用户名: 密码: 验证码:
高频谱效率的无线网络广义协作通信技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,无线通信技术飞速发展。较之有线通信,从通信线路架设的周期、成本,通信覆盖范围,所受地理环境限制以及线路维护是否便利等方面综合考虑,无线通信在绝大多数应用场合均表现出了极大的优势,已成为信息通信领域发展最快、应用最广的支撑技术。伴随人们对于无线通信质量、业务种类以及数量需求的日益增加,加之无线网络受无线信道衰落、网络节点功率和通信范围限制,以及网络拓扑不固定等诸多因素影响,如何在现有有限的资源下,最大限度地满足人们的通信需求,已成为通信领域各国专家急切关注的焦点问题。
     以协作中继、协作分集、协作复用、机会通信、网络编码以及它们之间的融合技术为重要支撑的广义协作通信技术恰恰针对这一焦点问题,从其具有的多节点参与、基于中继转发方式、按照某种协议或机制、通过多次收/发完成通信等特征入手,利用通信参与者之间的相互协作,可有效提升无线网络的整体性能。广义协作通信技术从多个通信参与者乃至整个网络的角度综合考虑系统的联合优化,它的出现预示着无线通信技术必将进入一个崭新的发展阶段。
     本文以分布式无线网络为研究背景,在深入剖析广义协作通信主要支撑技术的基本特征、技术优势的基础上,探索研究高频谱效率的无线网络广义协作通信的新技术、新方法,从实现机理、特征描述及性能分析等方面进行探讨,主要工作如下:
     1.针对无线双向中继信道,多跳中继、双向通信时分复用以及节点半双工工作模式导致系统频谱效率较低的问题,提出了一种双向连续中继策略。通过对系统双向可达速率的分析表明,该策略性能受中继节点间信道干扰影响很大,尤其当中继节点间信号干扰强度与双向有用信号功率相差不大时,系统性能严重恶化。针对该问题分别采用物理层网络编码和“脏纸”编码技术处理中继节点间的干扰信息,提出了两种改进策略。通过三种双向连续中继策略系统双向可达速率的对比分析表明,两种改进策略可有效缓解中继节点间信号干扰对于系统性能的负面影响,并且当中继节点间干扰信号强度大于双向有用信号功率时,基于物理层网络编码的双向连续中继策略可实现该系统的最佳性能。此外,针对两跳中继网络进行双向信息交互的情形,通过对比分析传统逐跳中继、放大转发方式的双向吞吐量增强中继和基于物理层网络编码的双向连续中继三种中继策略的归一化网络吞吐量,验证了双向连续中继策略对于提升系统资源利用率的有效性。最后,给出了两种双向连续中继改进策略在多跳(大于两跳时)网络中的扩展应用思路。
     2.针对衰落环境中,基于物理层网络编码的双向连续中继策略通信可靠性较差的问题,提出了一种基于路径选择的双向连续中继策略。以“机会”选择节点中继方式取代现有的固定节点中继方式,利用多条无线信道之间的独立性,通过即时信道状态估计选择“最优”路径转发。针对两跳中继链路进行双向信息交互的情形,推导了两种双向连续中继策略中断概率和系统平均容量的解析表达式,通过对比分析传统逐跳中继、机会中继、基于物理层网络编码的双向连续中继以及基于路径选择的双向连续中继四种中继策略的中断概率和系统平均容量,得到如下结论:基于路径选择的双向连续中继策略在保证获得和基于物理层网络编码的双向连续中继策略相同资源利用率的前提下,可有效提高通信系统的抗衰落性能,并且随着参与机会中继节点数量的增加,该策略的抗衰落特性也越好。此外,将基于路径选择的双向连续中继策略进行多跳扩展,总结了该策略在多跳链路应用中的主要特征。
     3.针对无线广播信道应用重传技术而造成的系统频谱效率较低的问题,提出了一种选择发送的协作网络编码策略。将空时协作传输技术与网络编码技术联合应用于无线广播信道,根据不同接收节点的丢包信息,源节点联合辅助节点空时协同发送包含多个接收节点所需信息的网络编码数据。通过对比分析传统广播策略、单纯采用网络编码的广播策略、采用Alamouti协作广播策略以及选择发送的协作网络编码四种广播策略的中断概率和网络编码增益,研究结果表明,选择发送的协作网络编码策略可同时获取分集增益和网络编码增益,达到减少重传信道占用率,提高重传效率的目的。
     4.均衡考虑多中继协作通信系统中继策略的通信性能及其设计复杂度,根据中继节点是否正确译码选择转发方式,提出了一种混合转发协作传输策略。推导了准静态瑞利衰落环境下、大信噪比时,采用双中继协作转发,AF、DF和混合转发协作传输策略系统中断概率的数值表达式,得到如下结论:混合转发协作传输策略可通过较低的设计复杂度,实现利用较少的中继节点转发达到目的节点接收信号的质量需求,提高系统资源利用率。此外,针对采用译码转发方式的多中继协作通信系统,将选择中继方式进行推广,设计了一种交互中继选择协作传输策略。推导了该策略的两种具体实现方案目的节点接收误比特率的数值表达式,得到如下结论:当源节点与中继节点间信道质量较差时,交互中继选择协作传输策略利用中继节点之间的数据传输,增加有效参与协作转发的节点个数,可充分利用现有资源,满足通信需求。
Today, wireless communication techniques develop at very fast speed. Compared with wire communication, wireless communication is better in the periods and costs of lines of communication deployment, area coverage, restriction of geographical surroundings and maintenance of lines. And it has been the fast developing and widely-applied fundamental technique in present information communication field. The spectral efficiency and energy efficiency of wireless network is low because of wireless fading, node power, communication ranges and network topology. Meanwhile the requirements on the applications of wireless communication increase continuously. So meeting the demand of communication using the resource in existence has been a hot topic which comes to the attention of experts mostly.
     Considering that broad-sense cooperative communication techniques have the main characteristics that obeying certain protocol or mechanism, coming to communication by multiple relaying nodes, and improving the holistic performance of wireless network using cooperative transmission among multiple nodes. So broad-sense cooperative communication techniques, including cooperative relaying, cooperative diversity, cooperative multiplexing, opportunistic communication, network coding and their integrated techniques, can resolve the above hot topic. Broad-sense cooperative communication techniques take the system's joint optimization into account from the aspects of multiple nodes and the entire network. And the research and application of these techniques indicate that wireless communication will definitely come into a brand-new seedtime.
     In this dissertation, it is focused on the distributed wireless networks. On the basis of analyzing in-depth the characteristics and advantages of the fundamental techniques in broad-sense cooperative communication, it is mainly discussed that high spectral efficient broad-sense cooperative communication techniques for wireless networks from three aspects, i.e., researching the strategies of cooperative networks; discussing the characteristics of the cooperative strategies and analyzing the performance of the cooperative strategies. The main work of this dissertation can be summarized as follows:
     1. For bidirectional relaying channels, multi-hop communication, the time-division-duplex mode of bidirectional communication and the half-duplex mode of nodes are the dominant factors leading to lower spectral efficiency. To improve the resource efficiency of bidirectional relay, a bidirectional successive relaying scheme (BSR) is proposed. The inter-relay interference in BSR leads to performance loss and for the moderate inter-relay interference, the performance fall down badly. To compensate loss caused by the inter-relay interference, two reformative schemes that utilize physical network coding and dirty paper coding respectively are proposed. Focusing on the two-hop chain network, the bidirectional achievable rates of three relaying schemes, BSR, bidirectional successive relaying based on physical network coding (PNC-BSR) and bidirectional successive relaying based on dirty paper coding (DPC-BSR), are analyzed. The characteristics of PNC-BSR and DPC-BSR are discussed and the results show that for the moderate inter-relay interference, both of the reformative schemes can improve achievable rate of the bidirectional relay network. And PNC-BSR offers a superior performance when the power of the inter-relay interference is bigger than the one of the needful signals. Furthermore, taking PNC-BSR into account, the normalized throughput performance of the conventional hop-by-hop relaying, AF BAT-relaying and PNC-BSR over a two-hop network are analyzed and the results confirm that PNC-BSR is valid to improve the resource efficiency of bidirectional relay. And then the idea of extension application for PNC-BSR and DPC-BSR in multi-hop network is presented.
     2. To improve transmission reliability of PNC-BSR over wireless fading channels, a bidirectional successive relaying based on network path selection (NPS-BSR) is proposed. Based on the research of PNC-BSR, NPS-BSR first selects the“best”relay from multiple available relays based on instantaneous channel conditions in wireless fading environments and then uses this“best”relay for cooperative forwarding between transmitter and receiver. Focusing on the information exchange in two-hop network, outage probability and average capacity of four relaying schemes for the quasi-static Rayleigh fading environment are developed. The results show that in contrast to the conventional hop-by-hop relaying, the opportunistic relaying and PNC-BSR, NPS-BSR combats wireless fading more effectively with the identical resource efficiency of PNC-BSR. With the number of relays for cooperation increasing, a superior diversity gain is obtained. And then the mechanism of extension application for NPS-BSR in multi-hop network is presented.
     3. To effectively reduce the average number of retransmissions and improve resource efficiency for wireless broadcast channels, a cooperative network coding scheme based on selective transmission (ST-CNC) is proposed. Space-time cooperative transmission and network coding are simultaneously applied to wireless broadcast scheme. According to the feedbacks from receivers, source node and assistant node combine different lost packets from different receivers and broadcast the combined packets in manner of Alamouti cooperative transmission. Focusing on the network with one source, single relay and two destination nodes, outage performance and network coding gain of four broadcast schemes, traditional broadcast scheme, the broadcast scheme using network coding, the broadcast scheme using Alamouti cooperative transmission and ST-CNC scheme, are analyzed. The results show that in contrast to the other broadcast schemes, ST-CNC offers simultaneity diversity gain and network coding gain.
     4. To improve the performance of multiple-relay cooperative communication system and reduce the complexity of cooperative schemes, a multi-relay hybrid-forwarding cooperative transmission scheme (MRHF-CTS) is proposed, which selects the mode of forwarding according to the result of decoding at relay nodes. Expressions for outage probabilities are derived at high SNR regimes for the quasi-static Rayleigh fading environments when two relays are involved and AF, DF and MRHF-CTS are assumed respectively. The results show that with lower complexity, MRHF-CTS achieves the required quality of the receiving signals at destination node using lesser forwarding time and the resource efficiency of multiple-relay cooperative communication system is improved as a consequence. Furthermore, a selective cooperative technique with mutual relaying (MR-SCT) is proposed for multi-relay DF cooperative communication system. Expressions for theoretical BER performance of the MR-SCT schemes are derived. The results show that for the inferior quality of the wireless path between source and relay, for each relay, the number of nodes involved in cooperation is increased by using the interaction among relays to achieve the requirement of communication without additional conditions.
引文
[1]李剑,刘扬,段军.未来分布式无线通信系统发展趋势[J].移动通信, 2008, 32(2): 31-35.
    [2] Royer E M and Toh C K. A review of current routing protocols for ad hoc mobile wireless networks[J]. IEEE Personal Communications, 1999, 6: 46-55.
    [3] Toh C K. Ad Hoc Mobile Wireless Networks: Protocols and Systems[M]. Upper Saddle River, NJ: Prentice Hall, 2002.
    [4] Ramanathan R and Redi J. A brief overview of ad hoc networks: Challenges and directions[J]. IEEE Communications Magazine, 2002, 40: 20-22.
    [5] Basagni S, Conti M, Giordano S and Stojmenovi I. Mobile Ad Hoc Networking[M]. Wiley-IEEE Press, 2004.
    [6]于宏毅.无线移动自组织网[M].北京:人民邮电出版社, 2005.
    [7] Akyildiz I F, Wang X and Wang W. Wireless mesh networks: a survey[J]. Computer Networks, 2005, 47, 47(4): 445-487.
    [8] Iannone L, Kabassanov K and Fdida S. The real gain of cross-layer routing in wireless mesh networks[A]. International Symposium on Mobile Ad Hoc Networking & Computing[C], Florence, Italy: ACM. 2006: 15-22.
    [9]杨文东,蔡跃明.无线协作Mesh网[J].中兴通讯技术, 2008, 14(3): 18-21.
    [10]姜永,郑明春,李国强. IEEE802.16中的无线mesh网络研究[J].计算机技术与发展, 2008, 18(5): 234-237.
    [11]郭达,张勇,彭晓川.无线网状网:架构、协议与标准[M].北京:电子工业出版社, 2008.
    [12] Pottie G J and Kaiser W J. Wireless integrated networks sensors[J]. Communications of the ACM, 2000, 43(5): 51-58.
    [13] Agre J and Clare L. An integrated architecture for cooperative sensing networks[J]. Computer, 2000, 33: 106-108.
    [14] Estrin D, Girod L, Pottie G and Srivastava M. Instrumenting the world with wireless sensor network[A]. In Proceedings of the 2001 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2001)[C], Salt Lake City, UT, 2001: 2675-2678.
    [15] Akyildiz I F, Su W, Sankarasubramaniam Y and Cayirci E. A survey on sensor networks[J]. IEEE Communications Magazine, 2002, 40(8): 102-114.
    [16] Chong C Y and Kumar S P. Sensor networks: evolution, opportunities and challenges[A]. In Proceedings of the IEEE[C], 2003, 91(8): 1247-1256.
    [17] Biagioni E S and Sasaki G. Wireless sensor placement for reliable and efficient data collection[A]. In Proceedings of the Hawaiii International Conference on Systems Sciences[C], Hawaiii, 2003.
    [18] Mohammad I and Imad M. Handbook of sensor networks: compact wireless and wiredsensing systems[M]. Boca Raton, Florida, USA: CRC Press LLC, 2005.
    [19]孙利民,李建中,陈渝,朱红松.无线传感器网络[M].北京:清华大学出版社, 2005.
    [20]王雪.无线传感网络测量系统[M].北京:机械工业出版社, 2007.
    [21] Fitzek F H P and Katz M D. Cooperation in Wireless Networks: Principles and Applications[M], Netherlands: Spinger, 2006.
    [22]蔡越明.无线网络中的协同通信技术[R]. 2008年通信理论与信号处理年会.南京:理工大学通信工程学院. 2008.
    [23] Boyer J. Multi-hop Wireless Communications Channels[D]. Ottawa: Carleton University, 2001.
    [24]陈曦.自组织蜂窝通信系统若干关键技术研究[D].博士论文,郑州:信息工程大学, 2007.
    [25] Dohler M. Virtual Antenna Arrays[D]. London: King’s College, 2003.
    [26] Sendonaris A, Erkip E and Aazhang B. Increasing Uplink Capacity via User Cooperation Diversity[A]. In Proceedings of IEEE ISIT[C], 1998: 196.
    [27] Sendonaris A, Erkip E and Aazhang B. User cooperation diversity, part I: System description[J]. IEEE Transactions on Communication, 2003, 51(11): 1927-1938.
    [28] Sendonaris A, Erkip E and Aazhang B. User cooperation diversity, part II: Implementation aspects and performance analysis[J]. IEEE Transactions on Communication, 2003, 51(11):1939-1948.
    [29] Alamouti S M. A simple transmit diversity technique for wireless communications[J]. IEEE Journal on selected areas in communications, 1998, 16(8):1451-1458.
    [30] Laneman J N. Cooperative diversity in wireless networks: Algorithms and Architectures[D]. MA: Massachusetts Institute of Technology, 2002.
    [31] Laneman J N and Wornell G W. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks[J]. IEEE Transactions on Information Theory, 2003, 49(10): 2415-2425.
    [32] Laneman J N. Limiting analysis of outage probabilities for diversity schemes in fading channels[A]. In Proceedings of IEEE Global Communication Conference(GLOBECOM 2003)[C], San Francisco, CA, Dec. 2003.
    [33] Laneman J N, Tse D N C and Wornell G W. Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior[J]. IEEE Transactions on Information Theory, 2004, 50(12): 3062-3080.
    [34] Stefanov A and Erkip E. On the performance analysis of cooperative space-time coded systems[A]. In Proceedings of IEEE Wireless Communications and Networking Conference(WCNC 2003)[C]. New Orleans, Lousiana, 2003.
    [35] Stefanov A and Erkip E. Cooperative coding for wireless networks[J]. IEEE Transactions on Communications, 2004, 52: 1470-1476.
    [36] Stefanov A and Erkip E. Cooperative space-time coding for wireless networks[J]. IEEE Transactions on Communications, 2005, 53(11): 1804-1809.
    [37] Nosratinia A, Hunter T E and Hedayat A. Cooperative communication in wirelessnetworks[J]. IEEE Communications Magazine, 2004, 42: 68-73.
    [38] Chen D and Laneman J N. Cooperative Diversity for Wireless Fading Channels without Channel State Information[A]. In Proceedings of Asilomar Conference[C], Monterey, CA, Nov. 2004. invited paper.
    [39] Chen D and Laneman J N. Modulation and Demodulation for Cooperative Diversity in Wireless Systems[J]. IEEE Transactions on Wireless Communications, 2006, 5(7): 1785-1794.
    [40] Hunter T E and Nosratinia A. Diversity through coded cooperation[J]. IEEE Transactions on Wireless Communications, 2006, 5(2): 283-289.
    [41] Hunter T E and Nosratinia A. Coded Cooperation in Multi-User Wireless Networks[J]. IEEE Transactions on Wireless Communications, 2006.
    [42] Liu P, Tao Z, Lin Z, Erkip E and Panwar S. Cooperative wireless communications: A cross-layer approach[J]. IEEE Wireless Communications Magazine, 2006, 13(4): 84-92.
    [43]殷勤业,张莹.协作分集:一种新的空域分集技术[J].西安:西安交通大学学报, 2005, 39(6): 551-557.
    [44]赵绍刚,李岳梦.移动通信网络中的协作通信[J].移动通信, 2005, 4: 91-94.
    [45]余官定,张朝阳,仇佩亮.基于合作分集的新型自动重传协议[J].通信学报, 2006, 27(12): 21-25.
    [46]赵贤敬,郑宝玉,钱小聪,傅洪亮.协作发射分集系统及其误码性能分析[J].通信学报, 2007, 28(1): 40-48.
    [47]李屹,纪红,马书慧.无线Ad hoc网络中协作重传机制的改进[J].北京:北京邮电大学学报, 2007, 30(4): 23-27.
    [48]雷维嘉,谢显中,李广军.一种基于LDPC编码的协作通信方式[J].重庆邮电大学,电子学报, 2007(4): 712-715.
    [49]郭希蕊,雷维嘉,陈莹,李皓.无线通信中的编码协作分集技术[J].重庆邮电大学,通信技术, 2007(5): 20-22.
    [50]陈吉学,王文博.目的端控制中继协同ARQ策略研究[J].系统仿真学报, 2008, 20(12): 3123-3126.
    [51]赵雄伟.协作通信关键技术研究[D].博士论文,郑州:信息工程大学, 2008.
    [52] Rankov B and Wittneben A. Distributed Spatial Multiplexing in a Wireless Network[A]. In Proceedings of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers[C], 2004(2): 1932-1937.
    [53] Zhang S and Lau V K N. Design and Analysis of Multi-Relay Selection for Cooperative Spatial Multiplexing[A]. In Proceedings of IEEE International Conference on Communication(ICC 2008)[C], Beijing, 2008.
    [54] Knopp R and Humblet P. Information capacity and power control in single cell multiuser communications[A]. In Proceedings of IEEE International Conference on Communication(ICC 1995)[C], Seattle, WA, June 1995.
    [55] Viswanath P, Tse D N C and Laroia R. Opportunistic beamforming using dumb antennas[J].IEEE Transactions on Information Theory, 2002, 48(6): 1277-1294.
    [56] Bletsas A, Lippman A and Reed D P. A simple distributed method for relay selection in cooperative diversity wireless networks based on reciprocity and channel measurements[A]. In Proceedings of the 61st IEEE Vehicular Technology Conference[C], Stockholm, Sweden, 2005(3): 1484-1488.
    [57] Zhao Y, Adve R and Lim T J. Symbol error rate of selection amplify-and-forward relay systems[J]. IEEE Communications Letters, 2006, 10(11): 757-759.
    [58] Bletsas A, Khisti A, Reed D P and Lippman A. A simple cooperative diversity method based on network path selection[J]. IEEE Journal on selected areas in communications, 2006, 24(3): 659-672.
    [59] Yan Y, Zhang B, Mouftah H and Ma J. Practical Coding-Aware Mechanism for Opportunistic Routing in Wireless Mesh Networks[A]. In Proceedings of IEEE International Conference on Communication (ICC 2008)[C], Beijing, China, May, 2008.
    [60] Adinoyi A, Fan Y, Yanikomeroglu H and Poor H V. On the Performance of Selection Relaying[A]. In Proceedings of IEEE Vehicular Technology Conference (VTC 2008)[C], Calgary, BC, 2008: 1-5.
    [61] Ibrahim A S, Sadek A K, Su W and Liu K J R. Cooperative Communications with Relay Selection: When to Cooperate and Whom to Cooperate with?[J]. IEEE Transactions on Wireless Communications, 2008, 7(7): 2814-2827.
    [62]高伟东,王文博,袁广翔,彭木根.协作通信中的中继节点选取和功率分配联合优化[J].北京邮电大学学报, 2008, 31(2): 68-71.
    [63]刘丹谱,郝建军,乐光新.用于机会中继的一种最佳中继选择算法[J].中国电子科学研究院学报, 2008, 3 (5): 483-487.
    [64]惠鏸,朱世华,李国兵.一种基于放大转发的中继选择策略[J].西安交通大学学报, 2008, 42(4): 450-453.
    [65]张勇.无线多中继网络中的机会协同技术研究[D].博士论文,南京:解放军理工大学, 2008.
    [66]郭金淮.基于多跳无线网络的广义协作通信技术性能研究[D].博士论文,郑州:信息工程大学, 2008.
    [67] Ahlswede R, Cai N, Li S-Y R and Yeung R W. Network information flow[J]. IEEE Transactions on Information Theory, 2000, 46(4): 1204-1216.
    [68] Telatar I E. Capacity of multi-antenna Gaussian channels[J]. European transactions on telecommunications, 1999.
    [69] Foschini G J and Gans M J. On limits of wireless communications in a fading environment when using multiple antennas[J]. wireless personal Communications, 1998, 6: 311-335.
    [70] Marzetta T L and Hochwald B M. Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading[J]. IEEE Transactions on Information Theory, 1999, 45: 139-157.
    [71] Zheng L and Tse D N C. Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels[J]. IEEE Transactions on Information Theory, 2003, 49: 1073.
    [72] Chen D and Laneman J N. Diversity and Multiplexing in Multi-user Relay Channels[A]. In Proceedings of IEEE Communication Theory Workshop[C], Dorado, Puerto Rico, May 2006. invited paper.
    [73] Lin Z and Erkip E. Relay search algorithms for coded cooperative systems[A]. In Proceedings of 2005 GLOBECOM Communication Theory Symposium[C], St. Louis, December 2005.
    [74] Lin Z, Erkip E and Stefanov A. Cooperative regions and partner choice in coded cooperative systems[J]. IEEE Transactions on Communications, 2006, 54(7): 1323-1334.
    [75] Lin Z. Coded Cooperation: Partner Choice and Rate Adaptation[D]. Polytechnic University, 2006.
    [76] Nosratinia A and Hunter T E. Grouping and Partner Selection in Cooperative Wireless Networks[J]. IEEE Journal on Selected Areas in Communications, 2007, 25(2): 369-378.
    [77] Scaglione A and Hong Y W. Opportunistic large arrays: Cooperative transmission in wireless multi-hop ad hoc networks to reach far distances[J]. IEEE Transactions on Signal Processing, 2003, 51(8): 2082-2092.
    [78] Mergen B S and Scaglione A. A Continuum Approach to Dense Wireless Networks with Cooperation[A]. IEEE INFOCOM Conference[C], 2005, 4: 2755-2763.
    [79] Hong Y W and Scaglione A. Energy-efficient broadcasting with cooperative transmission in wireless ad hoc networks[J]. IEEE Transactions on Wireless Communications, 2005, 5(10): 2844-2855.
    [80] Scaglione A and Hong Y W. Cooperative Models for Synchronization, Scheduling and Transmission in Large Scale Sensor Networks: an Overview[A]. The 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing(CAMSAP 2005)[C], Puerto Vallarta, Mexico, December 13-15, 2005.
    [81] Scaglione A, Kirti S and Sirkeci B. Error Propagation in Dense Wireless Networks with Cooperation[A]. The 5th Inernational Conference on Information Processing in Sensor Networks(IPSN 2006)[C], Nashville, TN, 19-21 April 2006.
    [82] Mergen B S and Scaglione A. On the power efficiency of cooperative broadcast in dense wireless networks[J]. IEEE Journal on Selected Areas in Communications: Special issue on Cooperative Communications and Networking, 2007, 25(2): 497-507.
    [83] Mergen B S and Scaglione A. On the optimal power allocation for broadcasting in dense cooperative networks[A]. IEEE International Symposium on Information Theory[C], Seattle, Washington, July 2006: 2889-2893.
    [84] Jayaweera S K. Virtual MIMO-based cooperative communications architecture for energy-constrained wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2006, 5(5): 984-989.
    [85] Jayaweera S K. Energy Efficient Virtual MIMO-based Cooperative Communications for Wireless Sensor Networks[A]. In Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing (ICISIP 05)[C], Chennai, India, Jan. 2005.
    [86] Koetter R and Medard M. Beyond Routing: An algebraic approach to network coding[A]. INFOCOM[C], 2002.
    [87] Li S-Y R, Yeung R W and Cai N. Linear network coding[J]. IEEE Transactions on Information Theory, 2003, 49(2): 371-381.
    [88] Li S-Y R. Network coding--A paradigm shift in data transport[R]. A Dialogue between Math & Engineering(topic 1), 2010, 1.
    [89] Wu Y, Chou P A, Zhang Q, Jain K, Zhu W and Kung S Y. Network planning in wireless ad hoc networks: A cross-layer approach[J]. Journal on selected areas in communications, 2005, 23(1): 136-150.
    [90] Ho T, Medard M, Koetter R, Karger D R, Effros M, Shi J and Leong B. Toward a random operation of networks[J]. IEEE Transactions on Information Theory, 2004, 50: 532-537.
    [91] Katti S, Katabi D, Hu W, Rahul H S and Medard M. The importance of being opportunistic: Practical network coding for wireless environments[A]. In Proceedings of the 43rd Annual Allerton Conference on Communication, Control, and Computing[C], 2005.
    [92] Dimakis A G, Prabhakaran V and Ramchandran K. Ubiquitous access to distributed data in large-scale sensor networks through decentralized erasure codes[A]. In Proceedings of Symposium on Information Processing in Sensor Networks (IPSN 2005)[C], 2005.
    [93] Xue F, Liu C H and Sandhu S. MAC-Layer and PHY-Layer Network Coding for Two- Way Relaying: Achievable Rate Regions and Opportunistic Scheduling[A]. In Proceedings of the 45th Annual Allerton Conference on Communication, Control and Computing[C], 2007. Invited paper.
    [94] Zhang S L, Liew S C and Lam P P. Physical-Layer Network Coding[A]. MobiCom 2006[C], Los Angeles, California, USA, 2006.
    [95] Katti S, Gollakota S and Katabi D. Embracing Wireless Interference: Analog Network Coding[A]. In Proceedings of the 2007 conference on Applications, technologies, architectures, and protocols for computer communications[C], Cambridge, MA, February, 2007: 397-408.
    [96] Bao X and Li J. Matching code-on-graph with network-on-graph:Adaptive network coding for wireless relay networks[A]. In Proceedings of the 43rd Annual Allerton Conference on Communication, Control and Computing (Allerton)[C], Champaign, IL USA, 2005.
    [97] Bao X and Li J. On the outage properties of adaptive network coded cooperation(ANCC) in large wireless networks[A]. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2006)[C], Champaign, IL USA, 2006, 4: 57- 60.
    [98] Chen Y, Kishore S and Li J. Wireless diversity through network coding[A]. In Proceedings of IEEE Wireless Communications and Networking Conference (WCNC 2006)[C], Champaign, IL USA, 2006, 3: 1681-1686.
    [99] Rankov B and Wittneben A. Spectral efficient protocols for half-duplex fading relay channels[J]. IEEE Journal on Selected Areas in Communications, 2007, 25(2): 379-389.
    [100] Zhang R. Characterizing achievable rates for two-path digital relaying[A]. In Proceedings of IEEE International Conference on Communication (ICC 2008)[C], 2008.
    [101] Bagheri H, Motahari A S, Khandani A K. On the Capacity of the Diamond Half-Duplex Relay Channel[EB/OL]. http://arxiv.org/PS_cache/arxiv/pdf/0805/0805.2641v1.pdf, 2008-5-17.
    [102] Wu Y, Chou P A, and Kung S Y. Minimum-energy multicast in mobile ad hoc networks using network coding[A]. IEEE Information Theory Workshop[C], San Antonio, 2004.
    [103] Widmer J, Fragouli C and Le Boudec J Y. Low-complexity energy-efficient broadcasting in wireless ad-hoc networks using network coding[A]. In Proceedings of Workshop on Network Coding, Theory, and Applications[C], 2005.
    [104] Eryilmaz A, Ozdaglar A and Medard M. On delay performance gains from network coding[A]. In Proceedings of Annual Conference on Information Sciences and Systems(CISS 2006)[C], march 2006. Invited paper.
    [105] Chachulski S, Jennings M, Katti S and Katabi D. MORE: A network coding approach to opportunistic routing[R]. MIT-CSAIL-TR-2006-049, 2006.
    [106] Chachulski S, Jennings M, Katti S and Katabi D. Trading Structure for Randomness in Wireless Opportunistic Routing[A]. In Proceedings of the 2007 conference on Applications, technologies, architectures, and protocols for computer communications[C], ACM, 2007: 169-180.
    [107] Nguyen D, Nguyen T and Bose B. Wireless broadcasting using network coding[A]. NetCod Workshop[C], 2007.
    [108] Zhang J and Lok T M. Performance Analysis of Multiple-Relay Decode-and-Forward Cooperation System[A]. IEEE Tencon 2005[C], Melbourne, 2005.
    [109] Zhang J and Lok T M. Multiple Source Multiple Relay Cooperation System[A]. IEEE International Conference on Communications (ICC 2006)[C], Istanbul, Turkey, 2006:3735-3740.
    [110] Rezaei S S C, Gharan S O and Khandani A K. Cooperative Strategies for Half-Duplex Parallel Relay Channel: Simultaneous Relaying versus Successive Relaying[R]. UW-E&CE#2008-02. 2008.
    [111] Su W, Sadek A K and Liu K J R. Cooperative Communication Protocols in Wireless Networks: Performance Analysis and Optimum Power Allocation[J]. Wireless Personal Communication, 2008, 44: 181-217.
    [112] Yim R, Molisch A and Zhang J. Optimization of Split-and-Combine Relaying[A]. In Proceedings of IEEE International Conference on Communication (ICC 2009)[C], 2009.
    [113] Lv L, Yu H and Yang J. Opportunistic cooperative network-coding based on space-time coding for bi-directional traffic flows[A]. In Proceedings of the 2008 Fourth Workshop on Network Coding, Theory, and Applications (NetCod 2008)[C], Hongkong, China, 2008: 43-48.
    [114] Lv L and Yu H. Spectrally-Efficient Successive Wireless Relaying Based on Network Coding[A]. IEEE International Conference on Wireless Communications, Networking and Mobile Computing (Wicom 2008)[C], 2008.
    [115] Sheng Z, Ding Z and Leung K K. Interference Subtraction with Supplementary Cooperation in Wireless Cooperative Networks[A]. In Proceedings of IEEE International Conference on Communications(ICC 2009)[C], 2009.
    [116] Wu Y, Chou P A and Kung S-Y. Information exchange in wireless networks with network coding and physical-layer broadcast[A]. In Proceedings of the 39th Annual Conference on Information Sciences and Systems (CISS 2005)[C], Baltimore, 2005: 203-209.
    [117] Rankov B and Wittneben A. Achievable rate regions for the two-way relay channel[A]. In Proceedings of IEEE Int. Symposium on Information Theory(ISIT 2006)[C], 2006.
    [118] Popovski P and Yomo H. Bi-directional amplification of throughput in a wireless multi-hop network[A]. In Proceedings of IEEE 63rd Vehicular Technology Conference (VTC 2006)[C], Melbourne, Australia: IEEE Press, 2006: 588-593.
    [119] Popovski P and Yomo H. Physical Network coding in two-way wireless relay channels[A]. In Proceedings of IEEE International Conference on Communication(ICC 2007)[C], Glasgow, Scotland, 2007: 707-712.
    [120] Hao Y, Goeckel D, Ding Z, Towsley D and Leung K K. Achievable rates of physical layer network coding schemes on the exchange channel[A]. In Proceedings of IEEE Military Communications Conference(MILCOM 2007)[C], 2007: 371-382.
    [121] Popovski P and Yomo H. Wireless network coding by amplify-and-forward for bi-directional traffic flows[J]. IEEE Communications Letters, 2007, 11(1): 16-18.
    [122] Peng C, Zhang Q, Zhao M and Yao Y. Opportunistic Network-Coded Cooperation in Wireless Networks[A]. In Proceedings of IEEE Wireless Communications and Networking Conference (WCNC 2007)[C], Hongkong, China, 2007.
    [123] Peng C, Zhang Q, Zhao M and Yao Y. SNCC: A Selective Network-Coded Cooperation Scheme in Wireless Networks[A]. In Proceedings of IEEE International Conference on Communication(ICC 2007)[C], Glasgow, Scotland, 2007.
    [124]吕凌.分布式无线网络中的广义协作通信[D].博士论文,郑州:信息工程大学, 2009.
    [125] Oechtering T J. Spectrally efficient bidirectional decode-and-forward relaying for wireless networks[D]. Berlin: Heinrich Hertz Institute, 2007.
    [126] Chen C and Xiang H. The Throughput Order of Ad Hoc Networks with Physical-layer Network Coding and Analog Network Coding[A]. In Proceedings of IEEE International Conference on Communication(ICC 2008)[C], Beijing, 2008.
    [127]付琳,周亮,李少谦.网络编码的研究进展[J].电信科学, 2007, 23(5): 68-71.
    [128]熊志强,黄佳庆,刘威,杨宗凯.无线网络编码综述[J].计算机科学, 2007, 34(3): 6-9.
    [129]彭木根,王月新,刘红梅,王文博.无线多跳通信网络中的网络编码技术[J].电信快报:网络与通信, 2007, 8: 10-15.
    [130]彭木根,王月新,王文博.无线自组织网络的网络编码技术[J].中兴通讯技术, 2007, 13(4): 56-60.
    [131]崔凯,王丽.网络编码技术及其在通信网络中的应用[J].黑龙江科技信息, 2007 (4): 46.
    [132]康巧燕,孟相如,王建峰.网络编码对组播通信的性能改善[J].计算机工程与应用,2007, 43(3): 150-152.
    [133]邹君妮,李乐扬,谭冲.网络编码技术在分布式内容分发中的应用[J].上海大学学报, 2007, 13(43): 465-470.
    [134]吕凌,于宏毅,郭金淮.基于MAP映射算法的物理层网络编码性能分析[J].西安电子科技大学学报, 2007, 34(6).
    [135]王威,唐文胜.网络编码在无线传感器网络中的应用研究[J].传感器与微系统, 2008, 27(2): 68-70.
    [136]肖潇,杨路明,蒲保兴.基于网络编码的多节点无线广播重传策略[J].计算机应用, 2008, 28(4): 849-852.
    [137]蔡宁.网络编码导引[R].西安:西安电子科技大学, 2008.
    [138]车书玲.无线网络编码研究[D].硕士论文,西安:西安电子科技大学, 2005.
    [139]池凯凯.网络编码原理及其纠错性分析[D].硕士论文,西安:西安电子科技大学, 2005.
    [140]孙岳.网络编码及网络容错的研究[D].硕士论文,西安:西安电子科技大学, 2005.
    [141] Wu Y. Network Coding for Multicasting[D]. Princeton University, 2006.
    [142] Bletsas A and Lippman A. Implementing cooperative diversity antenna arrays with commodity hardware[J]. IEEE communications Magazine, December 2006: 33-40.
    [143] Bradford G J and Laneman J N. An Experimental Framework for the Evaluation of Cooperative Diversity[A]. In Proceedings of Annual Conference on Information Sciences and Systems(CISS2009)[C], 2009.
    [144] Sankaranarayanan L, Kramer G and Manayam N B. Capacity theorems for the multiple-access relay channel[A]. In Proceedings of the 42nd Annual Allerton Conference on Communication, Control and Computing[C], 2004.
    [145] Gamal A E. Capacity Theorems for the Relay Channel[J]. IEEE Transactions on Information Theory, 1979, 25(5): 572-584.
    [146] Chen Z, Yuan J and Vucetic B. An improved space time trellis coded modulation scheme on slow Rayleigh fading channels[A]. In Proceedings of IEEE International Conference on Communication(ICC 2001)[C], Helsinki, Finland, 2001: 1110-1116.
    [147]樊昌信,张甫翊,徐炳祥,吴成柯.通信原理[M].北京:国防工业出版社, 2003.
    [148] Ho T, Leong B, Medard M, Koetter R and Chang Y H. On the utility of network coding in dynamic environments[A]. In Proceedings of Int'1 Workshop on Wireless Ad-hoc Networks(IWWAN 2004)[C], 2004.
    [149] Costa M H. Writing on dirty paper[J]. IEEE Transactions on Information Theory, 1983, 29(3): 439-441.
    [150]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社, 1988.
    [151] Gradshteyn I and Ryzhik I. Table of integrals, series, and products[M]. San Diego: Academic Press, 1994.
    [152] Tarokh V, Jafarkhani H and Calderbank A R. Space-time block codes from orthogonal designs[J]. IEEE Transactions on Information Theory, 1999, 45(5): 1456-1467.
    [153]王晓海,黄开枝,杨旻等译.空时编码技术[M].北京:机械工业出版社. 2004.
    [154] Proakis J G. Digital communications fourth edition[M]. Beijing: Publishing House of Electronics Industry, 2001, Chapter 14.
    [155] Stanojev I, Simeone O, Bar-Ness Y. Performance analysis of collaborative hybrid-ARQ protocols over fading channels[A]. In Proceedings of IEEE SPAWC 2006[C], Sarnoff Symposium, March 2006: 1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700