用户名: 密码: 验证码:
基于并行处理的高速图像序列运动目标检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速图像序列的运动目标检测是计算机视觉领域中富有挑战性的课题之一,在军事、航空航天和工业生产等领域有着广阔的应用前景,对其展开研究具有重要的理论价值和实践意义。但是,迄今为止,高速图像序列的运动目标检测技术研究仍然存在许多问题没有得到良好的解决,特别是随着应用要求的不断提高以及成像技术的飞速发展,图像数据量明显增加,如何解决好实时性和目标检测精度的矛盾,是高速图像序列运动目标检测技术研究的一个关键问题。课题“基于并行处理的高速图像序列运动目标检测技术研究”的目的就是以实时运动目标检测算法和并行系统结构设计为中心,全面深入地研究高速图像序列运动目标检测系统涉及的若干关键问题。
     在查阅大量国内外有关文献的基础上,论文概述了国内外运动目标检测方法的研究概况,包括时域运动目标检测方法、空域运动目标检测方法以及时空联合运动目标检测方法的研究现状,并分析了不同运动目标检测方法的特点。同时,论文对图像并行处理技术、图像传感器运动模型以及运动目标检测系统结构设计的国内外研究现状进行了综述,分析了不同系统结构的特点及适用场合。本课题在现有的运动目标检测技术理论研究的基础上,结合高速图像序列的数据特点,构建了并行的高速图像序列运动目标检测系统的体系结构。
     考虑到高速图像序列运动目标检测系统采集到的海量图像数据,不可避免地会受到各种噪声的干扰以及光照条件的变化对运动目标检测结果的影响,论文将部分重叠的思想引入图像预处理过程,提出了基于整数小波去噪和直方图均衡的部分重叠图像预处理(WHI)算法。该算法通过在整数小波变换后的高频子带进行逐点BayesShrink阈值去噪和中值滤波,降低高斯和椒盐噪声对图像质量的影响;同时,通过低频子带的亮度保持直方图均衡,解决了光照不均引起的图像质量下降问题。对于图像分块处理所带来的块效应现象,通过双线性插值加以消除。实验证明,论文提出的算法相比于传统的图像预处理算法,不仅具有较高的峰值信噪比(PSNR)值,而且算法的运算时间更短,占用的存储资源更少,更有利于硬件实现。
     高速图像序列采集过程中,图像传感器通常需要随着运动目标一起运动,因此图像传感器自身的扰动将直接影响运动目标检测结果的准确性。为了消除这些图像序列中的全局运动干扰,论文引入了匹配块预判的思想,提出了一种基于并行起点预测的三参数模型背景运动补偿(PCQHBS)算法。该算法首先利用梯度信息减少了“不可靠”宏块对于运动矢量估计的影响,然后将并行起点预测、搜索中止准则和自适应搜索模式确定方法融入基本的交叉六边形搜索算法估计运动矢量参数,并根据三参数运动模型进行背景全局运动补偿。实验证明,该算法相比于传统的背景运动补偿算法,不仅具有较高的峰值信噪比(PSNR)值,而且减少了算法的运算量,提高了算法的运算速度。利用对称差分和投影技术进一步得到图像序列中的运动目标区域。
     为了在海量图像数据中得到准确的运动目标外轮廓信息,论文在传统Snake模型的基础上,引入了轮廓点标注的概念,提出了一种基于标注的部分最优Snake模型轮廓检测(LP-Snake)算法。该算法增加了两个外部能量函数:边缘能量和向心能量,并将轮廓检测过程分为初始期、成长期和逼近期三个阶段。在运动目标外轮廓检测的三个阶段通过采用不同的能量函数和轮廓重心确定方法减少了算法的运算量。实验证明,该算法在确定运动目标外轮廓的过程中减少了实际参与计算的轮廓点数,提高了运动目标外轮廓提取速度。
     为了高效快速地检测高速图像序列中的运动目标,进一步减少系统占用的存储资源,论文根据构建的并行体系结构,将高速图像序列的运动目标检测任务多路并行地分配到FPGA或DSP中实现。课题所涉及的各子系统关键模块的硬件实验证明,该并行结构大大提高了系统的运算速度,并有效地减少了系统占用的存储资源。验证结果证明了论文设计的高速图像序列运动目标检测系统的可行性和有效性。
Moving objects detection in high-speed image sequences is one of the most challenging techniques in computer vision, which is widely used in military, aerospace and industry. For the great value in theory and practice, various new theories and algorithms have emerged continously. So far, there are still many dificulities in practice. Specially, with the improvement of application requirements, as well as the rapid development of imaging technology, the system data are increased largely. How to solve the contradiction between real-time and precision is a key problem of moving objects detection in high-speed image sequences. The objective of this thesis is to research deeply some key problems for moving objects detection in high-speed image sequences focusing on real-time moving objects detection algorithms and parallel system structure design.
     After consulting a large number of domestic and foreign related literatures and references, this thesis provided an overview of moving objects detection method. Time domain, airspace domain and time-space moving objects detection method is described, and the characteristics of different methods are analyzed. Furthermore, image parallel process techniques, image sensor motion models and the current structural design of moving objects detection system are reviewed, and the characteristics and applied occasionsof the different structures were analyzed. Based on the existing moving objects detection technique theoretics, with the data characters of high-speed image sequences, the parallel system structure of high-speed image sequences moving objects detection system are designed.
     In view of the influence of various noises and the brightness change for mass acquired image data of the system, the partially overlapped idea is used in the process of image pre-process. An overlapped image pre-processing algorithm with integer wavelet transform and histogram equalization (WHI) is presented. Each high frequency transformed by integer wavelet is denoised by point-to-point BayesShrink thresholding and median filter to reduce the fluence of Gaussian noise, salt and pepper noise to image quality. Furthermore, brightness preserving histogram equalization is used in low frequency band to solve the problem of uneven brightness. Because of the overlapped image preprocessing algorithm, sub-images are needed to be interpolated by bilinear interpolation to solve blocking effects. Testing results proved that the algorithm have higher Peak Signal to Noise Ratio (PSNR) than tradition image pre-processing algorithms. The less time and the fewer memory space are needed. It avails the hardware realization of WHI algorithm.
     The image sensor needs to move with moving objects during the course of the high-speed image sequence data acquision. The perturbation motion of image sensor effects directly the accuracy of moving objects detection results. In order to avoid the global motion in image sequence, the matching block pre-judgment is used. The three parameters model background motion compensation algorithm with parallel initial position predict (PCQHBS) is presented. Above all, a gradient-based block prediction strategy is used to reduce the block number participated in matching. Then, the parallel prediction of initial search point, half-stop criteria and adaptive search modes is used in rudimentary cross-hexagon-searching algorithm to estimate motion vectors. The background motion compensation with three parameters model is used. Experiments proved that the algorithm have higher PSNR and speed than tradition background motion compensiton algorithms. Moving object areas can be chosen in the compensated image sequences by symmetric difference and projection technique.
     In order to acquire the accurate moving objects contour informations, the idea of labeled contour points is adopted, based on the traditional Snake model. A part-optimimum Snake model contour detection (LP-Snake) algorithm with labeled contour points is represented. The two outer energy functions are added into traditional Snake model: edge energy and centripetal energy. It can be devided into three phases: initial phases, building phases and approximation phases. The different energy functions and contour orthocenter determination method are used in three phases of contour detection. Experiment proved that the actual computed contour points are reduced, and the contour detection speed can be accelated.
     In order to detect moving objects in high-speed image sequences effectively and reduce the memory space of the system, the task is assigned into several FPGA or DSP according to parallel system structure. Hardware experiment of the key modules of each subsystem proved that the operating speed of the system is increased, and the memory space of the system is reduced effectively. The results validate the correctness and effectiveness of high-speed image sequences moving objects detection system.
引文
[1]马颂德,张正友.计算机视觉——计算理论与算法基础[M].科学出版社,北京, 1998: 1-1.
    [2]侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报, 2006, 32(4): 603-617
    [3]蒋庆,蔡晋辉,周泽魁等.基于DSP的空瓶图像检测系统[J].科技通报, 2003, 19(5): 424-427.
    [4]罗琳,王志武,韦红雨等.可乐瓶口缺陷快速检测系统的研制[J].计算机测量与控制, 2008, 16(4): 449-451.
    [5]张迪,李伟,舒文.一种应用于智能视频监控钢管生产的目标检测方法[J].计算机系统应用, 2010, 19(6): 187-190.
    [6] C. R. D. Blanco, F. Jaureguizar, L. Salgado, et al. Automatic aerial target detection and tracking system in airborne FLIR images based on efficient target trajectory filtering[J]. Proceedings of SPIE, 2007, Vol. 6566, 656604: 1-12.
    [7] Z. W. Kim, R. Sengupta. Target detection and position likelihood using an aerial image sensor[J]. IEEE Internaltion Conference on Robotics and Automation, 2008: 59-64.
    [8]王欢.运动目标检测与跟踪技术研究[D].南京:南京理工大学, 2009: 1-3
    [9]马云,王宏义,董文娟等.基于CCD传感器的空间目标探测可重构高速图像处理机设计[J].信号处理, 2005, 21(4A): 292-296.
    [10] S. Han, N. Vasconcelos. Object-based regions of interest for image compression[J]. Data Compression Conference, 2008: 132-141.
    [11] T. V. Pham, M. Worring, A. W. M. Smeulders. A multi-camera visual surveillance system for tracking of reoccurrences of people[J]. IEEE International Conference on Distributed Smart Cameras, 2007: 164-169.
    [12] P. Gao, X. J. Sun, W. Wang. Moving object detection based on kirsch operator combined with optical flow[J]. IEEE International Conference on Image Analysis and Signal Processing, 2010: 620-624.
    [13] Z. Q. Wei, X. P. Ji, P. Wang. Real-time moving object detection for video monitoring systems[J]. Journal of Systems Engineering and Electronics, 2006, 17(4): 731-736.
    [14] C. Poppe, S. D. Bruyne, T. Paridaens, et al. Moving object detection in the H. 264/AVC compressed domain for video surveillance applications[J]. Journal of Visual Communication and Image Representation, 2009, 20(6): 428-437.
    [15] W. Zeng, J. Du, W. Gao, et al. Robust moving object segmentation on H. 264/AVC compressed video using the block-based MRF model[J]. Real-time Imaging, 2006, 24(5): 411-423.
    [16] W. Zhang, X. Z. Fang, X. K. Yang. Moving vehicles segmentation based on Bayesian framework for Gaussian motion model[J]. Pattern Recognition Letters, 2006, 27(9): 956-967.
    [17] G. Li, R. L. Zeng, L. Lin. Moving target detecting in video monitoring system[J]. Proceedings of the 6th World Congress on Intelligent Control and Automation, 2006: 9778-9781.
    [18] C. Bruni, D. Lacoviello, G. Koch, et al. Filtering image sequences from a moving object and the edge detection problem[J]. Computer & Mathematics with Applications, 2006, 51(3-4): 559-578.
    [19] A. Leone, C. Distante. Shadow detection for moving objects based on texture analysis[J]. Pattern Recognition, 2007, 40(4): 1222-1233.
    [20] S. Denman, V. Chandran, S. Sridharan. An adaptive optical flow technique for person tracking systems[J]. Pattern Recognition Letters, 2007, 28(10): 1232-1239.
    [21]万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真, 2006, 23(10): 221-226.
    [22]覃剑.视频序列中的运动目标检测与跟踪研究[D].重庆:重庆大学, 2008: 4-10.
    [23] C. H. Chen, J. M. Liang, H. Zhao, et al. Frame difference energy image for gait recognition with incomplete silhouettes[J]. Pattern Recognition Letters, 2009, 30(11): 977-984.
    [24] Z. H. Sun, S. A. Zhu, D. W. Zhang. Real-time and automatic segmentation technique for multiple moving objects in video sequence[J]. IEEE International Conference on Control and automation, 2007: 825-829.
    [25] X. Y. Ren, X. Zhao, H. J. Chen, et al. Detection algorithm of unattended package in surveillance sequence based on spatial-temporal accumulative frame difference pictures[J]. Proceedings of SPIE, 2007, 6786, 678643: 1-7.
    [26] M. W, H. N. Chen, T. Y. Yan, et al. The detecting methods of geostationaryorbit objects[J]. Third International Symposium on Intelligent Information Technology and Security Informatics, 2010: 645-648.
    [27] L. Q. Niu, N. Jiang. A moving objects detection algorithm based on improved background subtraction[J]. Eighth International Conference on Intelligent Systems Design and Applications, 2008: 604-607.
    [28] A. G. Veeravalli, W. D. Pan, M. Nalasani, et al. Covariance analysis of non-translational motion compensated frame difference[J]. Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, 2005: 462-465.
    [29] A. Caplier, L. Bonnaud, J. M. Chassery. Robust fast extraction of video objects combining frame differences and adaptive reference image[J]. International Conference on Image Processing, 2001, 2: 785-788.
    [30] S. G. Wang, X. J. Wang, H. X. Chen. A stereo video segmentation algorithm combining disparity map and frame difference[J]. 3rd International Conference on Intelligent System and Knowledge Engineering, 2008, 1: 1121-1124.
    [31]杨志华,曾禹村.背景移动补偿技术的研究[J].北京理工大学学报, 2000, 20(3): 333-337.
    [32] K. Kim, T. H. Chalidabhongse, D. Harwood, et al. Real-time foreground-background segmentation using codebook model[J]. Real-Time Imaging, 2005, 11(3): 172-185.
    [33]代科学,李国辉,涂丹等.监控视频运动目标检测减背景技术的研究现状与展望[J].中国国象图形学报, 2006, 11(7): 919-927.
    [34] J. Cheng, J. Yang, Y. Zhou, et al. Flexible background mixture models for foreground segmentation[J]. Image and Vision Computing, 2006, 24(5): 473-482.
    [35] B. Shoushtarian, H. E. Bez. A practical adaptive approach for dynamic background subtraction using an invariant colour model and object tracking[J]. Pattern Recognition Letters, 2005, 26(1): 5-26.
    [36] Y. F. Zha, D. Y. Bi. Adaptive learning algorithm based on mixture Gaussian background[J]. Journal of Systems Engineering and Electronics, 2007, 18(2): 369-376.
    [37] S. S. Ali, M. F. Zafar. A robust adaptive method for detection and tracking of moving objects[J]. International Conference on Emerging Tecnnologies, 2009: 262-266.
    [38] B. Shoushtarian, H. E. Bez. A practical adaptive approach for dynamic background subtraction using an invariant colour model and object tracking[J]. Pattern Recognition Letters, 2005, 26(1): 5-26.
    [39] J. Ma, S. T. Li. Moving target detection based on background modeling by multi-level median filter[J]. The Sixth World Congress on Intelligent Control and Automation, 2006: 9974-9978.
    [40] J. Cheng, J. Yang, Y. Zhou, et al. Flexible background mixture models for foreground segmentation[J]. Image and Vision Computing, 2006, 24(5): 473-482.
    [41] P. Dickinson, A. Hunter, K. Appiah. A spatially distributed model for foreground segmentation[J]. Image and Vision Computing, 2009, 27(9): 1326-1335.
    [42] K. Kim, T. H. Chalidabhongse, D. Harwood, et al. Real-time foreground-background segmentation using codebook model[J]. Real-Time Imaging, 2005, 11(3): 172-185.
    [43] Y. F. Zha, D. Y. Bi, Y. Yang. Learning complex background by multi-scale discriminative model[J]. Pattern Recognition Letters, 2009, 30(11): 1003-1014.
    [44] I. Haritaoglu, D. Harwood, L. S. Davis. W4: real-time surveillance of people and their activities[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000, 22(8): 809-830.
    [45] I. Haritaoglu, D. Harwood, L. S. Davis. W4: who? when? where? what? A real time system for detecting and tracking people[J]. Proceedings of 3rd IEEE International Conference on Automatic Face and Gesture Recognition, 1998: 222-227.
    [46] M. Bicego, U. Castellani, V. Murino. A hidden Markov model approach for appearance-based 3D object recognition[J]. Pattern Recognition Letters, 2005, 26(16): 2588-2599.
    [47] S. C. Yang, C. M. Wang, H. H. Hsu, et al. Contrast enhancement and tissues classification of breast MRI using Kalman filter-based linear mixing method[J]. Computerized Medical Imaging and Graphics, 2009, 33(3): 187-196.
    [48] K. H. Lin, K. M. Lam, W. C. siu. Spatially eigen-weighted Hausdorff distances for human face recognition[J]. Pattern Recognition, 2003, 36(8): 1827-1934.
    [49] J. S. Hu, C. W. Juan, J. J. Wang. A spatial-color mean-shift object tracking algorithm with scale and orientation estimation[J]. Pattern Recognition Letters, 2008, 29(16): 2165-2173.
    [50] H. Z. Li, Z. Q. Liu, X. H. Zhu. Hidden Markov models with factored Gaussian mixtures densities[J]. Pattern Recognition, 2005, 38(11): 2022-2031.
    [51] N. M. Nasab, M. Analoui, E. J. Delp. Decomposing parameters of mixture Gaussian model using genetic and maximum likelihood algorithm on dental images[J]. Pattern Recognition Letters, 2006, 27(13): 1522-1536.
    [52] P. R. Hill, D. R. Bull. Sub-pixel motion estimation using kernel methods[J]. Signal Processing: Image Communication, 2010, 25(4): 268-275.
    [53]郑锦,李波.视频序列中运动对象检测技术的研究现状与展望[J].计算机应用研究, 2008, 25(12): 3534-3540.
    [54] B. K. P. Horn, B. G. Schunck. Determining optical flow[J]. Artificial Intelligence, 1981, 17(1-2): 185-203.
    [55] H. Madjidi, S. Negahdaripour. On robustness and localization accuracy of optical flow computation for underwater color images[J]. Computer Vision and Image Understanding, 2006, 104(1): 61-76.
    [56] P. M. Jodoin, M. Mignotte. Optical-flow based on an edge-avoidance procedure[J]. Computer Vision and Image Understanding, 2009, 113(4): 511-531.
    [57] S. H. Lai. Computation of optical flow under non-uniform brightness variations[J]. Pattern Recognition Letters, 2004, 25(8): 885-892.
    [58] E. H. Adelson, J. R. Bergen. Spatio-temporal energy models for the perception of motion[J]. Journal of the Optical Society of American, 1985, A2(2): 284-299.
    [59]田军,魏振华,武思远.能量法的自适应背景更新算法[J].计算机科学与探索, 2009,3(2) : 218-224.
    [60] B. D. Lucas, T. Kanade. An iterative image registration technique with an application to stereo vision[J]. Proceedings of Imaging Understanding Workshop, 1981: 121-130.
    [61] H. H. Nagel, W. Enkelmann. An investigation of smoothness constraints for the estimation of displacement vector field from image sequences[J]. IEEE Transactions on Pattern Analyze and Machine Intelligence, 1986, 8: 565-593.
    [62] D. J. Fleet, A. D. Jepson. Velocity extraction without from interpretation[J]. Proceedings of 3rd IEEE Workshop on Computer Vision: Representation and Control, 1985: 179-185.
    [63]段先华,王平安,夏德深.基于相位微分技术的光流估计[J].数据采集与处理, 2005, 20(3): 249-253.
    [64] S. M. Bhandakar, X. Z. Luo. Integrated detection and tracking of multiple faces using particle filtering and optical flow-based elastic matching[J]. Computer Vision and Image Understanding, 2009, 113(6): 708-725.
    [65] E. Francomano, A. Tortorici, V. Calderone. Regularization of optical flow with M-band wavelet transform[J]. Computers & Mathematics with Applications, 2003, 45(1-3): 437-452.
    [66] J. K. Chang, T. L. Huntsberger. Dynamic motion analysis using wavelet flow surface image[J]. Pattern Recognition Letters, 1999, 20(4): 383-393.
    [67] D. Cedric, K. A. Djemaa. Optical flow estimation in omnidirectional images using wavelet approach[J]. Computer Vision and Pattern Recognition Workshop, 2003, 7: 76-76.
    [68]章毓晋.图像工程(中册)——图像分析(第2版) [M].清华大学出版社,北京, 2005: 75-104.
    [69] J. H. Horng. An adaptive smoothing approach for fitting digital planar curves with line segments and circular arcs[J]. Pattern Recognition Letters, 2003, 24(1-3): 565-577.
    [70] T. Kitasaka, Y. Hayashi, T. Kimura, et al. Detection of colonic polyps from 3D abdominal CT images by surface fitting[J]. International Congress Series, 2005, 1281: 1151-1156.
    [71]林瑶,田捷.医学图像分割方法综述[J].模式识别与人工智能, 2002, 15(2): 192-204.
    [72] F. L. Yang, L. Ling, T. Wei. An adaptive greedy technique for inverse boundary determination problem[J]. Journal of Computational Physics, 2010, 229(22): 8484-8496.
    [73] Z. R. Yao, H. B. Li. Tracking a detected face with dynamic programming[J]. Image and Vision Computing, 2006, 24(6): 573-580.
    [74] K. Hammouche, M. Dial, P. Siarry. A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation[J]. Computer Vision and Image Understanding, 2008, 109(2): 163-175.
    [75] C. Mello, A. Sanchez, A. Olivira, et al. An efficient gray-level thresholding algorithm for historic document images[J]. Journal of Cultural Heritage, 2008, 9(2): 109-116.
    [76] S. K. S. Fan, Y. Lin. A multi-level thresholding approach using a hybrid optimal estimation algorithm[J]. Pattern Recogniton Letters, 2007, 28(5): 662-669.
    [77] N. Wang, X. Li, X. H. Chen. Fast three-dimensional Otsu thresholding with shuffled frog-leaping algorithm[J]. Pattern Recogniton Letters, 2010, 31(13): 1809-1815.
    [78] H. Kiani, R. Safabakhsh, E. Khadangi. Fast recursive segmentation algorithm based on Kapur’s entropy[J]. 2nd International Conference on Computer, Control and Communication, 2009: 1-6.
    [79] Y. Bazi, L. Bruzzone, F. Melgani. Image thresholding based on the EM algorithm and the generalized Gaussian distribution[J]. Pattern Recognition, 2007, 40(2): 619-634.
    [80] K. Hammouche, M. Diaf, P. Siarry. A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation[J]. Computer Vision and Image Understanding, 2008, 109(2): 163-175.
    [81] P. K. P. K. Sahoo, G. Arora. A thresholding method based on two-dimensional Renyi’s entropy[J]. Pattern Recognition, 2004, 37(6): 1149-1161.
    [82] I. Grinias, G. Tziritas. A semi-automatic seeded region growing algorithm for video object localization and tracking[J]. Signal Processing: Image Communication, 2001, 16(10): 977-986.
    [83] F. Y. Shih, S. X. Cheng. Automatic seeded region growing for color image segmentation[J]. Image and Vision Computing, 2005, 23(10): 877-886.
    [84] S. Y. Wan, W. E. Higgins. Symmetric region growing[J]. IEEE Transactions on Image Processing, 2003, 12(9): 1007-1015.
    [85]龚雪晶,慈林林,姚康泽.分裂合并算法的优化及并行化方案[J].北京理工大学学报, 2007, 27(9): 801-806.
    [86] Y. Li, L. Li. A novel split and merge EM algorithm for Gaussian mixture model[J]. Fifth International Conference on Natural Computation, 2009, 6: 479-483.
    [87] F. D. A. T. D. Carvalho. Fuzzy c-means clustering methods for symbolic interval data[J]. Pattern Recognition Letters, 2007, 28(4): 423-437.
    [88]李晓雯,毛政元,李建微.一种基于几何概率的聚类有效性函数[J].中国国象图形学报, 2008, 13(12): 2351-2356.
    [89] Z. H. Feng, B. Zhou, J. Y. Shen. A parallel hierarchical clustering algorithm for PCs cluster system[J]. Neurocomputing, 2007, 70(4-6): 809-818.
    [90] J. Y. Yeh, J. C. Fu. A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI[J]. Expert Systems with Applications, 2008, 34(2): 1285-1295.
    [91] D. H. Kim, I. D. Yun, S. U. Lee. New MRF parameter estimation technique for texture image segmentation using hierarchical GMRF model based on random spatial interaction and mean field theory[J]. 18th International Conference on Pattern Recognition, 2006, 2: 365-368.
    [92] X. D. Lu, J. Zhou, Y. J. He. Image segmentation based on an improved GA-MRF with dynamic weights[J]. 2nd International Conference on Advanced Computer Control, 2010, 4: 458-461.
    [93] M. W. Hansen, W. E. Higgins. Relaxation method for supervised image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(9): 946-962.
    [94] T. Horiuchi. Colorization algorithm using probabilistic relaxation[J]. Image and Vision Computing, 2004, 22(3): 197-202.
    [95] S. M. Zhou, Q. Gan. A new fuzzy relaxation algorithm for image contrast enhancement[J]. Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, 2003, 1: 11-16.
    [96] Y. G. Tang, D. Liu, X. P. Guan. Multi-resolution image segmentation based on Gaussian mixture model[J]. Journal of Systems Engineering and Electronics, 2006, 17(4): 870-874.
    [97]王志勇,刘文奇.基于数学形态学的快速运动物体检测[J].计算机工程与科学, 2005, 27(1): 27-28, 45.
    [98] H. Sun, J. Y. Yang, M. W. Ren. A fast watershed algorithm based on chain code and its application in image segmentation[J]. Pattern Recognition Letters, 2005, 26(9): 1266-1274.
    [99] S. Valero, J. Chanussot, J. A. Benediktsson, et al. Advanced directional mathematical morphology for the detection of the road network in very high resolution remote sensing images[J]. Pattern Recognition Letters, 2010, 31(10): 1120-1127.
    [100] J. N. Ellinas, M. S. Sangriotis. Morphological wavelet-based stereo image coders[J]. Journal of Visual Communication and Image Representation, 2006, 17(4): 686-700.
    [101] A. Talukder, D. Casasent. A closed-form neural network for discriminatory feature extraction from high-dimenstional data[J]. Neural Networks, 2001, 14(9): 1201-1218.
    [102] I. Middleton, R. I. Damper. Segmentation of magnetic resonance images using a combination of neural networks and active contour models[J]. Medical Engineering & Physics, 2004, 26(1): 71-86.
    [103] J. C. Fu, C. C. Chen, J. W. Chai, et al. Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging[J]. Computerized Medical Imaging and Graphics, 2010, 34(4): 308-320.
    [104] M. K. Bashar, T. Matsumoto, N. Ohnishi. Wavelet transform-based locally orderless images for texture segmentation[J]. Pattern Recognition Letters, 2003, 24(15): 2633-2650.
    [105] M. Subasic, S. Loncaric, J. Birchbauer. Expert system segmentation of face images[J]. Expert Systems with Applications, 2009, 36(3-1): 4497-4507.
    [106]宋新,罗军,王鲁平等.基于GVF Snake的运动目标跟踪方法[J].红外与激光工程, 2007, 36(2): 226-228, 256.
    [107] Y. F. Zhu. Background subtraction and color clustering based moving objects detection[J]. International Conference on Information Engineering and Computer Science, 2009: 1-5.
    [108]钟红军,杨孟飞,卢欣.流水线并行处理提高星敏感器数据更新率[J].光学精密工程, 2009, 17(9): 2230-2235.
    [109]赵峰,王雪松,肖顺平等.基于HLA的相控阵雷达系统仿真并行处理研究[J].系统仿真学报, 2006, 8: 2170-2173.
    [110] P. P. Jonker, J. G. E. Olk, C. Nicolescu. Distributed bucket processing: A paradigm embedded in a framework for the parallel processing of pixel sets[J]. Parallel Computing, 2008, 34(12): 735-746.
    [111]龙国平,范东睿. LU分解在Godson-Tv1众核体系结构上的并行化研究[J].计算机学报, 2009, 32(11): 2157-2167.
    [112]龚大年,何芸,曹志刚.视频信号处理器的并行结构综述及分类[J].电子学报, 2000, 28(7): 96-101.
    [113]王东升.视频运动目标检测及其实时处理系统研究[J].西安:电子科技大学, 2004: 24-28.
    [114] H. K. Cheung, W. C. Siu. Fast global motion estimation for sprite generation[J]. Proceedings of the IEEE International Symposium on Circuits and Systems, 2002, 3: 26-29.
    [115] Y. W. He, B. Feng, S. Q. Yang, et al. Fast global motion estimation for global motion compensation coding[J]. Proceedings of the IEEE International Symposium on Circuits and Systems, 2001, 2: 233-236.
    [116] G. B. Rath, A. Makur. Iterative least squares and compression based estimations for a four-parameter linear global motion model and global motion compensation[J]. IEEE Transactions on Circuits & Systems for Video Technology, 1999, 9(7): 1075-1099.
    [117]鲜海滢.基于图像时空梯度的运动目标检测技术研究[D].西安:电子科技大学, 2009: 88-92.
    [118] B. Vidakoviec, C. B. Lozoya. On time-dependent wavelet de-noising[J]. IEEE Transactions on Signal Processing, 1998, 46(9): 2549-2551.
    [119] D. L. Donoho, I. M. Johnstone. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455.
    [120]侯建华.基于小波及其统计特性的图像去噪方法研究[D].武汉:华中科技大学, 2007: 25-31.
    [121] D. L. Donoho. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
    [122] A Bruce, H Gao. Waveshrink: Shrinkage function and thresholds[J]. SPIE, 1996, 2569: 270-281.
    [123] H. Y. Gao, A.G. Bruce. WaveShrink with firm shrinkage[J]. Statistica Sinica, 1997, 7(4): 855-874.
    [124] H. Y. Gao. Wavelet shrinkage denoising using the non-negative garrote[J]. Journal of Computational and Graphical Statistics, 1998, 7(4): 469-488.
    [125] X. P. Zhang, M. Desai. Nonlinear adaptive noise suppression based on wavelet transform[J]. IEEE Transactions on Image Processing, 1997, 15(8): 1589-1592.
    [126]赵瑞珍,宋国乡.一种基于小波变换的白噪声消噪方法的改进[J].西安电子科技大学学报, 2000, 27(5): 619-622.
    [127] D. L. Donoho, I. M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association, 1995, 90(432):1200-1224.
    [128] S. G. Chang, B. Yu, M. Vetterli. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546.
    [129] P. Moulin, J. Liu. Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors[J]. IEEE Transactions Information Theory, 1999, 45(3): 909-919.
    [130]何锦平.基于小波多分辨分析的图像增强及其应用研究[J].陕西:西北工业大学, 2003: 47-48.
    [131]张磊,潘泉,张洪才等.小波域滤波阈值参数c的选取[J].电子学报, 2001,29(3): 400-402.
    [132] S. G. Chang, B. Yu, M. Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising[J]. IEEE Transactions on Image Processing, 2000, 9(9): 1522-1531.
    [133] G. P. Nason. Wavelet shrinkage using cross-validation[J]. Journal of the Royal Statistical Society: Series B, 1996, 58(2): 463-479.
    [134] F. Abramovich, Y. Benjamini. Thresholding of wavelet coefficients as multiple hypotheses testingprocedure[J]. In: LectureNotes in Statictics, New York: Springer-Verlag, 1995, 103: 5-14.
    [135] R.T. Ogden, E. Parzen. Change-point approach to data analytic wavelet thresholding[J]. Statistics and Computing, 1996, 6(2): 93-99.
    [136] J. Y. Kim, L. S. Kim, S. H. Hwang. An advanced contrast enhancement using partially overlapped sub-block histogram equalization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(4): 475-484.
    [137] S. Mallet. A theory for signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern and Machine Intelligence, 1989, 11(7): 67-93.
    [138] Sweldens. The lifting scheme: A custom-design construction of biothogonal wavelets[J]. Journal of Applied and Comput. Harmonic Analysis, 1996, 3(2): 186-200.
    [139] S. G. Chang, B. Yu, M. Vetterli. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546.
    [140] S. D. Chen, A. R. Ramli. Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation[J]. IEEE Transactions on Consumer Electronics, 2003, 49(4): 1301-1309.
    [141] Y. Wang, Q. Chen, B. Zhang. Image enhancement based on equal area dualistic sub-image histogram equalization method[J]. IEEE Transactions on Consumer Electornics, 1999, 45(1): 68-75.
    [142]费佩燕,郭宝龙,孟繁杰等.基于统计对消的激光水下图像的目标提取法[J].中国激光, 2004, 31(7): 815-819.
    [143]赵红颖,熊经武.获取动态图像位移矢量的灰度投影片区法的应用[J].光电工程, 2001, 6(28): 51-54.
    [144]朱娟娟,郭宝龙.电子稳像的特征点跟踪算法[J].光学学报, 2006, 26(4): 516-521.
    [145] L. Hill, T. Vlachos. On the estimationof global motion using phase correlation for broadcast application[J]. IEEE International Conference on Image Processing and Its Applications, 1999, 2: 721-725.
    [146]禹晶,苏开娜.块运动估计的研究进展[J].中国图象图形学报, 2007, 12(12): 2031-2041.
    [147] T Koga, K. Iinuma, A Hirano, et al. Motion compensated interframe coding for video conferenceing[J]. Proceedings of IEEE National Telecommunication Conference, 1981: G5.3.1-G5.3.5.
    [148] L. M. Po, W. C. Ma. A novel four-step search algorithm for fast block motion estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1996, 6(6): 313-317.
    [149] R. Li, B. Zeng, M. L. Liou. A new three-step search algorithm for block motion estimation[J]. IEEE Transactionson Circuits and Systems for Video Technology, 1994, 4(8): 438-442.
    [150] J. Y. Tham, S. Ranganath, M. Ranganathm, et al. A novel unrestricted center-biased diamond search algorithm for block motion estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(4): 369-377.
    [151]刘海峰,郭宝龙,冯宗哲.用于块匹配运动估值的正方形-菱形搜索算法[J].计算机学报, 2002, 25(7): 747-752.
    [152] C. H. Cheung, L. M. Po. A novel cross-diamond search algorithm for fast block motion estimation[J]. IEEE Transactions on Circuits and Systems forVideo Technology, 2002, 12(12): 1168-1177.
    [153] C. Zhu, X. Liu, L. P. Chau. Hexagon-based search pattern for fast block motion estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(5): 349-355.
    [154]魏星,蒋建国,齐美彬.基于选择预测的自适应运动估计算法[J].中国图象图形学报, 2005, 10(7): 873-877.
    [155] J. Zan, M. O. Ahmad, M. N.S. Swamy. A multiresolution motion estimation technique with indexing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2006, 16(2): 157-165.
    [156]宋传鸣,王相海.小波域视频运动估计研究进展[J].计算机学报, 2005, 28(10): 1716-1727.
    [157]王嘉,王海峰,刘青山等.基于三参数模型的快速全局运动估计[J].计算机学报, 2006, 29(6): 920-927.
    [158] J. Huska, P. Kulla. A new block based motion estimation with true region motion field[J]. The International Conference on Computer as a Tool, EUROCON 2007: 182-188.
    [159] S. W. Liu, S. D. Wei, S. H. Lai. Fast optimal motion estimation based on gradient-based adaptive multilevel successive elimination[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(2): 263-267.
    [160] F. W. Zhao, C. J. S. Desilva. Use of the Laplacian of Gaussian operator in prostate ultrasound image processing[J]. Processings of the 20th Annual International Conference of the IEEE Engineer in Medicine and Biology Society, 1998, 20(2): 812-815.
    [161] C. H. Cheung, L. M. Po. A novel cross-diamond search algorithm for fast block motion estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(12): 1168-1177.
    [162]吕瑞,卿粼波,何小海等.一种用于运动估计的十字六边形搜索算法[J].计算机工程, 2007, 33(13): 227-229.
    [163] L. J. Luo, C. Zou, X. Q. Gao. A new prediction search algorithm for block motion estimation in video coding[J]. IEEE Transactions on Consumer Electronics, 1997, 43(2): 56-61.
    [164] A. M. Tourapis, O. C. Au, M. L. Liou. Highly efficient predictive zonal algorithms for fast block matching motion estimation[J]. IEEE Transactionson Circuits and Systems for Video Technology, 2002, 12(10): 934-947.
    [165] F. Ahmadianpour, M. O. Ahmad. A Novel approach for bi-directional motion estimation and compensation[J]. IEEE International Conference on Information Technology: Coding and Computing, 2004, 2: 653-657.
    [166] W. G. Zheng, I. Ahmad, M. L. Liou. Adaptive motion search with elastic diamond for MPEG-4 video coding[J]. Proceedings of International Conference on Image Processing. Thessaloniki Greece, 2001, 1: 377-380.
    [167] E. Sifakis, G. Tziritas. Moving object localization using a multi-label fast marching algorithm[J]. Signal Processing: Image Communication, 2001, 16(10): 963-976.
    [168]叶晞.可预测起始搜索点的自适应准十字菱形搜索算法[J].北京交通大学学报, 2008, 32(6): 20-25.
    [169]周西汉,刘勃,周荷琴.一种基于对称差分和背景消减的运动检测方法[J].计算机仿真, 2005, 22(4): 117-119.
    [170]贺贵明,李凌娟,贾振堂.一种快速的基于对称差分的视频分割算法[J].小型微型计算机系统, 2003, 24(6): 966-968.
    [171] M. Kass, A. Witkin, D. Terzopoulus. Snake: Active contour models[J]. International Journal of Computer Vision, 1987, 1(4): 321-331.
    [172] L. D. Cohen. On active contour models and balloon[J]. CVGIP: Image Understanding, 1991, 53(2): 211-218.
    [173] C. Xu, P. L. Prince. Snakes, shapes and gradient vector flow[J]. IEEE Transaction on Image Processing, 1998, 1(7): 359-369.
    [174] X. H. Xie, M. Mirmehdi. MAC: Magnetostatic active contour model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(4): 632-646.
    [175] D. Schonfeld, N. Bouaynaya. A new method for multidimensional optimization and its application in image and video processing[J]. IEEE Signal Processing Letters, 2006, 13(8): 485-488.
    [176] L. Ji, H. Yan. Attractable Snakes based on the Greedy algorithm for contour extraction[J]. Pattern Recognition, 2002, 35(4): 791-806.
    [177]赵保军,李栋.对复杂边缘检测的Snake改进算法[J].北京理工大学学报, 2004, 24(2): 162-165.
    [178]刘洋,李玉山,张大朴.彩色图像序列中运动目标外轮廓的自动提取[J].电子与信息学报, 2006, 28(9): 1550-1554.
    [179]李水根,吴纪桃.分形与小波[M].北京:科学出版社(第一版), 2002: 208-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700