用户名: 密码: 验证码:
智能化控制SBBR处理城市污水脱氮除磷性能和微生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污水排放标准日趋严格,众多新建和原有污水处理厂都面临着氮、磷达标排放的压力,以防止富营养化为目的脱氮除磷已成为学术界的主要研究目标之一,我国的污水处理行业正面临着污水深度脱氮除磷的问题。本研究自主研发的城市污水脱氮除磷创新工艺——智能化控制序批性生物膜反应器(ICS-SBBR),与传统的生物脱氮除磷工艺相比,具有单池运行,不需物理分区,微生物浓度高等优点。ICS-SBBR工艺系统以独特的运行方式按照时间顺序形成交替运行的(好氧/缺氧)n环境,创造有利于硝化、反硝化、好氧吸磷和反硝化摄取磷的环境条件,实现高效脱氮除磷,曝气时间和水力停留时间短,既节约了能耗,又减小了占地面积,降低了基建投资。
     本研究以混纺纤维填料计时器控制序批性生物膜反应器(TCS-SBBR)为参比,研究了不同进水C/N比下,混纺纤维填料ICS-SBBR工艺系统的脱氮除磷性能和微生物多样性;以悬浮填料TCS-SBBR为参比,研究了不同水力停留时间(HRT)、不同进水C/N比和C/P比时,悬浮填料ICS-SBBR工艺系统的脱氮除磷性能、反硝化菌和聚磷菌种属组成。主要研究成果如下:
     不同的进水C/N比和控制模式对悬浮填料ICS系统和TCS系统COD和NH4+-N的去除影响不大;但对TN的去除影响显著,尤其是当C/N比为5.0和3.3时,ICS系统对TN的去除率分别比TCS系统高15.5%和12.1%。C/N比对磷去除的表观影响不明显,但ICS系统和TCS系统内磷的去除机理不同,ICS系统中没有厌氧释磷现象的发生,缺氧期内能发生反硝化除磷,TCS系统为传统的厌氧释磷好氧吸磷工艺。ICS系统比TCS系统节能40%,HRT缩短30%。ICS系统内生物膜微生物生长环境为(好氧/缺氧)n,Bacteroidetes(拟杆菌纲)类群占群落的45%,为优势菌群,而TCS系统内生物膜微生物生长环境为厌氧/好氧,Betaproteobacteria(β-变形杆菌纲)类群占群落的37%,为优势菌群;优势菌群的不同,导致ICS系统和TCS系统对氮的去除效果和除磷的机理不同。
     以悬浮填料SBBR系统为研究对象,在一个运行周期内,调整TCS系统的‘厌氧+好氧’时间,共设置4种HRT工况:(3+5)h、(3+6)h、(4+5)h、(2+7)h。在4种HRT工况下,HRT对ICS系统去除有机物、氮和磷的性能没有影响,但对TCS系统NH4+-N、TN和TP的影响较大,尤其是当(4+5)h时,去除效果不显著(53.6%、82.9%和69.0%),而(2+7)h时,仅部分恢复(48.0%、68.4%和75.7%)。C/N比对悬浮填料ICS系统和TCS系统内TN的去除影响显著,ICS系统对TN的去除率分别为96.3%、89.7%和84.3%,而TCS系统则为89.2%、79.5%和76.8%;对TP去除的表观影响不明显,去除率均为100%。仅改变C/P比不影响ICS系统和TCS系统对TN和COD的去除。对悬浮填料ICS系统和TCS系统中反硝化菌和聚磷菌的研究发现,反硝化聚磷菌是聚磷菌中的重要组成部分,在缺氧环境下能够成为优势菌群;系统中存在着能直接好氧吸磷的聚磷菌,可不经过厌氧释磷阶段而直接除磷,且系统需要的HRT较短。
Sewage drainage standards become more stringent and a large number of new and existing sewage treatment plants are facing the pressure of the nitrogen and phosphorus discharge standards. For the purpose to prevent the eutrophication, nitrogen and phosphorus removal has become the main national goal of academia. Sewage treatment industry in China is facing the problem of nitrogen and phosphorus removal from wastewater. Intelligent controlling system-sequencing batch biofilm reactor (ICS-SBBR), the developed innovative technology of nitrogen and phosphorus removal from urban sewage in this study has the advantages of operation with a single Structures, no physical partition, and high microbial concentration compared with conventional nitrogen and phosphorus process. ICS-SBBR process creates alternating running (aerobic/anoxic)n environment in chronological order in a unique operation mode. This creates benefit conditions for nitrification, denitrification, aerobic phosphorus uptake and denitrifying phosphorus uptake, and short aeration time and hydraulic retention time, which saves energy, minimizes the area, and reduces the investment in infrastructure.
     This study investigated nitrogen and phosphorus removal performance and microbial diversity in blended fiber filled ICS-SBBR process under different C/N ratios. The nitrogen and phosphorus removal performance and species composition of denitrifying bacteria and polyphosphate accumulating organisms were also investigated in suspended materials packed ICS-SBBR process.
     Different C/N ratios and control modes had little effect on the COD and NH4+-N removal but significant effect on TN removal in suspended carrier ICS system and timer controlling system (TCS). When the C/N ratios were 5.0 and 3.3, TN removal efficiencies in ICS were 15.5% and 12.1% higher than those of TCS. The C/N ratio had no obvious effect on phosphorus removal. The mechanism of phosphorus removal in the ICS system was different from the TCS system. In ICS system, anaerobic phosphorus release did not occur, but denitrifying phosphorus removal could occur during the anoxic period, while TCS system was the traditional aerobic phosphorus uptake and anaerobic phosphorus release process. The ICS system saved as much as 40% energy than TCS system, and had a 30% shorter HRT than the TCS. In the ICS system. The environment for microbial growth was (aerobic/anoxic)n and bacteroidetes group, which was the most dominant bacteria, accounts for 45% of community. However, in TCS system, the environment for microbial growth was anaerobic/aerobic, andβ-Proteobacteria group accounted for 37% of communities, which acted as the most dominant bacteria. Different dominant bacterias led to different mechanisms of nitrogen and phosphorus removal within ICS system and the TCS system.
     In suspended material packed SBBR system, HRT was set HRT were set four kinds of conditions:(3+5) h, (3+6) h, (4+5) h, (2+7) h. HRT had little effect on removal of organic matter, nitrogen and phosphorus in ICS system but had significant effect in TCS system. The removal efficiencies were 82.9%,53.6%, and 69.0%at HRT of (4+5)h, while when the HRT was (2+7)h, the removal efficiencies were 68.4%,48.0%, and 75.7%. The C/N ratio greatly affected TN removal and TN removal efficiencies were 96.3%,89.7%, and 84.3%in ICS system, while in TCS system, removal efficiencies were 89.2%,79.5%, and 76.8%. The C/N ratio had little effect on TP removal. The C/P ratio could not affect TN and COD removal in both ICS and TCS system. Study on denitrifying bacteria and polyphosphate accumulating organisms in suspended material filled SBBR system shown that denitrifying phosphorus removal bacteria was an important part of PAOs, and whether it was dominant flora system depending on inducing conditions. Direct aerobic phosphorus uptake of PAOs existed in the system and could become dominant flora when induced. Phosphorus removal system performed direct uptake of phosphate with high efficiency and short HRT without anaerobic phosphorus release.
引文
Ahn, J., McIlroy, S., Schroeder, S., Seviour, R.,2009. Biomass granulation in an aerobic:anaerobic-enhanced biological phosphorus removal process in a sequencing batch reactor with varying pH. Journal of Industrial Microbiology & Biotechnology,36,885-893.
    Akin, B.S., Ugurlu, A.,2004. The effect of an anoxic zone on biological phosphorus removal by a sequential batch reactor. Bioresource Technology,94,1-7.
    Amann, R.I., Ludwig, W., Schleifer, K.H., Jin,1995. Phylogenetic identification and in sit u detection of individual microbial cells without cultivation. Microbiol Rev,59.
    Arnz, P., Arnold, E., Wilderer, P.A.,2001. Enhanced biological phosphorus removal in a semi full-scale SBBR. Water Science and Technology,43,167-174.
    Arnz, P., Esterl, S., Nerger, C., Delgado, A., Wilderer, P.A.,2000. Simultaneous loading and draining as a means to enhance efficacy of sequencing biofilm batch reactors. Water Research,34, 1763-1766.
    Barnard, J.L.,1976. Review of biological phosphorus removal in the activated sludge process(a). Water S A,2,136-144.
    Barnard, J.L.,1976. Review of biological phosphorus removal in the activated sludge process(b). Water S A,2,145-150.
    Broda, Z.,1975. Two kinds of lihtortophs missnig in naurte. Mierobiol.,17,491-493.
    Burrell, P., Keller, J., Blackall, L.,1999. Characterisation of t he bacterial consortium involved in nit rite oxidation in activated sludge. Water Science and Technology,39,45-52.
    Cantafio, A.W., Hagen, K.D., Lewis, G.E.,1996. Pilot-scalese-lenium bioremediation of San Joaquin drainage water with Thauera selenatis. Appliedand Environmental Microbiology,62.
    Chang, C.N., Chen, H.R., Huang, C.H., Chao, A.,2000. Using sequencing batch biofilm reactor (SBBR) to treat ABS wastewater. Water Science and Technology,41,433-440.
    Chen, G.H., Huang, J.C., Matsuo, Huang, C.H.,2000. Innovative water and wastewater treatment technologies for the 21th century. Water Science and Technology,42.
    Chiou, R.H., Yang, Y.R.,2008. An evaluation of the phosphorus storage capacity of an anaerobic/aerobic sequential batch biofilm reactor. Bioresource Technology,99,4408-4413.
    Cho, J., Song, K.G., Ahn, K.H.,2009. Contribution of microfiltration on phosphorus removal in the sequencing anoxic/anaerobic membrane bioreactor. Bioprocess and Biosystems Engineering, 32,593-602.
    Ciudad, G., Rubilar,O., Munoz, P., Zhang, C.S.,2005. Partial nitrification of high ammonia concentration wastewater as a part of a shoutuct biological nitrogen removal process. Process Biochenistry,40,1715-1719.
    Cuba, T., Murnleitner, E., Van Loosdrecht, M.C.M.,1996. A metabolic model for the biological phosphorus removal by denitrifying ofganisms. Biotechnology Bioengineering,52, 685-695.
    Dahllof, I.,2002. Molecular community analysis of microbial diversity. Current Opinion in Biotechnology,13,213-217.
    De Sanctis, M., Di Iaconi, C., Lopez, A., Rossetti, S.,2010. Granular biomass structure and population dynamics in Sequencing Batch Biofilter Granular Reactor (SBBGR). Bioresource Technology,101,2152-2158.
    Di Iaconi, C., Lopez, A., Ramadori, R., Passino, R.,2003. Tannery wastewater treatment by Sequencing batch biofilm reactor. Environment Science & Technology,37,3199-3205.
    Dollerer, J., Wilderer, P.A.,1996. Biological treatment of leachates from hazardous waste landfills using SBBR technology. Water Science and Technology,34,437-444.
    Etchebehere, C., Errazquin, M.I., P, D., Jin,2002. Community analysis of a denitrifying reactor treating landfill leachate. FEMS Microbiology Ecology,40,97-106.
    Fdz-polanco, F., Mendez, E., Villaverde, S.,1995. Study of nitrifying biofilms in submerged biofilters by expenmental design methods. Water Science and Technology,32,227-233.
    Ferrer, J., Rodrigo, M., Seco, A., Penya-Roja, J.,1998. Energy saving in the aeration process by fuzzy logic control. Water Science and Technology,38,209-217.
    Fiter, M., Guell, D., Comas, J., Colprim, M., Poch, M.,2005. Energy sabing in a wastewater treatment process:an application of fuzzy logic control. Environmental Technology,26, 1263-1270.
    Galluzzo, M., Ducato, R., Bartolozzi, V., Jin,2001. ExPert Control of DO in the Aerobic Reaetor of an Aetivated Sludge Proees. ComPuter sand Chemieal Engineering,25,619-625.
    Ge, S.J., Peng, Y.Z., Wang, S.Y., Guo, J.H., Ma, B., Zhang, L.A., Cao, X.,2010. Enhanced nutrient removal in a modified step feed process treating municipal wastewater with different inflow distribution ratios and nutrient ratios. Bioresource Technology,101,9012-9019.
    Gieseke, A., Arnz, P., Amann, R., Schramm, A.,2002. Simultaneous P and N removal in a sequencing batch biofilm reactor:insights from reactor-and microscale investigations. Water Research,36,501-509.
    Goncalves, I.C., Penha, S., Matos, M., Santos, A.R., Franco, F., Pinheiro, H.M.,2005. Evaluation of an integrated anaerobic/aerobic SBR system for the treatment of wool dyeing effluents. Biodegradation,16,81-89.
    Gonzalez, S., Wilderer, P.A.,1990. Phosphate removal in a biofilm reactor. Water Science And Technology,23,1405-1416.
    Harremo, P., Sinkjaer, O.,1995. Kinetic interpretation of nitrogen removal in pilot scale experiments. Water Resarch,64,899-905.
    Helness, H., Odegard, H.,1999. Biological phosphorus removal in a sequencing batch moving bed biofilm reactor. Water Science and Technology,40,161-168.
    Hiraishi, A., Massmune, K., Kitamura, H.,2001. Characterization of the bacterial population atructure in an anaerobic-aerobic activated sludge system on the basis of respiratory quinine profiles. Applied Microbiology and Biotechnology,55,897-901.
    Jaar, M.A., Wilderer, P.A.,1992. Granular activated carbon sequencing batch biofilm reactor to problematic wastewater. Water Science and Technology,26,1195-1203.
    Kalker, T., Van Goor, C., Roeleveld, P., Ruland, R.,1999. Fuzzy control of aeration in an activated sludge wastewater treatment plant:design, simulation and evaluation. Water Science and Technology,71-78.
    Keller, J.,1999. Biological nutrient removal. Water Science and Technology,39.
    Kim, D., Jung, N., Park, Y.,2008. Characteristics of nitrogen and phosphorus removal in SBR and SBBR with different ammonium loading rates. Korean Journal of Chemical Engineering, 25,793-800.
    Kuba, T., Smolders, G.J., Van Loosdrecht, M.C.M.,1993. Biologieal phosphours removal from wastewater by anaerobic anoxic sequencing batch reactor. Water Science and Technology, 27,241-252.
    Lee, H., Lee, S., Lee, J., Jin,2002. Molecular characterization of microbial community in nitrate-removing activated sludge. FEMS Microbiol Ecol,41,85-94.
    Levin, G.V.,1972. Pilot plant tests on phosphate removal process. Journal WPCF,44,12-17.
    Li, J., Peng, Y., Gu, G., Wei, S.,2007. Factors affecting simultaneous nitrification and denitrification in an SBBR treating domestic wastewater. Frontiers of Environmental Science & Engineering in China,1,246-250.
    Li, N., Ren, N.Q., Wang, X.H., Kang, H.,2010. Effect of temperature on intracellular phosphorus absorption and extra-cellular phosphorus removal in EBPR process. Bioresource Technolgy,101,6265-6268.
    Liang, C.M., Hung, C.H., Hsu, S.C., Yeh, I.C.,2010. Purple nonsulfur bacteria diversity in activated sludge and its potential phosphorus-accumulating ability under different cultivation conditions. Applied Microbiology and Biotechnology,86,709-719.
    Lim, S., Moon, R., Lee, W., Kwon, S., Park, B., Chang, H.,2000. Operation and modeling of bench-scale SBR for simultaneous removal of nitrogen and phosphorus using real wastewater. Biotechnology and Bioprocess Engineering,5,441-448.
    Liu, B.B., Zhang, F., Feng, X.X., Jin,2006. Thauera and Azoarcus as functionally important genera in a denit rifying quinoline-re-moval bioreactor as revealed by microbial community structure comparison. FEMS Microbiology Ecology,55.
    Liu, W.T., Nielsen, A.T., Wu, J.H., Jin,2001. In situ identification of polyphosphate-and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal p rocess. Environ Microbiol,3,110—122.
    Ma, Y., Peng, Y.Z., Wang, X.L., Shu-Ying, W.,2006. Intelligent control aeration and external carbon addition for improving nitrogen removal. Environmental Modelling and Software, 21,821-828.
    Manz, W., Wagner, M., Amann, R., Jin,1994. In situ characterization of t he microbial consortia active in two waste water treatment plants. Water Research,28,1715-1723.
    Meinhold, J., Filipe, C., Daigger, G., Isaacs, S.,1999. Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal. Water Science and Technology,39,31-42.
    Mino, T., Van Loosdrecht, M.C.M., Heijnen, J.J.,1998. Microbiology and biochenistry of the enhanced biological phosphorus removal process. Water Research,32,3193-3207.
    Mohan, S.V., Rao, N.C., Sarma, P.N.,2007. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR). Journal of Hazardous Materials,144,108-117.
    Mulder, A.,1997. Adbanced wastewater treatment:nutrimoval and anaerobic processes. Warer Science and Technology,35.
    Mulder, A., Vande Gmaf, A.A., A, R.L., Kuenen, J.G.,1995. Anaeorbic Ammonium Oxidation Discovered in a Denitrifying Fluidized Bed Reactor. FEMS Micorbiology Ecology,16, 177-183.
    Munch, E.V., Lant, P., Keller, J.,1996. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Water Research,30.
    Murnleitner, E., Becker, T., Delgado, A.,2002. State detection and control of overloads in the anaerobic wastewater treatment using fuzzy logic. Water Research,36,201-211.
    Kara, N,.F., Sutter, J,.K.,1996. Modified SBR water treatment system selection construction and operations. Western Canada Water Environment Association Annual Conference, Saskatchewan,10,267-276.
    Natalie, L., Gavin, D.D., Faizal, B.,2002. Anoxic phosphorus removal by denitrifying heterotrophic bacteria 3rd World Congress, Melbourne, Australia.
    Nercessian, O., Fouquet, Y., Pierre, C., Jin,2005. Diversity of bacteria and archaea associated with a carbonate2rich metalliferous sediment sample from the rainbow vent field on the mid-atlantic ridge. Environmental Microbiology,7,689-714.
    Park, J.W., Granczar, Czyk, J.J.,1994. Gravity separation of biomass washed out from aerated submerged filter. Environment Technology,15,945-955.
    Pastorelli, G., Canziani, R., Pedrazzi, L., J, S.K.,1999. Pho-sphores and nitrogen removal in moving-bed sequencing batch biofilm reactors. Water Science and Technology,40,169-176.
    Paul, S.,2004发明者电子设计宝典.福建科学技术出版社.Polach, L.,1991. Enhanced biological phosphorus removal from wastewater. Prague Institute of Chemical Technology.
    Riesco, J., Calvo, J., Martin-Sanchez, J.M.,2002. Adaptive predictive expert (ADEX) control:Application to waste water treatment plants. IEEE Conference on Control Applications Proceedings, United Kingdom.
    Rodgers, M., Healy, M.G., Prendergast, J.,2006. Nitrification in a vertically moving biofilm system. Journal of Environmental Management,79,242-246.
    Rodgers, M., Zhan, X.M., O 'Reilly, E.,2006. Small-scale domestic wastewater treatment using an alternating pumped sequencing batch biofilm reactor system. Bioprocess and Biosystems Engineering,28,323-330.
    Ryazanova, L.P., Suzina, N.E., Kulakovskaya, T.V., Kulaev, I.S.,2009. Phosphate accumulation of Acetobacter xylinum. Archives of Microbiology,191,467-471.
    Sirianuntapiboon, S., Yommee, S.,2006. Application of a new type of moving bio-film in aerobic sequencing batch reactor (aerobic-SBR). Journal of Environmental Management,78, 149-156.
    Soejima, K., Oki, K., Terada, A., Tsuneda, S., Hirata, A.,2006. Effects of acetate and nitrite addition on fraction of denitrifying phosphate-accnmnlating organisms and nutrient removal efficiency in anaerobic/aerobic/anoxic process. Bioprocess and Biosystems Engineering,29, 305-313.
    Spagni, A., Marsili-Libelli, S.,2009. Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate. Bioresource Technology,100,609-614.
    Surampalli, R.Y., Tyagi, R.D., Scheible, O.K., Heidman, J.A.,1997. Nitrification, denitrification and phosphorus removal in sequential batch reactors. Bioresource Technology,61, 151-157.
    Tanwar, P., Nandy, T., Ukey, P., Manekar, P.,2008. Correlating on-line monitoring parameters, pH, DO and ORP with nutrient removal in an intermittent cyclic process bioreactor system. Bioresource Technology,99,7630-7635.
    Tong, R., Beck, M., Latten, A.,1980. Fuzzy control of the activated sludge waste-water treatment process. Automatica,695-701.
    Traore, A., Grieu, S., Puig, S., Corominas, L.,2005. Fuzzy control of dissolved oxygen in a sequencing batch reactor pilot plant. Chemical Engineering Journal,111,13-19.
    Tsai, Y., Ouyang, C.F., Wu, M., Chiang, W.,1996. Effluent suspended solid control of activated sludge process by fuzzy control approach. Water Environment Research,68,1045-1053.
    Turk, O., Mavinci, D.S.,1987. Selective inhibition a novel concept for removing nitrogen from highly introgenous wastes. Environ Technol Lett,8,419-426.
    Tzeng, C.J., Iranpour, R., Stenstrom, M.K.,2003. Modeling and control of oxygen transfer in high purity oxygen activated sludge process. Engvironment Engineering,129,402-411.
    Wagner, M., Amann, R., Lemmer, H., JIN,1993. Probing activated sludge with oligonucleotides specific for Proteobacteria:inadequacy of culture 2 dependent methods for describing microbial community structure. App 1 Environ Microbiol,59,1520-1525.
    Wanner, J., Cech, J.S., Kos, M.,1992. New process design for biological nutrient removal. Water Science and Technology,25,445-448.
    White, D.M., Pilon, T.A., Woolard, C.,2000. Biological treatment of cyanide containing wastewater. Water Research,34,2105-2109.
    White, D.M., Schnabel, W.,1998. Treatment of cyanide waste in a sequencing batch biofilm reactor. Water Research,32,254-257.
    Widada, J., Nojiri, H., Omori, T.,2002. Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation. Applied Microbiology and Biotechnology,60,45-59.
    Wilderer, P.A., Bungartz, H.J., Lemmer, H., Jin,2002. Modern scientific methods and their potential in wastewater science and technology. Water Research,36,370-393.
    Wilderer, P.A., Irvine, R.L., Goronszy, M.G.,2001. Sequencing batch reactor technology. IWA Publicating, London.
    Wilderer, P.A., Ladisch, M.R., Bose, A.,1992. Sequencing batch biofilm reactor thchnology. American Chemical Society, Harnessing Biotechnology for the 21st Century. Washington, DC, pp. 475-479.
    Woolard, C.R.,1997. The advantages of periodically operated biofilm reactors for the treatment of highly variable wastewater. Water Science and Technology,35,199-206.
    Xia, S., Li, J., Wang, R.,2008. Nitrogen removal performance and microbial community structure dynamics response to carbon nitrogen ratio in a compact suspended carrier biofilm reactor. Ecological Engineering,32,256-262.
    Zhang, L.Q., Wei, C.H., Zhang, K.F., Zhang, C.S., Fang, Q., Li, S.G.,2009. Effects of temperature on simultaneous nitrification and denitrification via nitrite in a sequencing batch biofilm reactor. Bioprocess and Biosystems Engineering,32,175-182.
    Zhang, L.Q., Wei, C.H., Zhang, K.F., Zhang, C.S., Fang, Q., Li, S.G.,2009. Effects of temperature on simultaneous nitrification and denitrification via nitrite in a sequencing batch biofilm reactor. Bioprocess and Biosystems Engineering,32,175-182.
    Zhang, Z.J., Chen, S.H., Wu, P., Lin, L.F., Luo, H.Y.,2010. Start-up of the Canon process from activated sludge under salt stress in a sequencing batch biofilm reactor (SBBR). Bioresource Technology,101,6309-6314.
    Zhu, G.B., Peng, Y.Z., Ma, B., Wang, Y., Yin, C.Q.,2009. Optimization of anoxic/oxic step feeding activated sludge process with fuzzy control model for improving nitrogen removal. Chemical Engineering Journal,151,195-201.
    Zipper, T., Fleischmann, N., Habel, R.,1998. Development of a new system for control and optimization of small wastewater treatment plants using oxidation-reduction potential(ORP). Water Science and Technology,38,307-314.
    曹海艳,张雁秋,孙云丽,2007.用EM-SBBR法与SBBR法处理生活污水的比较研究.环保科技,35-38.
    陈壁波,李友明,陈常晓,宋晶,宋林林,李新生,2005. SBBR工艺及其用于造纸废水处理的前景.广西轻工业,23-26.
    陈壁波,李友明,李新生,罗清,2005.序批式生物膜反应器处理制浆中段废水.中国造纸,23-25.
    陈光秀,袁林江,韩玮,2008.生物脱氮系统中无厌氧释磷的生物除磷工艺.环境科学学报,24-28.
    池素玮,2008.城市污水处理厂氮磷达标排放新方法的研究.给水排水,29-34.
    方茜,张朝升,张可方,荣宏伟,2006.序批式生物膜法处理低碳城市污水高效除磷的试验.水处理技术,6,31-35.
    傅以钢,王峰,赵建夫,夏四清,2005.高浓度硝酸盐对城市污水活性污泥中微生态种群结构的影响.环境科学学报,25,372-378.
    高廷耀,顾国维,1999.水污染控制工程下册.高等教育出版社,北京.
    高廷耀,周增炎,1996.一种适合当前国情的城市污水脱氮除磷新工艺.同济大学学报,24,647-651.
    顾夏声,李献文,竺建荣,2000.不同电子受体对生物除磷效果的影响.中国建筑工业出版社.
    国家环境保护总局,2002.水和废水监测分析方法(第四版).中国环境科学出版社,北京.
    郝春博,王广才,董健楠,张倩,蔡五田,2009.石油污染地下水中细菌多样性研究.环境科学,30,2464-2472.
    郝晓地,刘壮,刘国军,1998.欧洲水环境控磷策略与污水除磷技术(下).给水排水,24,68-71.
    华光辉,张波,2000.城市污水生物除磷脱氮工艺中的矛盾关系及对策.给水排水,26,1-4.
    纪树兰,任海燕,崔成武,刘志鹏,2004.改进序批式生物膜法处理青霉素废水的初探.环境科学,74-77.
    姜昕,马鸣超,李俊,鲁安怀,钟佐燊,2008.污水处理系统中活性污泥细菌多样性研究.地学前缘,15,163-168.
    蒋山泉,汤琪,郑泽根,2007.三级SBR除磷脱氮工艺处理生活污水.重庆大学学报(自然科学版),604-607.
    蒋山泉,翟俊,肖海文,郑泽根,2008.序批式生物膜(SBBR)工艺同步脱氮除磷研究.四川大学学报(工程科学版),40,64-68.
    李春鞠,顾国维,杨海真,2000.城市污水除磷脱氮MSBR工艺试验研究.环境工程,18,19-22.
    李春鞠,顾国维,杨海真,2001.改善MSBR系统脱氮效果的试验研究.中国给水排水,17,9-14.
    李丛娜,吕锡武,稻森悠平,2001.同步硝化反硝化脱氮研究.给水排水,22-24+1.
    李菲菲,袁林江,陆林雨,2010.单一好氧环境下的强化生物除磷研究.环境科学,31,2113-2117.
    李军,彭永臻,顾国维,韦苏,2006. SBBR同步硝化反硝化处理生活污水的影响因素.环境科学学报,728-733.
    李军,彭永臻,顾国维,韦苏,2006.无外加碳源SBBR脱氮工艺及其控制方法研究.中国给水排水,17-21.
    李探微,彭永臻,高旭,李军,1999.一种新的污水处理技术——MSBR法.给水排水,25,10-12.
    李涛,王鹏,汪品先,2008.南海西沙海槽表层沉积物微生物多样性.生态学报,1166-1173.
    李伟光,赵庆良,马放,刘宏远,徐桂琴,2000.序批式生物膜反应器处理屠宰废水.中国给水排水,16,59-60.
    李勇智,彭永臻,王淑滢,梁秀荣,2003.强化生物除磷体系中的反硝化除磷.中国环境科学,645-646.
    李正魁,张晓姣,赖鼎东,李芳捷,杨竹攸,石鲁娜,吕溢修,2009.水生丛毛单胞菌属菌株及其在废水生物脱氮中的应用.南京大学.
    梁晨辉,易威,李斌,1998. SBBR法处理高盐度有机废水的应用研究.污染防治技术,11,226-228.
    凌忠勇,张可方,2008.温度对SBBR亚硝酸型同步硝化反硝化及过程控制的影响.广东化工,26-29+41.
    刘磊,李习武,刘双江,刘志培,2007.降解多环芳烃的菌株Gordonia sp.He4的分离鉴定 及其在菲污染土壤修复过程中的动态变化.环境科学,617-622.
    刘再亮,2010.高浓度氨氮废水的几种新型生物处理方法.科技信息,415-423.
    罗宁,罗固源,吉方英,张德纯,2003.新型双泥生物反硝化除磷脱氮系统中微生物的组成.给水排水,33-35.
    罗万申,1999.新型污水处理工艺.——MSBR中国给水排水,15,22-24.
    欧林林,王先路,陈长琦,朱武,谢源,2003.污水处理实验系统中溶解氧模糊控制器的设计.自动化与仪器仪表,17-20.
    彭雅娟,闻建平,刘君,2007.固定化Gordoniasp_WQ_01A菌株的制备及其脱硫性能.青岛科技大学学报(自然科学版),28,193-197.
    彭永臻,1993.SBR五大优点.中国给水排水,9,29-31.
    彭永臻,王宝贞,王淑莹,1998.活性污泥法的多变量最优化控制:基础理论与DO浓度对运行费用的影响.环境科学学报,18,11-19.
    彭永臻,曾薇,李探微,高景峰,1999.污水处理系统的在线模糊控制.哈尔滨建筑大学学报,32,57-60.
    任洁,顾国维,2002. MSBR系统的特点及其除磷脱氮的机理分析.给水排水,28,22-24.
    任洁,顾国维,杨海真,2000.改良型A2/O工艺处理城市污水的中试研究.给水排水,26,7-10.
    沈耀良,王宝贞,1999.废水生物处理新技术——理论与应用.中国环境科学出版社.
    孙彦富,刘晖,刘洁萍,周康群,崔英德,2010.同步反硝化短程除硫功能菌群的变化及鉴定.化工学报,1852-1858.
    陶天申,杨瑞馥,东秀珠,2007.原核生物系统学.化学工业出版社,北京.
    万金保,邓香平,吴永明,2008. SBBR工艺研究进展.工业水处理,5-9.
    万年升,顾继东,郝伏勤,肖翔群,2007. Rhodococcus sp. Ns对硝基苯酚的好氧生物降解.环境科学,431-435.
    王春丽,马放,王强,2007.一株耐低温反硝化聚磷菌的筛选及其特性研究.环境工程学报,21-24.
    王冬波,李小明,杨麒,张杰,刘依磷,柳娴,贾斌,曾光明,廖德祥,2008.SBR无厌氧段实现生物除磷.环境科学,29-32.
    王冬波,李小明,曾光明,杨麒,廖德祥,刘精今,2007.内循环SBR反应器无厌氧段实现同步脱氮除磷.环境科学,89-92.
    王海燕,周岳溪,戴欣,柴延丽,蒋进元,刘双,2006.16SrDNA克隆文库方法分析MDAT_IAT同步脱氮除磷系统细菌多样性研究.环境科学学报,26,903-911.
    王乾扬,方士,陈国喜,詹伯君,陈学群,1999.膜法SBR工艺处理皮革废水研究.中国给水排水,15,54-56.
    王亚宜,2004.反硝化除磷脱氮机理及工艺研究.哈尔滨工业大学.
    王亚宜,李探微,彭永臻,王淑莹,祝贵兵,2002.序批式生物膜(SBBR)法和SBR法的对比研究.工业用水与废水,4-6.
    王亚宜,彭永臻,甘一萍,王淑莹,2004.A2O反硝化除磷脱氮系统处理生活污水研究.高技术通讯,1,83-88.
    相会强,刘芬,刘雪莲,2005.自动控制在污水处理中的应用.仪器仪表学报,26,235-237.
    许朕,杨朝晖,曾光明,徐峥勇,王荣娟,孙赛武,2008.供氧充足环境下SBBR实现短程硝化的控制研究.环境科学,1860-1866.
    叶玲平,楼志军,蔡亦军,潘海天,2005.污水处理过程自动控制研究与应用.能源环境保护,19,13-15.
    曾薇,彭永臻,王淑莹,王宝贞,2000.以溶解氧浓度作为SBR法模糊控制参数.中国给水排水,16,5-11.
    张波,高廷耀,2000.倒置A2/O工艺的原理与特点研究.中国给水排水,16,11-15.
    张朝升,张可方,方茜,荣宏伟,2007.序批式生物膜法对城市污水的脱氮效果.水处理技术,54-55+76.
    张杰,李小明,杨麒,陈瑶,2007.反硝化除磷技术及其实现新途径.工业用水与废水,1-4.
    张可方,2003.SBR法处理城市污水除磷效果及规律研究.广州大学学报(自然科学版),4-8.
    张立秋,韦朝海,张可方,张朝升,方茜,李淑更,2008.常温下SBBR反应器中短程同步硝化反硝化的实现.工业用水与废水,1-5.
    张自杰主编,2000.《排水工程》下册(第四版).中国建筑工业出版社,北京.
    张自杰主编,2003.废水处理理论与设计.中国建筑工业出版社.
    赵晨红,2008. UniFedSBR工艺脱氮除磷特性及其自动控制研究.北京工业大学.
    郑兴灿,李亚新,1998.污水脱氮除磷新技术.中国建筑工业出版社.
    中国市政工程华北设计研究院,1989.泰安市污水处理试验研究报告.
    中国土木工程学会水工业分会排水委员会等出版,2000.污水除磷脱氮技术研究与实践.
    周健,钟于涛,龙腾锐,何强,罗勇,2007. SBBR反应器处理粪便污水厌氧出水脱氮效能研究.给水排水,145-148.
    周金生,耿书良,2003.新型膜法SBR系列间歇充氧式生活污水净化装置.污染防治技术,16,61-62.
    周生贤,2010.中国环境状况公报.中华人民共和国环境保护部.
    周岳溪,钱易,顾夏声,1992.废水生物除磷机理的研究_循序间歇式生物脱氮除磷处理系统中微生物的组成.环境科学,13,1-4.
    朱贵兵,彭永臻,译,2005.生物除磷设计与运行手册.中国建筑工业出版社,北京.
    朱文玲,郑离妮,崔理华,欧阳颖,骆世明,汤仲恩,2010.不同碳氮比条件下4种可控因素对垂直流人工湿地总氮去除的影响.农业环境科学学报,1187-1192.
    邹华,阮文权,陈坚,2002.硝酸盐作为生物除磷电子受体的研究.环境科学研究,27-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700