用户名: 密码: 验证码:
河口地区围涂开发的水环境动力特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济社会的快速发展,工业化、城市化的不断推进,人增地减的矛盾日益凸现,土地资源日益紧缺,河口促淤造地成为拓展城市空间的重要载体。而河口地区的水下地形和岸线形状复杂,波浪、水流、泥沙运动共存,水动力与泥沙条件十分复杂。
     论文以瓯江口为例,采用海域水文泥沙环境分析、海床冲淤演变分析、波浪潮流泥沙数值模拟等方法,研究河口地区围涂开发的水环境动力特征,为河口的治理开发提供有效的分析手段,为工程的可行性论证提供有力的技术支撑。
     基于翔实的原始数据,论文首次分析了灵昆潜坝、灵霓北堤、温州浅滩一期围涂工程等已建工程对河口水沙环境与河床演变的综合影响,揭示了瓯江河口水动力与泥沙的本质及河口演变规律,阐释了温州浅滩二期围涂开发对河口演变的影响。研究表明:(1)河口潮流动力特征是影响其演变的主要因素,温州浅滩的走向与瓯江南、北口潮流的主方向基本一致,对其进行圈围造地将局部改变河口的潮流动力,温州浅滩二期围涂开发将使南口水域呈冲刷加强的趋势,但不会引起河口河势明显变化,围涂开发符合河口自身演变规律;(2)温州浅滩二期围涂区域总体呈冲淤动态平衡状态,开发应采取必要的工程促淤措施。
     基于矩形网格有限差分数值方法,论文采用波浪及其破碎作用的波浪辐射应力、波流底切应力、波流挟沙力、破波切应力来描述泥沙运动机制,构建了波浪、潮流、泥沙、底床冲淤等多因素数学模型,模拟复杂河口的水沙特性具有更强的普适性。
     论文紧密结合工程实际,采用数值模拟的研究手段,首次对温州浅滩二期围涂开发进行了研究。研究表明:(1)促淤区内流速普遍减小,有利于泥沙的落淤,不留缺口的方案1、预留缺口的方案2平均淤积厚度分别为0.59m、0.51m,就泥沙落淤环境与促淤效果而言,方案1略优于方案2;(2)实施温州浅滩二期围涂开发,对瓯江河口的泄洪基本上没有影响,不会明显改变河口的分流比,对港口航道没有负面影响,对沙头水道与乐清湾水域没有影响,但在工程附近水域局部冲刷明显,在实施过程中应注意采取防冲措施,防止局部冲刷的不利影响。同时,应进一步加强围涂开发对河口生态环境影响及其对策研究。
It is very significant for reclamation to meet new land requirement in estuarine cities with increasing population and decreasing land due to industrialization and urbanization. Nevertheless, the process of wave propagation, tidal movement and sediment transport, which provide the basic forces for reclamation, are very complicated in an estuary with irregular bedform and coastline.
     This dissertation focuses on investigating the impact of reclamation in Oujiang River estuary on dynamical characteristics of the water environment, and is carried out on the basic analysis of the observed data of water-sediment environment conditions and tidal flats processes. Moreover, it also employs a numerical model to study the sediment transport under currents and waves, which supplies an effective method for complicated estuary regulation and strong technical support for feasibility demonstration of the project.
     Comprehensive impact of the finished projects is first examined, which include submerged dyke of Lingkun, North dam of Lingni and the first phase reclamation of Wenzhou Shoal on estuarine water-sediment environment and evolution of the topography based on the measured data. From the gotten rules, the impact of the second phase reclamation is predicted and summarized into two points. First, the dynamical characteristics of the tidal currents have vital effect on the estuary processes. The direction of Wenzhou Shoal is nearly parallel to the main flow in the North and South mouths, where the reclamation would only partly change the tidal dynamics. The second phase of the reclamation will increase the erosion in the South mouth, but won’t remarkably affect the stability of estuary conditions, which corresponds to the inner processes. Second, it is highly recommended to enhance the sediment deposition and prevent the erosion in the second phase reclamation, and is on the whole in a dynamic equilibrium state of erosion and deposition.
     A multifactor mathematical model is established to predict the sediment transport, which is based on a rectangular mesh and the finite difference method, and consists of a wave module, a current module, a sediment transport module and a bedform topography-change module. All the radiate force, shear force, sediment transport capability of waves and the breaking effect are taken in account. The model provides an effective numerical technique for estuarine management and estuary regulation.
     In addition, present work has significant practical value in engineering, and numerical model has been applied for the first time to the second phase reclamation of Wenzhou Shoal. The results are as follows: (1) Two plans have been compared: plan I and II, which is with or without gap respectively. The velocity decreases widely in the silting-promotion zone, which is conducive to the sediment deposition. In terms of hydrodynamic condition of sedimentation and slit-promoting effect, plan I with an average silty depth of 0.59m is a little better than the gapped plan II with 0.51m. (2) The flux discharge and flux rate of the North and South river mouths are barely changed by the second phase project. There is no effect on Shatou Channel and Yueqing Bay, or negative effect on the port sea-route. Furthermore, in the process of implementation more measurements should be taken to prevent erosion. At the same time, it is needed to study more about the responses of the reclamation to preserve the ecological environment in the estuary.
引文
[1]赵一德.政府工作报告.温州:温州市人民政府, 2010.
    [2]梁向阳,梁家海,萧金文.珠江三角洲海岸变迁及对城市可持续发展的影响.资源调查与环境, 2005, 26 (4): 283-290.
    [3]陈水森,黎夏,邹春洋,等. 20年来珠江口伶仃洋滩槽变化及演变分析.海洋科学, 2001, 25(6): 52-53.
    [4]郭伟,朱大奎.深圳围海造地对海洋环境的影响分析.南京大学学报:自然科学版, 2005, 41(3): 286-296.
    [5]陈满荣,韩晓非,刘水芹.上海市围海造地效应分析与海岸带可持续发展.中国软科学, 2000, 11: 115-120.
    [6]陈吉余,陈沈良.河口海岸环境变异和资源可持续利用.海洋地质与第四纪地质, 2002, 22 (2): 1-7.
    [7] Pritchard D W. What is an estuary: physical viewpoint. Estuaries, edited by George H. Lauff, American Association for the Advancement of Science, 1967, 3-5.
    [8] Walker H J. When and where rivers meet the sea. Science in China (Series B), 2001, 44(Supp.): 10-22.
    [9] Chen Jiyu, Chen Shenliang. Estuarine and coastal challenges in China. Chinese Journal of Oceanology and Limnology, 2002, 20(2): 174-181.
    [10]金元欢.国内外河口分类研究进展.海洋通报, 1988,7(2): 104-108.
    [11] Firedman G M, Sanders J E. Principles of sedimentology. New York: John Wiley and Sons, 1978.
    [12] Galloway W E. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems in deltas, Models for Exploration. Houston: Houston Geol. Soc., 1975, 87-98.
    [13] Simons H B, Brown F R. Salinity effects on estuarine hydraulics and sedimentation. IAHR Proceedings of the 13th Congress. 1969, (3): 311-325.
    [14] Hanse D V, Rateray M J. New Dimensions in Estuarine Classification. Limnology and Oceanography, 1966, 11(3): 319-325.
    [15] Lars R. A Proposal for Classification of Estuaries. The Norwegian coastal current. 1981.
    [16] Glenne B. Classification Systems for Estuaries. ASCE, WW1, 1967, (1): 55-62.
    [17]黄胜,卢启苗.河口动力学.北京:水利电力出版社, 1995.
    [18]王恺忱.潮汐河口的分类探讨.全国海岸带和海涂资源综合调查暨海岸工程学术会议论文集.北京:海洋出版社, 1982.
    [19]周志德,乔彭年.潮汐河口分类的探讨.泥沙研究, 1982, (2): 52-59.
    [20]金元欢,沈焕庭,陈吉余.中国入海河口分类刍议.海洋与湖沼, 1990, 21(2): 132-142.
    [21]熊绍隆,曾剑.潮汐河口分类指标与河床演变特征研究.水利学报, 2008, 39(12): 1286-1295.
    [22]胡敦欣.我国海洋通量研究.地球科学进展, 1996, 11(2): 227-229.
    [23]沈焕庭,朱建荣.论我国海岸带陆海相互作用研究.海洋通报, 1999, 18(6): 11-17.
    [24] Ludwig W, Probst J L. River sediment discharge to the oceans: present-day controls and global budgets. American Journal of Science, 1998, 298: 265-295.
    [25] David P. Tidal Characteristics of suspended sediment concentrations. Journal of Hydrological Engineering, 1997, 123(4): 341-350.
    [26]时钟.长江口细颗粒泥沙过程.泥沙研究, 2000, 6: 72-78.
    [27] Hill P S, Nowell A R M, Jumar P A. Flume evaluation of the relationship between suspended sediment concentration and excess boundary shear stress. Journal of Geophysical Research, 1988, 93: 12499-12509.
    [28]时钟,周洪强.长江口北槽口外悬沙浓度垂线分布的数学模拟.海洋工程, 2000, 18(3): 57-62.
    [29] Ross M A, Mehta A J. The mechanics of lutoclines and fluid mud. Journal of Coastal Research, 1989, (5): 51-61.
    [30] Smith T J, Kirby R. Generation, stabilization and dissipation of layered fine sediment suspension. Journal of Coastal Research, 1989, 5: 63-73.
    [31] Wolanski E, Asaede T, Imberger J. Mixing across a lutocline limnology and oceanography, 1989, 34: 931-938.
    [32]窦国仁.潮汐水流中的悬沙运动及冲淤计算.水利学报, 1963, 4: 31-38.
    [33] Bowden K F. The mixing processes in tidal estuary. International Journal of Air and Water Pollution, 1963, 7: 343-356.
    [34] Fishcher H B. Mass transport mechanisms in partially mixed estuaries. Journal of Fluid Mechanics, 1972, 53: 672-687.
    [35] Uncle R J, Elliott R C A, Weston S A. Dispersion of salt and suspended sediment in a partly mixed estuary. Estuaries, 1985, 8: 256-269.
    [36] Pino Q M, Perillo G M E, Santamarina P. Residual fluxes in a cross-section of the Valdivia River Estuary, Chile. Estuarine Coastal and Shelf Science, 1994, 38: 491-505.
    [37]时伟荣,李九发.长江河口南北槽输沙机制及浑浊带发育分析.海洋通报, 1993, 12(4): 69-76.
    [38]沈健,沈焕庭,等.长江河口最大浑浊带水沙输运机制分析.地理学报, 1995, 50(5):411-420.
    [39] Jay D A, Uncle R J, Largier J, et al. A review of recent developments in estuarine scalar flux estimation. Estuaries, 1997, 20(2): 262-280.
    [40] Hansen L C, Valeur J, Pejrup M, et al. Sediment fluxes, re-suspension and accumulation rates at two wind-exposed coastal sites and in a sheltered bay. Estuarine, Coastal and Shelf Science, 1997, 44(5): 521-531.
    [41] Walsh J P, Nittrouer C A. Observations of sediment flux to the Eel continental shelf, North California. Marine Geology, 1999, 154: 55-68.
    [42]谷国传.长江口外水域悬沙分布特征.东海海洋, 1996, 4(1): 12-20.
    [43]李广雪.黄河入海泥沙扩散与河海相互作用.海洋地质与第四纪地质, 1999, 19(3): 1-10.
    [44]陈沈良,谷国传.杭州湾口悬沙浓度变化与模拟.泥沙研究, 2000, 5: 45-50.
    [45] Davies A M. Review of recent developments in tidal hydrodynamic modeling. Journal of Hydraulic Engineering, 1997, 123(4): 278-292.
    [46] Leendertse J J. A water quality simulation model for well-mixed estuaries and coastal sea. Principle of computation. Santa monica California :CA Rand Corp RM-6230, 1970, 15-37.
    [47] Yaneko N N. The method of fractional steps. Berlin & New York: Springer-Verleg, 1971.
    [48]王长海,李蓓.二维不规则三角形网格的潮流数学模型.水道港口, 1988, (2): 10-15.
    [49]窦希萍,李提来.二维潮流数学模型的四边形等参单元法.海岸工程, 1995, 13(1): 47-53.
    [50]汪德灌,杨艳艳.边界拟合坐标法的应用.河海大学学报, 1989, 17(1): 50-57.
    [51] Grotkop G. Finite element analysis of long period water waves. Computational Method In Applied Mechanics And engineering, 1973, (2): 147-160.
    [52] Chung T J. Finite element analysis in fluid dynamics. New York: McGraw-Hill, Inter Book Company, 1978.
    [53]李浩麟,易家豪.河口浅水方程的隐式和显式有限元解法.水利水运科学研究, 1983, (10): 15-26.
    [54]张存智,杨连武.具有潮滩移动边界的浅海环流有限元模型.海洋学报, 1990, 12(1): 1-13.
    [55] Partankar S V. Numerical heat transfer and fluid flow. New York : McGraw-Hill, 1984.
    [56]朱良生.近岸二维潮流数值计算方法若干问题的研究和应用.热带海洋, 1995, 14(1): 30-37.
    [57] Thompson J F. Automatic numerical generation of body-fitted curvilinear coordinate systems for fields containing any number of arbitrary two-dimension bodies. Journal of Computational Physics, 1974, 15: 299-311.
    [58] Wang J H, Wang C. Numerical simulation of 2D tidal flow and water quality under the curvelinear coordinates. Journal of Hydrodynamics, 1994, B(3): 78-84.
    [59] Wei W L, Jin Z Q. Numerical solution for unsteady 2-D flow using the transformed shallow water equations. Journal of Hydrodynamics(Ser B), 1995, 7(3): 65-71.
    [60]陈景仁.流体力学及传热学.北京:国防工业出版社, 1984.
    [61]杨屹松.混合有限分析法及其在流体力学中的应用[博士学位论文].武汉:武汉水利电力学院, 1988.
    [62]荷少苓,林秉南.破开算子法在二维潮流中的应用.海洋学报, 1984, 6(2): 260-271.
    [63]张二骏,张东生.一种新的数值方法—准分析法在二维非恒定流题中的应用.海洋学报, 1986, 8(5): 636-643.
    [64]李家星,张镜湖.用潮波能谱法计算二维非恒定流的数学模型.海洋工程, 1988, 6(2): 45-55.
    [65]华秀菁,吕玉麟.二维浅水域潮流数值模拟的ADI-QUICK格式.水动力学研究与进展(A辑), 1996, 11(1): 72-92.
    [66]朱德军,陈永灿,刘昭伟.处理二维浅水流动中动边界问题的淹没节点法.水动力学研究与进展A辑, 2006, 21(1): 102-106.
    [67]何少苓,王连祥.窄缝法在二维边界变动水域计算中的应用.水利学报, 1986, (12): 11-19.
    [68]曹祖德,王运洪.水动力泥沙数值模拟.天津:天津大学出版社, 1994.
    [69] Leendertse J J, Alexander R C, Liu S K. A three dimensional model for estuaries and coastal sea. Principles of Computations. R-1471-Owrt. Santa Monica California: CA Rand Corp, 1973.
    [70] Blumberg A F, Mellor G L. A description of a three-dimensional coastal ocean circulation model. Three-dimensional Coastal Ocean Models, Washington D C: American Geophysical Union, 1987, 1-16.
    [71] Casull I V, Cheng R. Semi-implicit finite difference methods for three-dimensional shallow water flow. Methods in Fliuds, 1992, 15: 629-648.
    [72]朱耀华,方国洪.陆架和浅海环流的一个三维正压模式及其在渤、黄、东海的应用.海洋学报, 1994, 16(6): 11-20.
    [73] Wang K H. Characterization on circulation and salinity change in Galveston Bay. Engineering Mechanics, 1994, 120(3): 557-579.
    [74]张存智.黄海北部海域三维潮流数值模型.海洋预报, 2000, 17(1): 12-20.
    [75]朱建荣,沈焕庭,朱首贤.三维陆架模式及其应用.青岛海洋大学学报, 1997, 27(2) :145-156.
    [76]孙英兰,陈时俊,赵可胜.沿岸海域三维斜压场的数值模拟, I:渤海潮流数值计算.青岛海洋大学学报, 1990, 20(3): 11-24.
    [77] Heaps N S. On the numerical solution of the three-dimensional equations for tides and storm surges. Mem Soc R Sci Liege, 1972, 6(2): 143-180.
    [78] Chen Yongcan, Liu Zhaowei, et al. The Numerical Simulation of Pollutant Mixing Zone from Riverside Discharge Outlet in Three Gorges Reservoir. Proceedings of the 6th international conference on hydrodynamics, HydrodynamicsⅥ, Perth, 2004, 401-408.
    [79]赵士清.长江口三维潮流数值模拟.水利水运研究, 1985, 1: 8-20.
    [80] Liu Zhaowei, Chen Yongcan, Li Ling, Zheng Jingyun. Sigma-coordinate Numerical Model for Side-discharge into Natural Rivers. Journal of Hydrodynamics, 2009, 21(3): 333-340.
    [81] Mellor G L, Ezer T, Oey L Y. The pressure gradient conundrum of sigma coordinate ocean models. Atmos Oceanic Technol, 1994, 11: 1126-1134.
    [82]韩国其,汪德灌,许协庆.潮汐河口三维水流数值模拟.水利学报, 1989, 12: 54-60.
    [83]周思平. 3D含自由水面紊流流动的数值模拟—HH-SIMPLE方法[博士学位论文].南京:河海大学, 1988.
    [84]孙文心.三维浅海流体动力学的一种数值方法—流速分解法.物理海洋数值计算.郑州:河南科技出版社, 1992.
    [85]徐贵泉.河口分层特征及其3D数值模拟[硕士学位论文].南京:河海大学, 1992.
    [86]石磊.一个关于河口及浅海的三维分步杂交模型.青岛海洋大学学报, 1996, 26(4): 396-404.
    [87]诸裕良,严以新,茅丽华.大江河口三维非线性斜压水流盐度数学模型.水利水运科学研究, 1998, 2: 129-138.
    [88] Davies A M, Jones J E, Xing J. Numerical modeling of stratified flow: a spectral approach. Continental Shelf Research, 1983, 2(4): 275-300.
    [89] Lin B L. Tidal flow and transport modeling using UL TIMATE QUICKEST scheme. Journal of Hydraulic Engineering, ASCE, 1997, 123(4): 303-313.
    [90] Bijvelds M D, Stelling G S. 3D numerical simulation of turbulent shallow-water flow in square harbor. Journal of Hydraulic Engineering, ASCE, 1999, 125(1): 26-31.
    [91]王尚毅,顾元.二维泥沙数学模型的理论基础及其应用.海洋学报, 1987, 9(1): 104-114.
    [92]窦国仁,董凤舞,窦希萍,等.河口海岸泥沙数学模型研究.中国科学(A辑), 1995, 25(9): 995-1001.
    [93]韩其为,何明民.论非均匀悬移质二维不平衡输沙方程及其边界条件.水利学报, 1997, 1: 1-10.
    [94]白玉川,顾元,蒋昌波.潮流波浪联合输沙及海床冲淤演变的理论体系与其数学模拟.海洋与湖沼, 2000, 31(2): 186-196.
    [95]窦国仁.河口海岸全沙模型相似理论.水利水运工程学报, 2001, 1: 1-12.
    [96]丁平兴,孔亚珍,朱首贤,等.波-流共同作用下的三维悬沙输运数学模型.自然科学进展, 2001, 11(2): 147-152.
    [97]陆永军,窦国仁,韩龙喜,等.三维紊流悬沙数学模型及应用.中国科学(E辑), 2004, 34(3): 311-328.
    [98]金生,倪汉根.水流和泥沙问题数值模拟与工程应用.大连理工大学学报, 2000, 40(S1): S78-S82.
    [99]罗镇东,珠江,曾庆存,等.包含泥沙冲淤的浅水方程的混合有限元法(Ⅰ)—时间连续的情形.应用数学和力学, 2004, 25(1): 74-84.
    [100]罗镇东,珠江,曾庆存,等.包含泥沙冲淤的浅水方程的混合有限元法(Ⅱ)—时间沿特征方向离散的全离散情形.应用数学和力学, 2004, 25(2): 166-180.
    [101]曹志先.泥沙数学模型近底边界条件Ⅰ:平衡输沙.水利学报, 1997, 1: 11-19.
    [102]曹志先.泥沙数学模型近底边界条件Ⅱ:非平衡输沙.水利学报, 1997, 1: 20-24.
    [103]韩其为,何明民.恢复饱和系数初步研究.泥沙研究, 1997, 3: 32-40.
    [104]王新宏,曹如轩,沈晋.非均匀悬移质恢复饱和系数的探讨.水利学报, 2003, 3: 120-124.
    [105]窦国仁,董凤舞, Xiping Dou.潮流和波浪的挟沙能力.科学通报, 1995, 40(5): 443-446.
    [106]乐培九.悬移质不平衡输沙水流挟沙能力.水道港口, 1992, 2: 1-8.
    [107]曹文洪,张启舜.潮流和波浪作用下悬移质挟沙能力的研究.泥沙研究, 2000, 5: 16-21.
    [108]曹祖德,李蓓,孔令双.波、流共存时的水体挟沙力.水道港口, 2001, 22(4): 151-155.
    [109] Baird D P, Winter E D, Wendt G. The flux of particulate material through a well mixed estuary. Continental Shelf Research, 1987, 7: 1399-1403.
    [110] Oey L Y, Mellor G L, Hires R I. A three dimensional simulation of the Hudson-Raitan Estuary, Part 1: salt flux analysis. Journal of Physical Oceanography, 1985, 15: 1711-1720.
    [111] Thomas W A, Prasuhn A L. Mathematical modeling of scour and deposition. Journal of Hydraulic Engineering, ASCE, 1977, 103(8): 851-863.
    [112] Scarlators P D. On the numerical modeling of cohesive sediment transport. Journal of Hydraulic Research, 1981, 9(1): 61-68.
    [113] Lin P, Huan J, Li X. Unsteady transport of suspended load at small concentrations. Journal of Hydraulic Engineering, ASCE, 1983, 109(1): 86-98.
    [114] O'Connor B A, Nicholson J. Mud transport modeling. Physical Processes in Estuaries, Springer-Verlag, 1988, 532-544.
    [115] Ariathurai R, Krone R B. Finite element model for cohesive sediment transport. Journal ofHydraulic Engineering, ASCE, 1976, 102(3): 323-338.
    [116] Onishi Y. Sediment-containment transport model. Journal of Hydraulic Engineering, ASCE, 1981, 107(9): 1089-1107.
    [117] Cole P, Miles G V. Two-dimensional model of mud transport. Journal of Hydraulic Engineering, ASCE, 1983, 109(1): 1-12.
    [118] Van Rijn. Field Verification of 2D and 3D suspended sediment model. Journal of Hydraulic Engineering, ASCE, 1990, 116(10): 1270-1288.
    [119] Lin Bingliang, Roger A Falconer. Numerical modeling of three dimensional suspended sediment for estuarine and coastal waters. Journal of Hydraulic Research, 1996, 34(4): 435-456.
    [120] O'Connor B A, Nicholson J. Tidal sediment transport. computer modeling of seas and coastal regions. Southampton Boston: Computational Mechanics Publications, 1997, 367-379.
    [121]窦希萍,罗肇森.潮汐河口治理研究.中国水利, 2007, 1: 39-42.
    [122]刘宁.我国河口治理现状与展望.中国水利, 2007, 1: 34-38.
    [123]余锡平,牛小静,陈鑫.国内外滩涂及沿岸海洋空间开发利用的经验[研究报告].北京:清华大学, 2008.
    [124]沈焕庭.我国河口的开发利用.海洋与海岸带开发, 1992, 9(1): 1-4.
    [125]王兆印,程东升,刘成.人类活动对典型三角洲演变的影响—Ⅱ黄河和海河三角洲.泥沙研究, 2006, 1: 76-81.
    [126]王秋生.珠江河口治理.人民珠江, 2006, 6: 1-3.
    [127]丁涛,郑君,韩曾萃.钱塘江河口滩涂开发经济效益评估.水利经济, 2009, 27(3): 25-29.
    [128]李孟国,杨华,郑敬云,等.多因素数学模型及卫星遥感在复杂河口治理研究中的应用[研究报告].天津:交通部天津水运工程科学研究所, 2007.
    [129]陈吉余,王宝灿,虞志英.中国海岸发育过程和演变规律.上海:上海科学技术出版社, 1989.
    [130]代文良,张娜.三峡库区重庆主城区河段河床演变分析.人民长江, 2009, 40(3): 1-3.
    [131]赵常青,茅志昌,虞志英,等.长江口崇明东滩冲淤演变分析.海洋湖沼通报, 2008, (3): 27-34.
    [132]李旭升,赵洪波,左书华,等.浙江苍南海域水文泥沙环境及冲淤演变分析.水道港口, 2008, 29(5): 319-322.
    [133]姜恒志,沈永明,汪守东.瓯江口三维潮流和盐度数值模拟研究.水动力学研究与进展, A辑, 2009, 24(1):512-519.
    [134]鲁海燕,潘存鸿,等.钱塘江海宁三期治江围涂工程对涌潮影响的数值模拟研究.水动力学研究与进展, A辑, 2008, 23(5):484-491.
    [135]龙江,李适宇.珠江河口水动力一维、二维联解的有限元方法.水动力学研究与进展, A辑, 2007, 22(4):63-70.
    [136] Huang W P, Hsu C A, Kung C.S., et al. Numerical studies on typhoon surges in the Northern Taiwan. Coastal Engineering. 2007, 54, (12): 883-894.
    [137] Hu K L, Ding P X, Wang Z B, et al. A 2D/3D hydrodynamic and sediment transport model for the Yangtze Estuary, China. Journal of Marine Systems. 2009, 77(1-2): 114-136.
    [138] Perez-Arlucea M, Mendez G, Clemente F., Nombela M., et al. Hydrology, sediment yield, erosion and sedimentation rates in the estuarine environment of the Ria de Vigo, Galicia, Spain. Journal of Marine Systems. 2005, 54(1-4): 209-226.
    [139] Jerome F, Kelley Steffen L, Christopher N K, et al. Haus. Hydrodynamics and sediment transport in a southeast Florida tidal inlet. Estuarine, Coastal and Shelf Science. 2006, 70(1-2): 297-306.
    [140] Brothers L L, Belknap D F, Kelley J T, et al. Sediment transport and dispersion in a cool-temperate estuary and embayment, Saco River estuary, Maine, USA. Marine Geology. 2008, 251(3-4): 183-194.
    [141] Wang X C, Chao Y, Dong C M, et al. Rosenfeld Modeling tides in Monterey Bay, California. Deep Sea Research Part II: Topical Studies in Oceanography. 2009, 56(3-5): 219-231.
    [142]李孟国.海岸河口水动力数值模拟研究及对泥沙运动研究的应用[博士学位论文].青岛:中国海洋大学, 2002.
    [143]郑敬云,李文丹.小门岛5万吨级煤码头工程潮流泥沙数模研究.水道港口, 2007, 28(6): 397-402.
    [144]郑敬云,李孟国,麦苗,等.温州状元岙化工码头工程潮流泥沙数模研究.水道港口, 2008, 29(4): 259-266.
    [145]曹祖德,王桂芬.波浪掀沙、潮流输沙的数值模拟.海洋学报, 1993, 15(1): 107-118.
    [146]李孟国,郑敬云.中国海域潮汐预报软件Chinatide的应用.水道港口, 2007, 28(1): 65-68.
    [147]郑敬云,李孟国,麦苗,等.瓯江口水文泥沙特征分析.水道港口, 2008, 29(1): 1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700