用户名: 密码: 验证码:
高密度电阻率勘探反演的非线性方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电法勘探在采矿工程领域有着广阔的应用前景,尤其是在矿井水害超前预警探测方面正在发挥着重要作用。然而由于对实测数据采用线性方法处理,反演结果往往与实际情况有较大的偏差,解译精度难以满足矿井生产的要求。高密度电阻率法是电法勘探的一个重要分支,常用的数据处理方法主要包括有限差分法、有限单元法、共轭梯度法和最小二乘法等,应用最多的是由M.H.Loke开发的二维、三维电阻率法反演软件Res2dinv和Res3dinv,但使用效果并不十分理想。因此提高高密度电法反演精度的研究不仅可丰富采矿地球物理勘查的数据处理理论,而且对矿井安全生产和解决一些工程地质等问题均具有重要的理论意义和实用价值。
     目前非线性反演技术已应用于地球物理反演领域,而电法非线性反演却未得到广泛的应用。近年来随着非线性反演技术的深入研究,许多学者提出了非线性联合反演技术,但至今仍未有实质性的进展,为此本文就神经网络算法(BP)、模拟退火法(SA)、遗传算法(GA)和蚁群算法(ACO)这四种具有代表意义的非线性算法,及各自在地球物理反演领域的应用,尤其在电法反演方面的使用进行了阐述,并针对各自不同反演计算的局限性,将非线性联合算法引入到电法反演之中,从而实现了不同方法间的优化联合,并将此类联合方法应用于高密度电法的非线性反演,满足了解译精度的要求。
     本文依据不同非线性反演方法的特点,将具有局部搜索优势的神经网络算法分别与具有良好全局搜索优势的模拟退火法、遗传算法和蚁群算法进行联合反演,即利用SA、GA、ACO这三种算法的全局搜索优势,对BP网络算法的初始权值、阙值矩阵进行优化,从而大大地缩短了反演计算时间、极大地提高了BP神经网络进行电法数据反演的成功率,达到了提高反演精度的目的。
     论文在提出了联合优化算法的框架与步骤,得到了SA-BP算法、GA-BP算法和ACO-BP算法之后,通过计算机编程对这三种典型的模型进行了反演运算,实现了高密度电阻率法的电阻率非线性反演;通过三种联合算法和单一BP算法反演数据的SURFER成图可以看出,三种非线性方法的高密度电法反演结果均明显优于传统线性反演结果,非线性方法反演结果反映出的异常体赋存状态更接近于理论模型。
     为显示联合算法相对于单一BP算法的优势,文中对各联合算法的反演与BP神经网络反演分别做出比较,结果显示联合算法可以克服BP神经网络反演方法的不足,避免陷入局部最优解现象,同时还可减少训练次数、节约训练时间,高效地获得高精度反演结果;而且联合算法的稳定性和模型的吻合性都比BP神经网络独立反演要好。
     通过比较各联合算法对数值模型做出的反演运算结果,采用判断系数R2以及均方差E进行各联合方法的评价,得出不同联合方法反演的优势:ACO-BP方法在反演中用时最短,反演精度高,反演稳定性好(E值较小),判断系数R2更接近数值1,反演模型适宜性最强;GA-BP方法由于GA的非并行寻优方式,使得GA对BP神经网络的初值优化耗时较长,但最终反演精度较高;SA-BP方法在这三种联合算法中无明显优势,无论反演所需时间还是模型精度都不及前两种方法。
     最后选取ACO-BP联合反演方法和GA-BP联合反演方法应用到山西中煤潘家窑煤业有限公司的地下采空充水区探测数据处理中。采用传统的反演方法进行高密度电阻率法数据反演处理,反演结果与已知钻孔资料有一定的偏差。而利用非线性联合优化反演方法ACO-BP和GA-BP进行反演时,结果与实际采空区的位置吻合较好,验证了非线性联合算法应用于高密度电阻率法数据反演中的实用性和可操作性。
     本文研究结论表明了非线性联合方法在高密度电法反演中的有效性,对今后其它电法勘探方法的反演技术提出可借鉴的经验。
As is known by us all, the electrical prospecting method is gaining a wide application prospect and playing an increasingly important role especially in advanced warning and detection of water disaster in coal mines. However, the inversion result always shows a significant deviation compared with the reality due to the linear processing method towards the original data, so the interpreting accuracy can hardly meet the requirements of the mining production. As an important branch of electrical prospecting, the data processing methods that are most commonly used for the high density resistivity method include the finite difference method, the finite element method, the conjugate gradient method as well as the least square method, among which the two dimensional inversion software RES2DINV and the three dimensional software RES3DINV developed by M. H. Loke are the most frequently used ones, however, the result is also beyond satisfaction. Therefore, research on the promotion of inversion accuracy of the high density electrical method would not only enrich the data processing theory of mining geophysical exploration, but also provide a theoretical significance as well as practical utility to the safety in mine production and some problems in engineering geology.
     Although nonlinear inversion method had already been applied in the geophysical inversion field, there are fairly few applications of nonlinear method in electrical exploration. Many researchers had attempt the nonlinear joint inversion technology with the intensively research in the nonlinear method in recent years, however, there are still no substantial progress. As a result, the application in geophysical inversion field especially in electrical prospecting method of four representational nonlinear method including neural network algorithm (BP), simulated annealing method (SA), genetic algorithm (GA) and ant colony optimization (ACO) are stated in this thesis, besides, the joint nonlinear algorithm is also introduced in according to the limitations of the four algorithms, so the majorization and combination of the four above mentioned algorithms is fulfilled, from the utilization of which the requirements of interpreting accuracy can be met in the inversion of high density electrical method.
     Based on the characteristics of different kinds of nonlinear inversion method, the joint inversion between neural network algorithm and other three kinds of algorithms is carried out, in which the overall search advantage of SA, GA and ACO is introduced in optimizing the original weight and weight matrix of the BP neural network algorithm, by doing that, the calculation time of the inversion could be shorten, so the efficient of the inversion of the BP neural network algorithm could be enhanced to a large extent, from which the inversion accuracy could eventually be promoted.
     In this thesis, the overall framework and procedures of joint optimized algorithm including SA-BP algorithm, GA-BP algorithm and ACO-BP algorithm is firstly worked out, after which computer programming is used to fulfill the inversion on the three typical models and eventually the nonlinear inversion of the high density resistivity method. Through the result graph of the three joint inversion method and the single BP algorithm generated by SURFER, a conclusion can be drawn that the inversion result of the three joint algorithms are significantly better than the single BP algorithm, and the occurrence form of abnormal body from using the nonlinear inversion method is more close to the theoretical model.
     In order to display the advantage of the joint algorithm over the single algorithm, the comparison between those two algorithm is also stated in this thesis, the result shows that joint algorithm could overcome the disadvantage to avoid the optimal explain phenomena and to save the training time through reduce training time, besides, higher inversion accuracy could be obtained through the joint algorithm, apart from which, the stability and similarity with the model of joint algorithm are better than the single algorithm.
     Through the comparison between the three different joint algorithm in the inversion results from judge coefficient and mean square error, advantages of different method could be concluded that the ACO-BP method has a advantage of short time consumption, high inversion accuracy, low E value, a suitable judge coefficient close to 1 and good suitability to the model, while the GA-BP method has a relatively higher time consumption due to the non-parallel optimal way, however, the inversion accuracy is high. As to the SA-BP method, it hardly has advantages over the other two methods.
     Lastly, the inversion method of ACO-BP and GA-BP is applied to the data processing of the detection of the goaf filled with water in panjiayao coal mine in Shanxi province, the inversion result of which is more highly closed to the reality compared with the results obtained from the traditional inversion method, which illustrates the utility and feasibility of joint nonlinear inversion method in the processing of the data of the high density resistivity method.
     The conclusion of this thesis illustrates the efficiency of the joint nonlinear inversion method, which would provide some experience to the inversion technology used in other kinds of electric method in future.
引文
[1]张平松,刘盛东,程学.矿井地质安全保障体系中的实用探测技术[J].江苏煤炭.2003,2:10-11.
    [2]翟培合.采场地板破坏及底板水动态检测系统研究[D].山东科技大学.2005,5.
    [3]徐红.地质工作是煤矿安全的基石[J].西部探矿工程.2006,7:120-123.
    [4]刘树才,刘鑫明,姜志海,邢涛,陈酩知.煤层底板导水裂隙演化规律的电法探测研究[J].岩石力学与工程学报.2009,28(2):348-355.
    [5]赵贤任,刘树才,李富,李建慧,张向阳.煤层底板破坏带电阻率法异常特征研究[J].工程地球物理学报.2008,5(2):164-168.
    [6]闫长斌,徐国元,中国生.复杂地下空区综合探测技术研究及其应用[J].辽宁工程技术大学学报.2005,24(4):481-484.
    [7]王育忠,高谦,王正辉,采场坍塌空区地球物理探测及矿山恢复生产设计与安全评价[J],地球物理学进展,2008,23(3),903~908.
    [8]张平松,刘盛东,李培根.煤矿井巷间地质构造及其异常多波联合探测技术与应用[J].地球物理学进展.2007.22(2):598~603.
    [9]王桦.矿山岩土体导电特性及工程应用研究[D].安徽理工大学.2009,6.
    [10]邓世坤,梅宝,胡朝彬.紫金山金-铜矿露天采矿场地下不明空区的地质雷达探测[J].矿产与地质.2008,22(3):255~259.
    [11]杨文采.地球物理反演的理论与方法[M].地质出版社.1996.
    [12]曹新奇,冯小军,张呈国.地球物理方法在采矿中的应用,山东煤炭科技[J],2009,6:13~15.
    [13]于景邮,刘志新,岳建华,刘树才.煤矿深部开采中的地球物理技术现状及展望[J]地球物理学进展.2007,22(2):586-592.
    [14]窦林名,何学秋.采矿地球物理学[M].中国科学文化出版社.2002.
    [15]窦林名,谷德钟.采矿地球物理方法的应用前景[C].第六届全国采矿学术会议文集.1999,104-106.
    [16]Backus, G. E., and Gilbert, J. F. Numeficfl application of a formulism for geophysical problem[J].Geophys. J. R. astr. Soe.1967,13:247~276.
    [17]Backus, G. E., and Gilbert, J. F. T he resolving power of gross earth data[J]. Geophys. J. R. astr. Soc.1968,16:169~205.
    [18]Wiggins, R. A. The generalized linear inverse problem:Implication of surface waves and free oscillations for earth structure [J]. Rev. Geophys. SpacePhys.1972,10:251~ 285.
    [19]Jackson, D. D. Interpretation of inaccurate, insufficient, and inconsistent data[J]. Oeophys. J. R. astr. Soc.1972,28:97~109.
    [20]Parker,R. L. understanding inverse theory[J]. Rev. Earth Planet, Sci.1976,5:35~ 64.
    [21]艾伯特.塔兰托拉.反演理论—数据拟合和模型参数估计.刘福田译.学术出版社.1989.
    [22]王家映.地球物理反演理论[M].中国地质大学出版社.1998.
    [23]杨斌,肖慈询,王斌等.基于神经模糊系统的储层参数反演[J].石油与天然气地质.2000,21(2):173~176.
    [24]刘争平,何永富.人工神经网络在测井解释中的应用[J].地球物理学报.1995,38(增刊):323-330.
    [25]周辉,何椎登,徐世浙.人工神经网络非线性地震波形反演[J].石油物探.1997,36(1):61~70.
    [26]李创社,张彦鹏,李实,等.瞬变电磁勘探中的人工神经网络反演法.西安交通大学学报.2001,35(6):604~615.
    [27]黄科,肖慈殉,张哨楠,等.基于神经网络的储层识别处理技术及在塔河油田的应用[J].物探化探计算技术.2006,28(1):18-21.
    [28]杨文采.评地球物理反演的发展趋向[J].地学前缘,2002,9(4):389-396.
    [29]从爽.面向Matlab工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社.1996.
    [30]丁柱,杨长春,陶宏根,等.神经网络反演双侧向电阻率测井曲线的物理约束[J].地球物理学进展,2002,17(2):331~336.
    [31]张玉池,张兆京,温佩琳.人工神经网络在地球物理勘探中的应用概论[J].矿产与 地质.1999,13(6):320-323.
    [32]Cakleron-Macias C, Sen M, Stoffa P. Artificial neural networks for parameter estimation in geophysics[J]. Geophysical Prospecting,2000,48 (1):21~47.
    [33]Zhang Lin, Poullon M M, Wang T. Borehole electrical resistivity modeling using neural network [J]. Geophysics.2002,67 (6):1790~1797.
    [34]IngberL, Rosen B. Genetic algorithm s and very fast si m ulated annealing:A com parison. M athem atical Com puterM odeling [J].1992,16 (11):87~100.
    [35]Tarek M, N abhan A, lbert Y, Zom aya A. parallel si m ulated annealing algorithm with low comm unication over head [J].IEEE Transactionson Paralleland D istributed System s.1995,6 (12):1226~1233.
    [36]胡山鹰,陈丙珍,何小荣,等.非线性规划问题全局优化的模拟退火法[J].清华大学学报(自然科学版).1997,(6):5-9.
    [37]康立山,谢云1非数值并行算法(第一册)[M].北京:科学出版社,1994.
    [38]都志辉,李三立,吴梦月,等.混合SPMD模拟退火算法及其应用[J].计算机学报.2001,24(1).
    [39]耿平,刘静,曾梅光.多变元非线性复杂系统的优化与模拟退火算法[J].东北大学学报(自然科学版).2002,23(3):270-272.
    [40]张绍红,王尚旭,宁书年.模拟退火法和遗传算法联合优化技术及在反演解释中的应用[J].煤炭学报,2004,29(1):70-73
    [41]W.J. Gutjahr. A generalized convergeence result for the graph based and systems[R].Technical Report 99-09,Dept.of Statistics and Decision Support Systems,Univercity of Vienna, Austria.1999.
    [42]W.J. Gutjahr. A graph-based ant system and its convergence[J]. Future Generation Computer Systems.,2000,16(8):873~888.
    [43]W.J.Gutjahr AC0 algorithms with guaranteed convergence to optimal solution[C].Information Processing Letters,2002,82(3):145~153.
    [44]T.Stizle, M.Dorigo.A sbort convergence proof for a class of ant colony optimization Algorithms[J].IEEE Transaction on Evolutionary Computatio,2002,6(4):358~365.
    [45]A.Badr, A.Fahmy A proof of convergence for ant algorithms [J]. International Journal of Intelligent Computing and lnformation,2003.3(1):22~32.
    [46]吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法闭[J].计算机研究与发展.1999,36(10):1240~1245.
    [47]吴斌,史忠植.一种基于蚁群算法的TSP问题分段求解算法团[J].计算机学报,2001,24(12):1328~1333.
    [48]王颗,谢剑英一种自适应蚁群算法及其仿真研究闭[J].系统仿真学报.2002.14(1):32~33.
    [49]覃刚力,杨家本.自适应调整信息素的蚁群算法闭[J].信息与控制.2002.31(13):198-201
    [50]吴启迪,汪镭.智能蚁群算法及应用[M].上海科技教育出版社.2004
    [51]李士勇.蚁群算法及其应用[M].哈尔滨工业大学出版社.2004
    [52]段海滨.蚁群算法原理及其应用[M].科学出版社.2005.
    [53]高尚,杨静宇.群智能算法及其应用[M].中国水利水电出版社.2006.
    [54]孙熹,王秀坤,刘业欣等.一种简单蚂蚁算法及其收敛性分析闭[J].小型微型计算机系统.2003.24(8):1524-1527.
    [55]丁建立,陈增强,袁著址.遗传算法与蚁群算法融合的马尔可夫收敛性分析[J],自动化学报.2004.30(4):659~664.
    [56]Sehlmubeger,C.,Etude sur la prospection electique du sous-sol. Gauthie-rVillasret Cie., Paris.1920.
    [57]Pelton,W.H.,Rijo,L.,and Switf,J.r,C.M.,Inversion of two-dimensional resistivity and induced-PolariZation data.Geophysics,1978.43:788~803.
    [58]Petrick,W.R.,J.r,Sill W.R.,and Wadr,S.H.,Three dimensional resistivity inversion using alpha centers, Geophysics,1981,46,1148~1163.
    [59]Dines, K.A.and Lytle, R.J.Analysis of electrical conductivity imaging.GeoPhysies,1981, 46(7):1025~1036.
    [60]Saskai,Y. Two-dimension joint inversion of magnetotelluric and dipole—dipole resistivity data[J]. GoePhysies.1989,54:254~262.
    [61]Saskai, Y, Resolution of resistivity tomography ineferred from numerical simulation. Geophysical Prospecting.1992,40:453~464.
    [62]Tripp AC, Hohmann GW, Swift CM Jr. Two dimensional resistivity inversion[J]. GeoPhysies.1984,49:1708~1717.
    [63]Shima,H. Two-dimensional automatic resistivity inversion technique using alpha centers[J]. Geophysics.1990,55(6):682~694.
    [64]Shima,H..2—D and3—D resistivity image reconstruction using crosshole data[J] GeoPhysies.1992,57:1270~1281.
    [65]Olayinka,A.I.,and Yaramnaci,U.2—D inversion of apparent resistivity data[J]. Geophysical prospecting.20005,48:293~316.
    [66]Rjio, L.. Inversion of three-dimensional-ersistsvityandinduced-po-arizationdata[M].54th Ann.Intemat.Mtg., Soe.ExPI.GeoPhys, ExPandedAbstracst.113~117.
    [67]Park,S.K.,and Van,G..P. Inversions of Pole-Pole data of 3-D resistivity structure beneath arrays of electrodes[J]. GeoPhysies.1991,56,951~960.
    [68]Li,.Y, Oldenburger,D.W. Approximate inverse mappings in DC resistivity problem[J]. Geophysical Jounral Inetnrational.1992,109:343~362.
    [69]Li,.Y,Oldenburg,D.W. Inversion of 3-D DC resistivity data using an approximate inverse mapping[J]. Geophysical Jomual Intematinoal.1994,116:527~537.
    [70]Saskai.Y.3-D resistivity inversion using the finite-element method[J]. GeoPhysies. 1994,59:1839-1848.
    [71]Ellis,R.Q,Oldenburg,D.W.,The pole-pole 3-D DC-resistivity inverse problem:a conjugate gradients approach[J]. Geophysical Journal International.1994,119:187~194.
    [72]Zhang.J.,Mackie.R.L.,Madden,T.R..3-D resistivity forward modeling and inversion using conjugate gradients[J]. Geophysics.1995,60:1313~1325.
    [73]Weller,A.,Fnargos,W.,Seichter,M. Three-dimensional inversion of induced polarization data from simulated waste [J]. Journal of Applied Geophysics.1999,41:31~47.
    [74]DEGROOT HEDLING, CONSTABLES, Occams inversion to generate smooth, two dimensional models form magnetite lurid data [J],Geophysics.1990,55,1631~1624.
    [75]LOKEMH, BARKERRD, Rapid least squares inversion of apparent resistivity pseudo sections by aquatic Newton method [J],Geophysical Prospecting.1996,44,131~152.
    [76]Aina, A., Olorunfemi, M.0.,Ojo, J. S,An integration of aeromagnetic and electrical resistivity methods in damsite investigations International, Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1996,33 (4):166.
    [77]王兴泰,李小琴.电阻率图像重建的佐迪反演及其应用效果[J].物探与化探.1996,20(3):228~233.
    [78]王若,王兴泰.用改进的佐迪反演方法进行二维电阻率图像重建[J]:长春科技大学学报.1998,28(3):339~344.
    [79]张大海,王兴泰.二维视电阻率断面的快速最小二乘反演[J].物探化探计算技术.1999,21(1):2~8.
    [80]王丰,王兴.改进的模拟退火方法及其在电阻率图像重建中的应用[J].长春科技大学学报.1999,29(2):175~178.
    [81]王运生,王旭明.用目标相关算法解释高密度电法资料[J].勘察科学技术.2001,1:62-64.
    [82]Guoxiujun, Huangxiaoyu, and Jiayonggang. Forward Modeling of Different Types of Lands slides with Multi—electrode Electric Method [J].APPLIED GEOPHSICS.2005, 2(1):14~20.
    [83]毛先进,鲍光淑,边界积分方程法二维电阻率层析成像[J]物探化探计算技术.1998,20(23):226-229.
    [84]阮百尧,村上裕,徐世浙,电阻率撇发极化法数据的二维反演程序[J].物探化探计算技术.1999,21:121~125.
    [85]阮百尧.视电阻率对模型电阻率的偏导数矩阵计算方法:地质与勘探[J].2001,37:39-41.
    [86]吴小平.利用共扼梯度方法的电阻率三维正、反演研究[D].中国科学技术大学.1998.
    [87]吴小平,徐果明.利用共扼梯度方法电阻率三维反演研究[J].地球物理学报.2000,43(3):420~427.
    [88]吴小平,徐果明.电阻率三维反演中偏导数矩阵的求取与分析[J].石油地球物理勘探.1999,34(4):363~372.
    [89]吴小平.起伏地形条件下电阻率/激发极化二维正反演[D].中国科技大学项目设计.2001.
    [90]黄俊革.三维电阻率/极化率有限元正演模拟与反演成像[D].中南大学.2003.
    [91]Colorni A, Dorigo M, Maniezzo V. Dist ributed optimization by ant colonies [A]. Proc. of the First European Conference on artificial Life [C]. Paris,France:Elsevier Publishing.1991,134~142.
    [92]Colorni A, Dorigo M, Maniezzo V. An investigation of some properties of an ant aigorithm [A]. Proc. of the Parallel Problem Solving from Nature Conference (PPSN' 92) [C]. Brussels, Blegium:Elsevier Publishing,1992:509~520.
    [93]V.Maniezzo, A.Colorni.The Ant System applied to the quadratic assignment problem[J].IEEE Transactions on Data and Knowledge Engineering.1999,11 (5):769~ 778.
    [94]N.C.Demirel,M.DToksari.Optimization of the quadratic assigament problem using an ant colony algorithm[J].Applied Mathematics and Computation.2006,183(1):427~435.
    [95]L.Y.Tseng,S.C.Chen.A hybrid metaheuristic for the resource-constrained project scheduling problem[J].European Journal of Operational Research.2006,175(2):707~ 721.
    [96]C.J.Liao,H.C.Juan.An ant colony optimization for single-machine tardiness scheduling with sequence-dependent setups[J].Computers and Operations Research.2007, 34(7):1899-1909.
    [97]W.D.Lin,T.X.Cai.Ant colony optimization for VRP and Mail Delivery Problem[C] IEEE International Conference on Industrial Informatics.2006,1143~1148.
    [98]K.Socha,M.Dorigo.Ant colony optimization for continuous omains[J].European Journal Research.2006.
    [99]P.S.Shelokar,P.Siarry,B.D.Kulkarni.Particle Swarm and Ant Colony algorithms hybridized for improved continuous optimization[J].2006.
    [100]L.Li,Y.Yang,H.Peng.et.al.Parameters identification of chaotic systems via chaotic ant swarm[J].Chaos,Solitons and Fractals,2006,28(5):1204~1211.
    [101]Y.J.He,D.Z.Chen,W.X.Zhao.Ensemble classifier system based on ant colony ion[J].Chenometrics and Intelligent Laboratory Systems.2006.
    [102]S.H.M.Le,A.Kallel,X.Descombes.Ant colony optimization for image regularization based on a nonstationary Markov modeling[J].IEEE Transactions on Image Processing.2007,16(3):865~878.
    [103]Dorigo M, Bonabeau E, Theraulaz G. Ant algorithms and stigmergy [J]. Future Generation Computer systems,2000,16 (8):851~871.
    [104]B.Bullnhelmer,F.Hartl,C. Strauss.A new rank based version of the an t system:A computational study[J].Cental European Journal for Operations Research and Economics.1999,7(1):25~38.
    [105]Cordn, F.a.d.V.I, F. Herrera,et,al. A new ACO model integrating evolutionary omputational concepts:the best-worst ant system [C].Proceedings of the 2nd International Workshop on Ant Algorithms, LNCS,2000:22~29.
    [106]CJ.Walkins.Learning from Delayed Rewards[D].Phd thesis, University of Cambridge.1989.
    [107]J.Montgomery,M.Randall.Anti-pheromone as a tool for better exploration of search space[C].The 3rd International Workshop on Ant Algorithms, LNCS.2002,2463:100~ 110.
    [108]C.Blum,M.Dorigo. The hyper-cube framework for and colony optimization[J].IEEE Transactions on Systerms,Man,and Cybernetics.Part B:Cybernetics.2004,34(2): 1161~1172.
    [109]C.Blum.A.Roli,M.Dorigo.HC-ACO:The hyper-cube framework for and colony optimization[J].The 4th Metaheuristics International Conference.2001,399~403.
    [110]段海滨,王道波,于秀芬.基本蚁群算法的A.S.收敛性研究[J].应用基础与工程科学学报.2006,14(2):297~301.
    [111]吴启迪,汪镭.智能蚁群算法及应用[M].上海科技教育出版社.2004.
    [112]李士勇.蚁群算法及其应用[M].哈尔滨工业大学出版社.2004.
    [113]段海滨.蚁群算法原理及其应用[M].科学出版社.2005.
    [114]高尚,杨静宇.群智能算法及其应用[M].中国水利水电出版社.2006.
    [115]D.X.Gong,X.G.Ruan.A hybrid approach of GA and ACO for TSP[C].Proceedings of the 5th World Congress on Intelligent Control and Automation,Hangzhou,China,2004.3:2068-2072.
    [116]G.M.Kumar,A.N.Haq.Hybrid genetic-ant colony algorithms for solving aggregate production plan[J].Journal of Advanced Manufacturing Systems,2005.4(1):103-111.
    [117]M.L.Pilat,T.White.Using genetic algorithms to optimize ACS-TSP[A].Proceedings of Ant Algorithms:Third International Workshop,ANTS 2002,Brussels,Belgium,2002, 282-287.
    [118]丁建立,陈增强.遗传算法与蚁群算法的融合闭.计算机研究与发展,2003.40(9):1351-1356.
    [119]B.R.Hong,F.H.Jin,Q.Guo.Hopfield neural network based on ant system[J].Journal of Haerbin Institue of Technology.2004,11(3):267~269.
    [120]邹政达,孙雅明,张智晟.基于蚁群优化算法递归神经网络的短期负荷预测[J].电网技术.2005,29(3):59~63.
    [121]王书明,刘玉兰,王家映.蚁群算法[J]工程地球物理学报,2009,6(2):131-135
    [122]李晓磊, 邵之江, 钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践.2002,22(11):32~38.
    [123]Eusu ff M M, Lansey K E. Optimization of wate distribution network design using the shuffled frog leaping algorithm[J]. Journal of Water Resources Planning and Management.2003,129(3):210~225.
    [124]Sato T, Hagiwara M. Bee system:finding solution by a concentrated search [A]. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics.1997,4:3954~3959.
    [125]Canamero D. Modeling motivations and emotions as a basis for intelligent behavior [A].Proceedings of the 1st International Conference on Automation Agents.1997, 145~155.
    [126]Metropolis N, Rosenbluth A, Rosenbluth M, et. al. Equation of state calculations by fast computing machines[J]. J. Chem. Phys.1953,21:1087~1092.
    [127]Kirkpat rick S, Celatt C D, Vecchi M P. Optimization by simulated annealing[J]. Sciences.1983,220:671~680.
    [128]Rothman D H. Nonlinear inversion, statistical mechanics, and residual statics estimation[J]. Geophysics.1985,50 (12):2784~2796.
    [129]Rothman D H. Automatic estimation of large residual statics correction[J]. Geophysics.1986,51(2):337~346.
    [130]Sen M K,and Stoffa P L. Nonlinear one-dimensional seismic waveform inversion using simulated annealing [J]. Geophysics.1991,56 (10):1624~1638.
    [131]Send M K,Bhattacharya B B, Stoffa P L. Nonlinear inversion of resistivity sounding data [J]. Geophysics,1993,58 (4):496~507.
    [132]师学明,王家映.一维层状介质大地电磁模拟退火反演法[J].地球科学—中国地质大学学报,1998,23(5):543~545.
    [133]于鹏,王家林,吴健生,等.重力与地震资料的模拟退火约束联合反演[J].地球物理学报,2007,50(2):529~538.
    [134]Atanu B, Neil F L. Rapid determination of the critical temperature in simulated annealing inversion [J]. Science,1990,249:409-1412
    [135]王家映.地球物理反演问题概述[J].工程地球物理学报.2007,4(1):1-3.
    [136]王家映.蒙特卡洛法[J].工程地球物理学报.2007,4(2):81-85.
    [137]Holland J H. Outline for a logical theory of adaptive systems [J] Journal of the Association for Computing Machinery.1962, (3):297~314.
    [138]Stoffa PL and Sen MK. Nonlinear multiparameter optimization using genetic algorithms:Inversion of plane-wave seismograms [J]. Geophysics. 1991,56(11):1794~1810.
    [139]Wilson W G, Laidlaw W G, Vasudevan K. Residual statics estimation using the genetic algorithm[J]. Geophysics.1994,59(5):766-774.
    [140]Mallick S. Model-based inversion of amplitude-variation-with-off set data using a genetic algorithm [J]. Geophysics.1995,60 (4):939~954.
    [141]Boschetti F, Dentith M C, List R D. Inversion of seismic refraction data using genetic algorithms[J]. Geophysics.1996,61(6):1715~1727.
    [142]Benjamin S.Cross hole tomography imaging using genetic algorithm [A]. Expanded abstract of SEG meeting[C].1997.329~333.
    [143]王兴泰,李晓芹,孙仁国.电测深曲线的遗传算法反演[J].地球物理学报.1996,39(2):279~285.
    [144]Zhang J, Wang C Y, Shi Y,et al..Three-dimensional crustal structure in central Taiwan from gravity inversion with a parallel genetic algorithm [J].Geophysics.2004,69(4):917~924.
    [145]陶春辉,何樵登,王晓春.用遗传算法反演层状弹性介质[J].石油地球物理勘 探.1994,29(2):156~165.
    [146]杨文采.地球物理反演的遗传算法[J].石油物探.1995,34(1):116~112.
    [147]柳建新,童孝忠,李爱勇,等.MT资料反演的一种实数编码混合遗传算法[J].中南大学学报(自然科学版).2007,38(1):160-163.
    [148]石耀林,金文.面波频散反演地球内部构造遗传算法[J].地球物理学报.1995,21(1):189~198.
    [149]师学明,王家映.地球物理资料非线性反演方法讲座(四)遗传算法[J].工程地球物理学报.2008,5(2):129~140.
    [150]Chen C,Xia J. Nonlinear inversion of potential2 field data using a hybrid2encoding genetic algorithm[J]. Computers &Geosciences.2006,32:230~239.
    [151]师学明,王家映.尺度逐次逼近遗传算法反演大地电磁资料[J].地球物理学报.2002,43(1):12~130.
    [152]Schwarzback C. Genetic-algorit hm2neural2network approach to seismic attribute selection for well2log prediction[J]. Ge-ophysics.2004,69 (1):212~221.
    [153]戚德虎,康继昌.BP神经网络的设计[J].计算机工程与设计199819(2):48~50.
    [154]杨斌,肖慈询,王斌等.基于神经模糊系统的储层参数反演[J].石油与天然气地质.2000,21(2):173~176.
    [155]刘争平,何永富.人工神经网络在测井解释中的应用[J],地球物理学报.1995,38(增刊):323-330.
    [156]周辉,何椎登,徐世浙.人工神经网络非线性地震波形反演[J].石油物探.1997,36(1):61~70.
    [157]李创社,张彦鹏,李实,等.瞬变电磁勘探中的人工神经网络反演法.西安交通大学学报.2001,35(6):604-615.
    [158]黄科,肖慈殉,张哨楠,等.基于神经网络的储层识别处理技术及在塔河油田的应用[J].物探化探计算技术,2006,28(1):18~21.
    [159]杨文采.简评地球物理反演的发展趋向[J].地学前缘,2002,9(4):389-396.
    [160]从爽.面向Matlab工具箱的神经网络理论与应用[M].中国科学技术大学出版社.1996.
    [161]丁柱,杨长春,陶宏根,等.神经网络反演双侧向电阻率测井曲线的物理约束[J]. 地球物理学进展.2002,17(2):331~336.
    [162]张玉池,张兆京,温佩琳.人工神经网络在地球物理勘探中的应用概论[J].矿产与地质.1999,13(6):320~323.
    [163]Cakleron-Macias C, Sen M, Stoffa P. Artificial neural networks for parameter estimation in geophysics[J]. Geophysical Prospecting.2000,48 (1):21~47.
    [164]Zhang Lin, Poullon M M, Wang T. Borehole electrical resistivity modeling using neural network [J]. Geophysics.2002,67 (6):1790~1797.
    [165]董浩斌、王传雷高密度电法的发展与应用[J].地学前缘(中国地质大学,北京).2003,10(1):171-176.
    [166]陈仲候、王兴泰、杜世权工程与环境物探教程[M],北京,地质出版社.1996.
    [167]雷英杰,张善文,李续武,等.MATLAB遗传算法工具箱及应用[M].西安科技大学出版社,2009.30-65.
    [168]Man KF, Tang KS, Wong SK. Genetic algorithms:concepts anddesigns[M]. London: Springer.2001.
    [169]Yang Yang, Li Kaiyang. Neural network based on GA-BP algorithm and its application in the protein secondary structure prediction [J]. Chinese Journal of Biomedical Engineering.2006,15(1):1~9.
    [170]Belew RK, McInerney J, Schraudolph NN. Evolving networks:Using the genetic algorithm with connectionist learning [R].CS.1990,90~174.
    [171]Kitano H. Empirical studies on the speed of convergence of neural network training using genetic algorithms [R]. AAAI.1990,90~118.
    [172]邵立南,刘志斌.模拟退火神经网络模型在地下水质评价中应用[J],辽宁工程技术大学学报.2005,4(25):244-246.
    [173]田景文,高美娟.基于改进的模拟退火人工神经网络的薄互储层参数预测[J],信息与控制.2002,4(31):180-184.
    [174]邓俊,赖旭芝,吴敏,曹卫华.基于神经网络和模拟退火算法的配煤智能优化方法[J].人工智能技术应用.2007,3:19-23.
    [175]侯福均,吴祈宗,基于BP-SA混合优化策略的铁路货运量时间序列预测[J].铁道运输与经济,2003,10(5):51-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700