用户名: 密码: 验证码:
大型地震数据采集记录系统中数据传输的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传感技术、计算机技术、通信技术和存储技术的融合极大地促进了地震勘探技术的发展,从而进一步刺激了地质勘探的需求。大规模、全数字化和高实时性是当前地震勘探仪器的发展趋势,因此,实时数据传输能力的提高成为地震勘探仪器亟待解决的问题。论文在深入研究大型地震数据采集记录系统(Large-scale Seismic Acquistion and Recording System,LSARS)中地震专用电缆的信道容量和可靠性基础之上,以低功耗为目标对系统进行分析、研究、改进和实现,为LSARS的应用提供了坚实的理论和实践基础,主要内容包括:
     分析了单条传输线内部的码间串扰,以及码间串扰与频率之间的关系;分析了同一时刻不同传输线之间的相互影响。针对LSARS全双工通信的特点,对通用MIMO(Multiple-Input Multiple-Output)模型进行改进,提出了扩展MIMO模型和基于该模型的串扰消减策略,提高了信道的信噪比和信道容量,同时降低了数据传输系统对发送功率的要求。
     为了提高数据传输的可靠性,研究了8B/10B调制信道下的低功耗帧同步和纠错算法。根据8B/10B编码和可编程逻辑的特点,通过硬判决和同步码的加长,对相关(correlation)算法进行改进,解决了8B/10B调制信道中同步码为单个控制字时同步性能不足的问题。理论分析和实验结果表明,该算法具有误同步率低、复杂度低、易于硬件和可编程逻辑实现等特点。对Reed-Solomon解码器的RiBM(Reformulated inversionless Berlekamp-Massey)算法进行串行化处理,提出了ARiBM(Area-efficient RiBM)算法和基于该算法的多通道复用解码器,解决了RiBM算法复杂度高、功耗大的问题,促进了Reed-Solomon码在LSARS中的应用。理论分析和实验结果表明,ARiBM算法在满足LSARS解码速度的同时,大大降低了解码器的复杂度。
     针对研制的LSARS数据传输系统及相关实验平台,进行了室内测试实验和野外生产实践,通过与现有国外设备的比较,测定和验证了该数据传输系统的实时传输能力、高可靠性和低功耗特性。
The fusion of sensor, computer, communication and storage technologies greatly accelerates the development of seismic exploration technology, and therefore stimulates the need of geological exploration further. Nowadays, large-scale, full-digitalization and high real-time are the three development trends of current seismic exploration equipment, which make it urgent to improve the real-time ability of data transmission system. Based on the research of channel capacity and reliability of seismic specific cable in Large-scale Seismic Acquisition and Recording System (LSARS), this dissertation analyzes, researches, improves and realizes a low power data transmission system, and consequently provides a theory and experiment foundation for the applications of LSARS. The main contents of this dissertation are described as follows:
     First, the dissertation analyzes and studies the Inter Symbol Interference (ISI) and the relationship between ISI and frequency in one transmission line, and the interaction between different transmission lines at the same time. Second, because of the full duplex characteristic of LSARS, the general MIMO (Multiple-Input Multiple-Output) model is improved, a new model, i.e. the extended MIMO model, and crosstalk elimination based on it are proposed. Therefore, the Signal-to-Noise Ratio (SNR) and channel capacity are improved, and the transmission power requirement is also reduced.
     To improve the reliability of data transmission, this dissertation also studies the energy-efficient frame synchronization algorithm and error correction algorithm on 8B/10B modulated channel. According to the characteristic of 8B/10B coding and programmable logic, the inadequate performance of conventional synchronization scheme with single control word on 8B/10B channel is solved by hard decision correlation algorithm and lengthening of synchronization code. The theory analysis and experiment results show that the improved algorithm has lower error synchronization rate, lower complexity and makes the hardware and programmable logic easier to implement. By the serialization of Reformulated inversionless Berlekamp-Massey (RiBM) algorithm of Reed-Solomon (RS) decoder, an Area-efficient RiBM (ARiBM) algorithm and a multiplex decoder based on it are proposed. The improved algorithm solves the problem of high complexity and high power consumption of RiBM decoder, and makes RS code be applied successfully in LSARS. The theory analysis and experiment results show that the improved algorithm meets the requirements of the decoding speed of LSARS, and decreases the decoding complexity significantly.
     Indoor tests and filed experiments are carried out on the developed data transmission system and relative experiment platform of LSARS. The comparison results with foreign similar equipments show that the data transmission system performs better in the fields of real-time ability, high reliability and low power consumption.
引文
[1]韩晓泉,穆群英,易碧金.地震勘探仪器的现状及发展趋势.物探装备, 2008, 18(1):1-6.
    [2]王永生.我国严峻的资源形势及对策[EB/OL]. (2007-11-20) [2010-3-31]. http://www. mlr.gov.cn/tdzt/zdxc/dqr/38/xgxw/200711/t20071120_92689.htm.
    [3]中华人民共和国科学技术部.国家科技重大专项:大型油气田及煤层气开发[EB/OL]. [2010-3-31]. http://www.nmp.gov.cn/zxjs/yqtmc/.
    [4] REBELLO K J. Applications of MEMS in surgery. Proc. IEEE, 2004, 92(1):43-55.
    [5] Maxim Integrated Products, Inc. Homepage of Maxim Integrated Products, Inc. [EB/OL]. [2010-3-31]. http://www.maxim-ic.com/.
    [6] Culler D, Estrin D, Srivastava M. Overview of sensor networks. Computer, 2004, 37(8):41-49.
    [7] Van Der Veen M, Spitzer R, Green A G, et al. Design and application of a towed land-streamer system for cost-effective 2-D and pseudo-3-D shallow seismic data acquisition. Geophysics, 2001, 66(2):482-500.
    [8] Wood W T, Gettrust J F. New developments in deep-towed seismic acquisition. // Oceans Conference Record. IEEE, 2002:1139-1142.
    [9]张永明,张贵宾.超导重力梯度勘探系统.勘探地球物理进展, 2009, 32(2):147-151.
    [10] Sunderland Andrew, Ju Li, Blair David G, et al. Optimizing a direct string magnetic gradiometer for geophysical exploration. Review of Scientific Instruments, 2009, 80(10).
    [11]张前进,杨进.综合电法在深部隐伏矿体勘查中的应用实例.物探与化探, 2010, 34(1):40-43.
    [12]黄贤玉,刘晓波.航天遥感信息提取技术方法与地质遥感技术在植被覆盖地区的找矿应用.世界地质, 2004, 23(4):402-406.
    [13] Laine J, Mougenot D. Benefits of MEMS based seismic accelerometers for oil exploration. // 4th International Conference on Solid-State Sensors, Actuators and Microsystems. IEEE, 2007:1473-1477.
    [14] Djikpesse H, Armstrong P, Rufino R, et al. Reducing Uncertainty With Seismic Measurements While Drilling. IEEE Transactions on Instrumentation and Measurement, 2010, 59(1):4-14.
    [15] ION Geophysical. Homepage of ION Geophysical. [EB/OL]. [2010-3-31]. http://www. iongeo.com/.
    [16]夏颖,祝彩霞,孙灵群.地震勘探仪器在高密度采集中的应用.物探装备, 2008, 18(1):7-11.
    [17]王文良.地震勘探仪器的发展、时代划分及其技术特征.石油仪器, 2004, 18(1):1-9.
    [18]罗福龙.地震勘探仪器技术发展综述.石油仪器, 2005, 19(2):1-6.
    [19] Sercel. History of Sercel [EB/OL]. [2010-3-31]. http://www.sercel.com/Company/ history.php.
    [20] ION Geophysical. History of ION Geophysical [EB/OL]. [2010-3-31]. http://www. iongeo.com/About_Us/History/.
    [21] Sercel. Homepage of Sercel [EB/OL]. [2010-3-31]. http://www.sercel.com/.
    [22]杨泓渊.复杂山地自定位无缆地震仪的研究与实现[博士学位论文].长春:吉林大学地球探测与信息技术专业, 2009.
    [23]谢明璞.大规模陆上地震仪器结构设计的关键技术[博士学位论文].合肥:中国科学技术大学物理电子学专业, 2009.
    [24]张林行.基于接力式以太网的可控震源地震勘探数据传输技术研究[博士学位论文].长春:吉林大学地球探测与信息技术专业, 2007.
    [25]曹平.勘探地震数据获取系统设计[博士学位论文].合肥:中国科学技术大学物理电子学专业, 2007.
    [26]康剑斌.只读磁盘-磁带库系统的研究与实现[博士学位论文].北京:清华大学精密仪器与机械学系, 2009.
    [27]林学龙.高分辨率低功耗浅层地震勘探仪器的研究与实现[博士学位论文].上海:上海大学控制理论与控制工程专业, 2008.
    [28] Ginis G, Cioffi J M. Vectored transmission for digital subscriber line systems. IEEE Journal on Selected Areas in Communications, 2002, 20(5):1085-1104.
    [29] Lee B, Cioffi J M, Jagannathan S, et al. Gigabit DSL. IEEE Transactions on Communications, 2007, 55(9):1689-1692.
    [30] Hormis R, Guo Dong, Wang Xiaodong. Monte Carlo FEXT cancellers for DSL channels. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, 52(9):1894-1908.
    [31] Perez Palomar D, Angel Lagunas M, Cioffi J M. Optimum joint transmit-receive linear processing for vectored DSL transmission with QoS requirements. // Conference Record of the Asilomar Conference on Signals, Systems and Computers. IEEE, 2002:388-392.
    [32] Zanatta Filho D, Lopes R R, Ferrari R, et al. The Capacity of Binders for MIMO Digital Subscriber Lines. // 2006 International Telecommunications Symposium. IEEE, 2006: 999-1004.
    [33] Goldsmith A, Jafar S A, Jindal N, et al. Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communications, 2003, 21(5):684-702.
    [34] Lee B, Cioffi J M, Jagannathan S, et al. Binder MIMO Channels. IEEE Transactions on Communications, 2007, 55(8):1617-1628.
    [35] Kavehrad M, Doherty J F, Jun-Ho J, et al. 10 Gbps transmission over standard category-5 copper cable. // Global Telecommunications Conference. IEEE, 2003:4106 -4110.
    [36] Scholtz R A. Frame Synchronization Techniques. IEEE Transactions on Communications, 1980, 28(8):1204-1213.
    [37] Massey J L. Optimum Frame Synchronization. IEEE Transactions on Communications, 1972, 20(2):115-119.
    [38] Timor U. Frame Synchronization in Time-Multiplexed PCM Telemetry with Variable Frame Length. IEEE Transactions on Communications, 1972, 20(5):1005-1008.
    [39] Gee L L, Tan H H. Frame Synchronization for Gaussian Channels. IEEE Transactions on Communications, 1987, 35(8):818-829.
    [40] Kopansky A, Bystrom M. Detection of aperiodically embedded synchronization patterns. // IEEE International Symposium on Information Theory - Proceedings. IEEE, 2001:135.
    [41] Kopansky A, Bystrom M. Detection of aperiodically embedded synchronization patterns. IEEE Transactions on Wireless Communications, 2004, 3(5):1386-1392.
    [42] Kopansky A, Bystrom M. Detection of Aperiodically Embedded Synchronization Patterns on Rayleigh Fading Channels. IEEE Transactions on Communications, 2006, 54(11):1928-1932.
    [43] Chiani M, Martini M G. Optimum synchronization of frames with unknown, variable lengths on Gaussian channels. // GLOBECOM'04 - IEEE Global Telecommunications Conference. IEEE, 2004:4087-4091.
    [44] Chiani M, Martini M G. Practical frame synchronization for data with unknown distribution on AWGN channels. IEEE Communications Letters, 2005, 9(5):456-458.
    [45] Chiani M, Martini M G. On sequential frame synchronization in AWGN channels. IEEE Transactions on Communications, 2006, 54(2):339-348.
    [46] Golomb S W, Win M Z. Recent results on polyphase sequences. IEEE Transactions on Information Theory, 1998, 44(2):817-824.
    [47] Golomb S W, Scholtz R A. Generalized Barker sequences. IEEE Transactions on Information Theory, 1965, 11(4):533-537.
    [48] Munhoz D T R, deMarca J R B, Arantes D S. On Frame Synchronization of PCM Systems. IEEE transactions on communications systems, 1980, 28(8):1213-1218.
    [49] Dodds D E, Button L R, Si-Ming P. Robust Frame Synchronization for Noisy PCM Systems. IEEE Transactions on Communications, 1985, 33(5):465-469.
    [50] Driessen P F. Performance of frame synchronization in packet transmission using bit erasure information. IEEE Transactions on Communications, 1991, 39(4):567-573.
    [51] Rushforth C K, Currie R J. Frame Synchronization in the Presence of Errors and Erasures. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(4):498-505.
    [52] Shannon C E. Mathematical theory of communication. Bell System Technical Journal, 1948, 27(3-4):379-423(Part I), 623-656(Part II).
    [53] Hamming R W. Error detecting and error correcting codes. Bell Laboratories Record, 1950, 28(5):193-198.
    [54] Reed I S, Solomon G. Polynomial Codes Over Certain Finite Fields. Journal of the Society for Industrial and Applied Mathematics, 1960, 8(2):300-304.
    [55] Berlekamp E R. Algebraic coding theory. New York: McGraw-Hill, 1968.
    [56] Gallager R G. Low-density parity-check codes. IRE Transactions on Information Theory, 1962, 8(1):21-28.
    [57] MacKay D J C, Neal R M. Near Shannon limit performance of low density parity check codes. Electronics Letters, 1996, 32(18):1645-1646.
    [58] Berrou C, Glavieux A, Thitimajshima P. Near SHANNON limit error-correcting coding and encoding: Turbo-codes (1). // IEEE International Conference on Communications. IEEE, 1993:1064-1070.
    [59] Massey J L. Shift-register synthesis and BCH decoding. IEEE Transactions on Information Theory, 1969, 15(1):122-127.
    [60] Sarwate D V, Shanbhag N R. High-speed architectures for Reed-Solomon decoders. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2001, 9(5):641-655.
    [61] Sugiyama Y, Kasahara M, Hirasawa S, et al. METHOD FOR SOLVING KEY EQUATION FOR DECODING GOPPA CODES. Information and Control, 1975, 27(1):87-99.
    [62] Hanho Lee. High-speed VLSI architecture for parallel Reed-Solomon decoder. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2003, 11(2):288-294.
    [63] Shao H M, Truong T K, Deutsch L J, et al. A VLSI Design of a Pipeline Reed-Solomon Decoder. IEEE Transactions on Computers, 1985, C-34(5):393-403.
    [64] Baek J H, Sunwoo M H. Enhanced degree computationless modified Euclid's algorithm for Reed-Solomon decoders. Electronics Letters, 2007, 43(3):175-177.
    [65] Baek J H, Kang J Y, Sunwoo M H. Design of a high-speed Reed-Solomon decoder. // Proceedings - IEEE International Symposium on Circuits and Systems. IEEE, 2002:V/793-V/796.
    [66] Jin-Chuan H, Chien-Ming W, Ming-der S, et al. An area-efficient versatile Reed-Solomon decoder for ADSL. // Proceedings - IEEE International Symposium on Circuits and Systems. IEEE, 1999:I-517-I-520.
    [67] Sunghoon K, Hyunchul S. An area-efficient VLSI architecture of a Reed-Solomon decoder / encoder for digital VCRs. IEEE Transactions on Consumer Electronics, 1997, 43(4):1019-1027.
    [68]张金.红光多阶光盘纠错与交织研究[硕士学位论文].北京:清华大学精密仪器与机械学系, 2006.
    [69]徐朝军. RS码译码算法及其实现的研究[博士学位论文].西安:西安电子科技大学通信与信息系统专业, 2006.
    [70] Min-An S, Sy-Yen K, I-Feng L. A Low Complexity Design of Reed Solomon Code Algorithm for Advanced RAID System. IEEE Transactions on Consumer Electronics, 2007, 53(2):265-273.
    [71] Shayegh F, Soleymani M R. Soft decision decoding of Reed-Solomon codes using sphere decoding. // IEEE International Conference on Communications. IEEE, 2008:4489-4495.
    [72] Jiang J, Narayanan K R. Algebraic soft-decision decoding of Reed-Solomon codes using bit-level soft information. IEEE Transactions on Information Theory, 2008, 54(9):3907-3928.
    [73] Wenyi J, Fossorier M. Towards maximum likelihood soft decision decoding of the (255,239) reed solomon code. IEEE Transactions on Magnetics, 2008, 44(3):423-428.
    [74] Jiang J, Narayanan K R. Iterative soft-input soft-output decoding of reed-solomon codes by adapting the parity-check matrix. IEEE Transactions on Information Theory, 2006, 52(8):3746-3756.
    [75] Jun M, Vardy A, Zhongfeng W. Low-Latency Factorization Architecture for Algebraic Soft-Decision Decoding of Reed-Solomon Codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2007, 15(11):1225-1238.
    [76] Ming-Der S, Yung-Kuei L, Shen-Ming C, et al. Design and implementation of efficient Reed-Solomon decoders for multi-mode applications. // Proceedings - IEEE International Symposium on Circuits and Systems. IEEE, 2006:289-292.
    [77] Khalesi H, Nabavi A, Bornoosh B. A Low Complexity VLSI Architecture for Reed-Solomon Decoder. // Proceedings - 2007 IEEE International Conference on Signal Processing and Communications. IEEE, 2007:1551-1554.
    [78] Bei H, ShuangQu H, Yun C, et al. An area efficient multi-mode architecture for reed-solomon decoder. // IEEE 8th International Conference on ASIC. IEEE, 2009:505-508.
    [79] Bo Y, Li L, Zhongfeng W. High-speed area-efficient versatile Reed-Solomon decoder design for multi-mode applications. // IEEE Workshop on Signal Processing Systems, SiPS: Design and Implementation. IEEE, 2009:179-184.
    [80] Bo Y, Zhongfeng W, Li L, et al. Area-efficient reed-solomon decoder design for optical communications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2009, 56(6):469-473.
    [81] Rashid A, Fitzek F H P, Olsen O, et al. A Low Complexity, High Speed, Regular and Flexible Reed Solomon Decoder for Wireless Communication. // 2006 IEEE Design and Diagnostics of Electronic Circuits and systems. IEEE, 2006:31-36.
    [82] Berrou C, Pyndiah R, Adde P, et al. An overview of turbo codes and their applications. // Conference Proceedings - 8th European Conference on Wireless Technology. IEEE, 2005:1-10.
    [83] Berrou C. The ten-year-old turbo codes are entering into service. IEEE Communications Magazine, 2003, 41(8):110-116.
    [84] Berrou C, Graell i Amat A, Ould-Cheikh-Mouhamedou Y, et al. Improving the distance properties of turbo codes using a third component code: 3D turbo codes - [transactions letters]. IEEE Transactions on Communications, 2009, 57(9):2505-2509.
    [85] Berrou C, Graell i Amat A, Mouhamedou Y Ould Cheikh, et al. Adding a Rate-1 Third Dimension to Turbo Codes. // 2007 IEEE Information Theory Workshop, Proceedings. IEEE, 2007:156-161.
    [86] Sae-Young C, Forney G D Jr, Richardson T J, et al. On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Communications Letters, 2001, 5(2):58-60.
    [87]郭永富,周傲松. LDPC编译码方法综述.航天器工程, 2008, 17(3):118-122.
    [88] Richardson T, Urbanke R. The renaissance of Gallager's low-density parity-check codes. IEEE Communications Magazine, 2003, 41(8):126-31.
    [89]熊磊,谈振辉,姚冬苹.一种低译码复杂度的Turbo架构LDPC码.电子与信息学报, 2007, 29(12):2907-2911.
    [90] Akyildiz Ian F, Weilian S, Sankarasubramaniam Y, et al. A survey on sensor networks. IEEE Communications Magazine, 2002, 40(8):102-105.
    [91]张大踪,杨涛,魏东梅.无线传感器网络低功耗设计综述.传感器与微系统, 2006, 25(5):10-14.
    [92] Karl H, Willig A.无线传感器网络协议与体系结构.北京:电子工业出版社, 2005.
    [93] Al-Karaki J N, Kamal A E. Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications, 2004, 11(6):6-27.
    [94] Vuran M C, Akyildiz I F. Cross-layer analysis of error control in wireless sensor networks. // 3rd Annual IEEE Communications Society on Sensor and Ad hoc Communications and Networks. IEEE, 2006:585-594.
    [95] Otal B, Verikoukis C, Alonso L. Fuzzy-Logic Scheduling for Highly Reliable and Energy-Efficient Medical Body Sensor Networks. // Proceedings - 2009 IEEE International Conference on Communications Workshops. IEEE, 2009.
    [96]李钊,韦玮.无线传感器网络及关键技术综述.空间电子技术, 2006, (S1):23-38.
    [97] Aboelaze M, Aloul, F. Current and future trends in Sensor networks: A survey. // 2005 International Conference on Wirelessand Optical Communications Networks. IEEE, 2005:551-555.
    [98] Chalivendra G, Srinivasan R, Murthy N S. FPGA based re-configurable wireless sensor network protocol. // 2008 International Conference on Electronic Design. IEEE, 2008.
    [99] Qing L, Xiaoyang Z, Chuan W, et al. Optimal frame synchronization for DVB-S2. // Proceedings - IEEE International Symposium on Circuits and Systems. IEEE, 2008:956-959.
    [100] Patrick Robertson. Maximum likelihood frame synchronization for flat fading channels. // IEEE International Conference on Communications 1992. IEEE, 1992:1426-1430.
    [101]韩晶昀,黄普明,孙献璞,等. Turbo码中SOVA算法和Log-MAP算法的比较.空间电子技术, 2007, (2):66-71.
    [102]张正喜,王昕,朱琦.卷积Turbo码log MAP的DSPs实现.数据通信, 2004, (5):8-10.
    [103] Williams D. Turbo Product Code Tutorial. IEEE 802.16 Presentation Submission Template (Rev. 8), 2000.
    [104] Shao H M, Reed I S. On the VLSI design of a pipeline Reed-Solomon decoder using systolic arrays. IEEE Transactions on Computers, 1988, 37(10):1273-1280.
    [105] Rizwan S. Retimed Decomposed Serial Berlekamp-Massey (BM) Architecture for High-Speed Reed-Solomon Decoding. // Proceedings of the IEEE International Frequency Control Symposium and Exposition. IEEE, 2008:53-58.
    [106] Chambers P, Downing C, Baher H. Effect of a measurement based error on the capacity of a 5x5 twisted-pair MIMO communications system. // IEEE High Frequency Postgraduate Student Colloquium. IEEE, 2005:109-112.
    [107]陈素然,张剑庆.数字信号传输与码间串扰.长江大学学报(自科版), 2006, 3(2):553-555.
    [108] Sklar B.数字通信:基础与应用.北京:电子工业出版社, 2002.
    [109] Obaidat M S, Teng J. A methodology to analyze the performance of a parallel frame synchronization scheme in SDH high speed networks. Computer Communications, 1999, 22(7):644-650.
    [110] Al-Semari S, Biyari K H. Trellis coded modulation with outer RS codes for communication over Rayleigh fading channels. // Proceedings of IEEE Singapore International Conference on Networks. IEEE, 1993:717-720.
    [111] Lie-Liang Y, Lajos H. Low complexity erasure insertion in RS-coded SFH spread-spectrum communications with partial-band interference and nakagami-m fading. IEEE Transactions on Communications, 2002, 50(6):914-925.
    [112]边计年,薛宏熙,吴强.数字逻辑与VHDL设计.北京:清华大学出版社, 2005.
    [113] Altera Corporation. Homepage of Altera Corporation [EB/OL]. [2010-3-31]. http://www. altera.com/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700