) at 1000℃for 1h, spinel can be obtained as one of main phases. Under optimized soda-lime roasting and leaching conditions, the extraction of Al and Na were 75.74% and 88.42%, respectively. And 80.70% of Na in raw red mud was recovered. After magnetic separation of leached residue,50.01% of Fe was concentrated with TFe of 50.29% in concentrate. In separated residue, the content of Na was 1.55%, which would be available for production of building materials.
     (4) The roasting process was modeled with MPE (Multiphase Equilibrium), a thermodynamics modeling software. Some experiments were carried out to verify the modeling results. The modeling results showed that, the equilibrium phases in reductive roasting system are sodium aluminosilicate (NaAl(Al, Si)O4), melilite ((Ca, Na)2 (Al, Mg, Fe2+) [(Al, Si)SiO7]), spinel (including the solid solution of Fe3O4 and FeAl2O4), hematite (Fe2O3), wustite (FeO) and metallic Fe. The existing of iron containing phases depends on the atmospheres of the system. The PO2 (Partial Pressure of O2) should be kept between 1.0 x 10-5 atm and 1.0×10-13 atm to make the spinel phase stable in the system. Experiments proved that the spinel phase in samples were solid solution of aluminous spinel (Fe (Fe, Al)2 O4), ulvite ((Fe (Fe, Ti)2O4, or (Ti, Fe) Fe2O4)), as well as magnetite (Fe3O4). The results were agreed with MPE results.
     The soda-lime roasting processes of the Bayer red mud were also modeled. The calculated results showed that, the addition of CaO and Na2O in limited ranges can decrease the stability of spinel phase. And the addition of CaO may decrease the Si contents in sodium aluminosilicate, as well as the addition of Na2O decrease the Al content in spinel. The temperature range of 850℃-1000℃is suitable for the formation of desirable phases i.e. sodium aluminosilicate, larnite and spinel. However, the reaction velocity will be slow.
     After pretreating of Bayer red mud, iron ore and sand can be separated from the bulk red mud. Fe, Al and Na can be recovered from the fine red mud, and the residue can be used for producing building materials. The study on effects of reaction atmospheres and compositions of the system on phase transformation and recovery of Fe, Al and Na will be a theory foundation for realization of zero waste of Bayer red mud.
引文
[1]International Aluminium Institute. Alumina Production. http://stats.world-aluminium.org/iai/stats_new/formServer.asp?form=5
    [2]USGS (United States Geological Survey). Principles of a resource/reserve classification for mineral. US Geological Survey Circular 831,1980:1-7
    [3]USGS (United States Geological Survey). Mineral Commodity Summaries: Bauxite and alumina. United States Government Printing Office, Washington: 2008 http://minerals.usgs.gov/minerals/pubs/commodity/bauxite/mcs-2008-bauxi.pdf
    [4]USGS (United States Geological Survey). Bauxite and Alumina-2001, in U.S. Geol. Survey, Minerals Yearbook 2001:Volume I:Metals and Minerals. http://minerals.er.usgs.gov/minerals/pubs/commodity/bauxite/bauxmyb01.pdf
    [5]中国联合钢铁网.我国铝土矿进口增长过快来源过于集中http://www.custeel.com/Scripts/viewArticle.jsp?articleID=1146636
    [6]刘祥民.全面落实节能减排,大力促进铝的消费,推动中国铝工业实现又好又快和可持续发展http://www.chinania.org.cn/web/huiyi/2i3/fhbg/lv.doc
    [7]艾孟井.结合实际贯彻科学发展观—我国氧化铝生产工艺选择.世界有色金属,2005,(2):8-13
    [8]中国铝业公司.一水硬铝石强化拜耳法生产技术的研究应用项目通过鉴定.http://www.cnitdc.com/xhgzwz/xhkjgz/2006-12-4/20061204C155420.html,2006
    [9]中国长城铝业公司等.铝土矿选矿-拜耳法生产氧化铝新工艺.http://www.hnkjcg.com.cn/huojiang/showgj.aspx?id=6AF3AB31D3E8DD83, 2000
    [10]陈义,李军旗,黄芳等.拜耳法赤泥吸收S02废气的研究.贵州工业大学学报(自然科学版),2007,36(4):30-32,36
    [11]杨家宽.赤泥综合利用新技术研究.博士后报告.武汉:华中科技大学图书馆.2006
    [12]景英杰,景英勤,杨奇.赤泥的基本特性及其工程特性.轻金属,2001,(4):20-23
    [13]Red Mud Characteristics. http://www.redmud.org/Characteristics.html
    [14]Nunn RF. Advances in red mud dewatering and disposal technologies. Light Metals 1998; 107-113
    [15]Brunori C, Cremisini C, Massanisso P, Pinto V, Torricelli L. Reuse of a treated red mud bauxite waste:studies on environmental compatibility. J. Hazard. Mater 2005, 117:55-63
    [16]Paramguru RK, Rath PC, Misra VN. Trends in red mud utilization-a review. Mineral Processing & Extractive Metall Rev 2005; 26:1-29
    [17]Agrawal A., Sahu K.K., Pandey B.D. Solid waste management in non-ferrous industries in India. Resources, Conservation and Recycling,2004,42(2):99-120
    [18]华银氧化铝矿严重污染鉴河http://bbs.akun.net/viewthread.php?tid=75553, 2008
    [19]河南省环境保护厅.突出监管重点,狠抓设施运行,全面推动污染减排和环境综合整治工作http://www.hnepb.cn/tabid/75/InfoID/12711/Default.aspx
    [20]Kylie Batholomew. Alumina refinery investigated for slurry release. http://www.abc.net.au/news/stories/2009/05/26/2580738.htm,2009
    [21]新京报电子报. 匈废水拦截坝面临溃坝http://epaper.bjnews.com.cn/html/2010-10/10/content_155202.htm?div=-1,2010
    [22]中国新闻网. 航拍匈牙利铝厂有毒废水泄露http://www.chinanews.com.cn/tp/hd/2010/10-09/8538.shtml#nextpage,2010
    [23]Maneesh Singh, S.N.Vpadhayay, P.M.Prasad. Preparation of special cements from red mud. Waste Management,1996, (8):665-670
    [24]Maneesh Singh, S.N.Vpadhayay, P.M.Prasad. Preparation of iron rich cements using red mud. Cement and Concrete Research,1997, (7):1037-1046
    [25]钟声.用赤泥作混凝土掺合料的试验研究.建工技术,1994,(3):17-22
    [26]颜祖兴.水泥赤泥混凝土开发应用研究.混凝土,2000,(10):18-20
    [27]Songyi An. Application of red mud on building ceramics. Light Metal,2000, (12): 49-52
    [28]浦学琴,邱永斌,范仲书.赤泥在釉面砖中应用的可行性研究.江苏陶瓷,1989,(1):16-20
    [29]Vincenzo M Sglavo, Renzo Campostrini, Stefano Maurina et al. Bauxite'red mud' in the ceramic industry, part I:thermal behaviour. J. of the European Ceramic Society,2000, (20):235-244
    [30]J.Pera, R.Boumaza, J.Ambroise. Development of a Pozzolanic Pigment from Red Mud. Cement and Concrete Research,1997,27(10):1513-1522
    [31]Nevin Yalcin, Vahdettin Sevinc. Utilization of bauxite waste in ceramic glazes. Ceramics International,2000, (26):485-493
    [32]Ekrem Kalkan. Utilization of red mud as a stabilization material for the preparation of clay liners. Engineering Geology,2006,87(3-4),220-229
    [33]S. Agatzini-Leonardou, P. Oustadakis. Red mud addition in the raw meal for the production of Portland cement clinker [J]. Journal of Hazardous Materials,2004, 116(1-2):103-110
    [34]Taner Kavas. Use of boron waste as a fluxing agent in production of red mud brick. Building and Environment,2006,41(12):1779-1783
    [35]P.E.Tsakiridis, S.Gatzini-Leonardou, Oustadakisp. Red mud addition in the raw meal for the production of Portland cement clinker. Journal of Hazardous Materials,2004,116(1/2):103-11
    [36]Kara, M., Emrullahoglu, O. F. Study of Seydisehir red mud wastes as brick and roofing tiles. In:Second International Ceramics Congress, Traditional Ceramics. Istanbul:1994,(1):181-189
    [37]Vinod K. Gupat, Monika Gupat, Saurabh Sharma. Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminium industry waste. Wat. Res.,2001,35(5):1125-1134
    [38]Resat Apak, Esma Tutem, Mehmet Hugul, et al. Heavy metal cation retention by unconventional sorbents (red muds and fly ashes).Wat. Res.,1998,32(2):430-440
    [39]H. Soner Altundogan, Sema Altundogan, FikretTumen, et al. Arsenic adsorption from aqueous solutions by activated red mud. Waste Management,2002, (22):357-363
    [40]B. Koumanova, M. Drame, M. Popangelova. Phosphate removal from aqueous solutions using red mud wasted in bauxite Bayer's process. Resources, Conservation and Recycling,1997, (19):11-20
    [41]Yunus Cengeloglu, Ali Tor, Mustafa Ersoz. Removal of nitrate from aqueous solution by using red mud. Separation and Purification Technology,2006, (51): 374-378
    [42]Yunus Cengeloglu, Esengul Kir, Mustafa Ersoz. Removal of fluoride from aqueous solution by using red mud. Separation and Purification Technology.2002, (28):81-86
    [43]李抚立.氧化铝厂生产的外排赤泥用于燃煤脱硫的可行性浅析.有色金属节能.2003,10(5):24-26
    [44]Kasai, Toshihiro, Mizota, Tadato. Waste materials utilization of red mud from Bayer process, recovery of rare metals and zeolite-synthesis. In:TMS; MMIJ. First International Conference on Processing Materials for Properties. Honolulu, HI: Minerals, Metals & Materials Soc,1993,165-168
    [45]Roach, G.I.D., Cardile, C.M. Zeolite production from DSP in red mud feedstock. In:TMS. Light Metals:Proceedings of Sessions, TMS Annual Meeting. Denver, Minerals, Metals & Materials Soc,1993,51-57
    [46]Ochsenkuhn Petropoulou Maria, Hatzilyberis Th., et al. Pilot Plant Investigation of the Leaching Process for the Recovery of Scandium from Red Mud. Industrial and Engineering Chemistry Research,2002,41(23):5794-5801
    [47]D. I. Smirnov, V. Molchanova. The investigation of sulfuric acid sorption recovery of scandium and uranium from the red mud of alumina production. Hydrometallurgy.1997,45(3):249-259
    [48]尹中林.从平果铝矿的拜耳法赤泥中提取氧化钪的初步试验研究.铝镁通讯,1995,(3):16-23
    [49]Luige Piga, Fausto Pochetti, Luisa Stoppa. Recovering Metals from Red Mud Generate during Alumina Production. Journal of Metal,1993,45:54-59
    [50]Akash deep, Poonma Malik, Bina Gupta. Extraction and separation of Ti (Ⅳ) using thiophosphinic acids and its recovery from limonite and red mud. Separation Science and technology.2001.36(4):671-685
    [51]Cengloglu Y., Kir E., Erson M. Recovery and concentration of Al(Ⅲ), Fe(Ⅲ), Ti (Ⅳ),Na (I) from red mud. Journal of Colloid and Interface Science 2001,244(2): 342-346
    [52]Erol Ercag、Resat Apak. Furnace smelting and extractive metallurgy of red mud: recovery of TiO2, Al2O3 and pig iron. J. Chem. Techno. Biotechnology.1997,70: 241-246
    [53]Jiangjuan Zhang, Zuoguo Deng, Tinghua Xu. Experimental research on leaching of red mud with acid. Light Metal.2005, (2):13-15
    [54]Liu, P., Huo, Z., Gu, S., Ding, J., Zhu, J., and Liu, G.. Magnetic dressing iron mineral concentrate from Bayer red mud. Light Metals,1995:149-153.
    [55]Braithwait, M. Beneficiation of iron oxide waste, GB Patent 2078211-A., Jan. 1982.
    [56]管建红.采用脉动高梯度磁选机回收赤泥中铁的实验研究.江西有色金属,2000,(4):16-18
    [57]李卫东.拜耳法赤泥选铁新技术研究:[硕士论文].长沙:中南大学图书馆.2006
    [58]张怀银,徐兰增.氧化铝赤泥选铁工艺:中国,200810015511.5,2008
    [59]Qinfang Xiang, Xiaohong Liang, Mark E. Schlesinger, John L. Watson. Low-temperature reduction of ferric iron in red mud. Light Metals 2001,157 162
    [60]Dobos, G., Horvath, G., Felfoldi, Z.. Complex utilization of red mud including the production of pig iron. Trav. Com. Etude Bauxites Alumine Alum,1974,12:151-159
    [61]Grzymek, J. and Grzymek, W.. Methods for obtaining iron, alumina, titania and binders from metallurgical slags and from'red mud'remaining in the Bayer process. Light Metals,1982:143-155
    [62]Szepvolgyi, J., Bertoti, I., Toth, A., Szekely, T.. Chlorination of a slag produced from red mud. React. Solids,1988,5:139-153
    [63]张鹏科,杨印东,李光强.用赤泥进行铁水预处理.矿业快报,2005,21(3):26-30
    [64]C. Heck. Iron powder from Bayer-process waste. Chem. Abstr.1958,52,117
    [65]Takaya Kitajima, Eiki Kasai. Carbothermic reduction of bauxite residue. Shigen-to-Sozai.1999,115(8):611-617
    [66]Peihong Li, Xingwang Li. Research on directly reduction of red mud from Pingguo Aluminum Company. Light Metal,1997, (10):20-23
    [67]梅贤功,袁明亮,陈荩.高铁拜耳法赤泥煤基直接还原工艺的研究.有色金属(治炼),1996,(2):27-30
    [68]梅贤功,袁明亮,陈荩.某高铁赤泥煤基直接还原过程中金属铁晶粒长大特性研究.矿产综合利用.1995,(2):9-15
    [69]Yongkang Liu, Xiangong Mei. Research on directly reduction of high iron red mud. Sintering and Pelletizing,1995,20(2):5-9
    [70]刘万超,杨家宽,肖波.拜耳法赤泥中铁的提取及残渣制备建材.中国有色金属学报,2008,18(1):187-192
    [71]W. Liu, J. Yang, B. Xiao. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues. J. Hazard. Mater. (2008), doi:10.1016/j.jhazmat.2008.03.122
    [72]周秋生,范旷生,李小斌,彭志宏,刘桂华.采用烧结法处理高铁赤泥回收氧化铝.中南大学学报(自然科学版),2008,39(1):92-97
    [73]杨重愚.氧化铝生产工艺学.北京:冶金工业出版社,1993
    [74]何润德,张念炳,黎志英等.添加石灰处理纯碱烧结法赤泥的研究.贵州工业大学学报(自然科学版),2004,33(1):7-9
    [75]马武权,朱云勤.一种生产氢氧化铝的新方法.中国发明专利,ZL90110019.6
    [76]Li Zhong, Yifei Zhang, Yi Zhang. Extraction of alumina and sodium oxide from red mud by a mild hydro-chemical process. J. Hazard. Mater., doi:10.1016/j.jhazmat.2009.08.036
    [77]Erol Ercag、Resat Apak. Furnace smelting and extractive metallurgy of red mud: recovery of TiO2, Al2O3 and pig iron. J. Chem. Technol. Biotechnol.1997,70,241-246
    [78]Fursman, Oliver C., Mauser, J. E., Butler, M. O., and Stickney. Utilization of red mud residues from alumina production. U.S. Bureau of Mines Report of Investigation 7454,1970
    [79]Kizhakke G. H., Little R., Ark. Process for recovering soda and alumina values from red mud. United States Patent,4045537,1977
    [80]Dobos G., Horvath G., Kaptay G. et al. Method for the treatment of red mud. United States Patent,3989513,1976
    [81]Bruckard W. J.; Calle C. M.; Davidson R. H.; Glenn A. M.; Jahanshahi S.; Somerville M. A; Sparrow G. J; Zhang L,2010. Smelting of red mud to form a soluble sodium aluminium silicate phase to recover alumina and soda. Mineral Process. and Extractive Metallurgy (Trans. Inst. Min. Metall. C).2010,119,18-26.
    [82]Jingdong Zhang, Yintai Li, Shiwen Bi. Research on utilization of high iron bauxite in Guangxi. Light Metal,1990,12:9-12
    [83]孙会兰,涂赣峰,毕诗文等.七铝十二钙的合成及其在高碳钠铝酸钠溶液中的溶出性能.轻金属,2007,11:17-19
    [84]Yintai Li, Shiwen Bi, Zhenying Duan. Discussion about the utilization of gibbsite bauxite in Guangxi Guigang. Light Metal,1992:6-14
    [85]陆佩文.无机材料科学基础(硅酸盐物理化学).武汉:武汉理工大学出版社,2003
    [86]叶大伦.实用无机物热力学数据手册.北京:冶金工业出版社,1981
    [87]董跃华,李雯.计算机在相图热力学计算中的应用.江西理工大学学报,2007,(3):18-20
    [88]Bale C W, Chartrand P, Degterov S A et al. FactSage thermochemical software and database. CALPHAD,2002,26(2):189-228
    [89]Chen S L, Daniel S, Zhang F, et al. The Pandat software package and its applications. CALPHAD,2002, (26):175-188
    [90]Chen SL, Zhang F, Daniel S, et al. Calculating Phase Diagrams Using Pandat and PanEngine. Journal of Materials,2003, (55):48-51
    [91]Anderson J O, Helander T, Hoglund L, et al. Thermo-Calc and Dictra, computational tools for materials. CALPHAD,2002,26(2):273-312
    [92]乔芝郁,郝士明.相图计算研究的进展.材料与冶金学报,2005,4(2):83-90
    [93]L. Zhang, S. Jahanshahi, S. Sun et al. CSIRO's multiphase reaction models and their industrial applications. JOM 2002, Nov.51-56
    [94]L. Zhang, S. Sun, S. Jahanshahi. Molecular dynamics simulations of silicate slags and slag-solid Interfaces. J. Non-Crystall. Solids,2001,282:24-29
    [95]中华人民共和国铝土矿石化学分析方法(GB/T 3257.1-1999)
    [96]李连仲等.岩石矿物分析(第一分册).北京:地质出版社,1991.294-296
    [97]E. Jamieson, A. Jones, D Cooling, N. Stockton. Magnetic separation of Red Sand to produce value. Minerals Engineering,2006,19(15):1603-1605
    [98]Picaro, B. Pei, A. Kane, M. Thornber, A. Fletcher. Separation and mineralogical analysis of Bayer red mud. Dev. Chem. Eng. Mineral Process,2002,10(5/6): 475-489
    [99]Wanchao Liu; Xinfeng Zhu; Xiaoshen Zhang; Jiakuan Yang. Size separation pre-treatment and alumina recovery from Bayer red mud. Paper presented at XXV International Mineral Processing Congress (IMPC) 2010 Proceedings, Brisbane, Australia.2010
    [100]江文琛.拜耳法赤泥碱石灰烧结法回收铁铝实验研究,[硕士论文].武汉:华中科技大学图书馆
    [101]CSIRO. Introduction of Multiphases Equlibirium,2009
    [102]Ihsan Barin. Thermochemical Data of Pure Substances. the 3rd edtion. Gemany: Wiley-VCH Verlag GmbH,2008
    [103]Li X., Xiao W., Liu W. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering. Trans. Nonferrous Met. Sic. China,2009(19): 1342-47
    [104]邓红梅,曾文明,陈念贻.氧化铝生产中“硅渣”的组成和结构研究.金属学报,1996,(32)12:1248-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700