用户名: 密码: 验证码:
莲藕中抗氧化成分的抗HIV-1活性及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然产物一直是药物和药物先导化合物的重要来源。已有研究表明,抗氧化、抗HIV-1和免疫调节三者之间存在着密切的关系。本研究首先以抗氧化为筛选指标,以人们日常食用的莲藕为研究对象,用大孔树脂NKA从莲藕粗提物L中分离到三个组分L1、L2和L3,活性产物在L2中富集。进一步采用葡聚糖凝胶LH-20从L2中分离到7个组分,分别命名为L2a-L2g,其中L2c和L2f显示出较高的抗氧化活性。经高效液相色谱从L2c中纯化出单一组分L2c-3,从L2f中纯化出单一组分L2f-2和L2f-3。通过质谱、红外光谱、核磁共振等方法确定L2c-3为色氨酸(tryptophan)、L2f-2为没食子儿茶素[(+/-)-gallocatechin]、L2f-3为儿茶素[(-)-catechin]。反应浓度为250μg/ml时,L2c-3、L2f-2和L2f-3对红细胞氧化溶血的抑制率达75.39%、80.26%和79.09%。L2f-2和L2f-3在此浓度下,抑制脂质过氧化率达75.42%和74.48%,显示出极强的抗氧化活性。此外,L2f-2和L2f-3对超氧阴离子具有较强的清除活性(IC50分别为126.2 gM和204.8μM),同时它们还可以有效清除羟基自由基(其ICso分别为102.0μM和234.4μM)。采用50%(v/v)和67%(v/v)的乙醇对莲藕粗品L进行分步沉淀,得到两个组分LA和LB,其中LB的抗氧化活性远高于LA。用葡聚糖凝胶Sephadex G75从LB中分离到两个单峰LBl和LB2,其中LB2为活性成分。用凝胶层析确定LB2的分子量约为18.8 kD。经化学分析,LB2糖含量为40.7%、蛋白含量33.4%,由此推测为多糖蛋白复合物。通过多糖水解和单糖PMP衍生的方法测定LB2中的多糖部分是由甘露糖、鼠李糖、葡萄糖、半乳糖和木糖,按摩尔比2:8:7:8:1组成。红外光谱分析表明LB2是一种同时具有α-和β-吡喃型单糖以及α-呋喃型单糖的硫酸酯多糖。生物活性实验结果显示,LB2的抗氧化活性比粗品提高了3倍,其对红细胞氧化溶血的抑制率为72.2%(125μg/ml),对脂质过氧化的抑制率为83.2%(250μg/ml)。
     HIV-1整合酶(IN)是逆转录病毒特有的酶,在人体内没有同源类似物,是抗HIV-1药物研究的重要靶点,但目前被FDA批准上市的32种抗HIV-1药物中仅有一种是IN抑制剂。IN抑制剂研究缓慢的重要原因之一就是筛选模型的缺乏。本研究通过创新性设计,构建了以HIV-1 IN 3’切割活性为靶点的新型N抑制剂体外筛选模型和胞内双质粒IN抑制剂筛选模型。在体外筛选模型中,首先通过双重PCR技术在IN中引入两个突变位点F185K和C280S,在大肠杆菌中实现IN的可溶性表达,利用NTA-Ni2+亲和柱从菌体裂解液上清中纯化带His标签的IN,用Western Blot检测确认。重组IN不依赖其他细胞蛋白即可对底物质粒pLTR进行3’切割使其线性化。通过DNA电泳,用凝胶成像系统分析不同构性质粒光密度的变化,计算样品对IN的抑制率。用此模型检测,莲藕中大分子LB2抑制IN的ICso为5.28μM,显示出极强的抗IN作用。同时莲藕中小分子L2f-2(IC50:412.45μM)和L2f-3(IC50:432.40μM)也具有比IN抑制剂标准品Raltegravir (IC50:686.17μM)更强的抗IN活性。在胞内双质粒IN抑制剂筛选模型中,通过利用96孔板-两步生长法测定样品对双质粒菌生长的抑制作用,从而间接显示抗IN活性。用此模型检测,LB2在反应浓度为10μM时对IN的抑制率为47.48%,高于标准品Raltegravir。L2f-3在反应浓度为100μM时,也显示出较高的对IN的抑制作用,其抑制率为48.78%。用MTT法检测样品毒性发现,在相同反应浓度下,Raltergravir处理的正常细胞存活率不到20%;而L2f-3和LB2处理的细胞存活率高达100%,未显示出任何细胞毒性。这两个模型具有操作简单、成本低、检测快速、重复性好等优点,适合大规模筛选IN抑制剂。
     本研究首次证明了莲藕活性成分的抗HIV-1多效性。HIV-1逆转录酶(RT)和蛋白酶(PR)也是抗艾滋药物研究的有效靶点。L2f-2、L2f-3和LB2均可以有效抑制RT活性,其IC50分别为10.41μM、9.58μM和33.70μM。同时,在反应浓度为70μg/ml时,L2f-2和L2f-3对PR的抑制率达17.61%和15.66%,而市售蛋白酶抑制剂标准品pepstatin A的抑制率仅为7.36%。细胞免疫功能的恢复作为免疫重建的重要组成部分,在对HIV-1感染者的治疗中起着重要的作用,而细胞因子是衡量细胞免疫功能的重要指标。本研究通过Real-time PCR的方法检测莲藕活性成分对重要细胞因子的影响。结果显示,L2f-2和L2f-3可显著上调Bal b/c小鼠脾细胞IL-2和IL-6基因表达水平,同时下调IL-10的表达水平。这种调节可提高细胞免疫应答水平,有利于细胞抵御病毒感染。L2f-3还可以通过下调TNF-a的表达和抑制Tat对病毒LTR的激活直接抑制HIV-1的复制。LB2可以上调Bal b/c小鼠腹腔巨噬细胞IL-2、IL-4和IL-10的表达,从整体上激活免疫系统,有利于改善HIV-1感染后细胞因子普遍降低的状态,维持机体免疫平衡。LB2对TNF-a表达的下调作用使其具有可直接抑制HIV-1复制的能力。
     本研究首次构建了两种新型HIV-1 IN抑制剂筛选模型,并从抗氧化、抑制HIV-1关键酶、细胞因子调节三方面研究了莲藕中活性成分抗HIV-1作用的机制。与化学合成药物相比,这些天然产物具有更高的抗HIV-1活性和更低的细胞毒性,其抗HIV-1作用的多效性克服了化学合成药物易因病毒株变异而失效的缺点,为开发新型抗HIV-1药物奠定了基础,具有很好的应用前景。
Natural product is an important source for drug. Previous researches indicated the close relationship among oxidative damage, immune imbalance and AIDS which suggested that antioxidants might play an important role in the treatment of AIDS. In this study, antioxidation was the breakthrough point to select natural ingredients from Nelumbo nucifera Gaertn. The macroporous resin named NKA was used for chromatography of the aqueous crude extract L. Fraction L2 showed the highest antioxidative activity in the three ingredients named L1, L2 and L3 from L. Chromatographed on Sephadex LH-20, L2 was separated into seven fractions named L2a to L2g. Antioxidative ingredients L2c and L2f were collected from them. High Performance Liquid Chromatography was applied to purify L2c-3 from L2c, while L2f-2 and L2f-3 from L2f. Identified by MS, FTIR and NMR, L2c-3 was tryptophan, L2f-2 was (+/-)-gallocatechin and L2f-3 was (-)-catechin. The inhibitions of L2c-3, L2f-2 and L2f-3 were 7539%,80.26% and 79.09% on erythrocyte hemolysis at 250μg/ml. L2f-2 and L2f-3 exhibited strong antioxidative activities on lipid peroxidation. The inhibitory rates were 75.42% and 74.48% at 250μg/ml. Furthermore, L2f-2 could eliminate superoxide anion and hydroxy radical with the IC50 values of 126.2μM and 102.0μM, while the IC50 values of L2f-3 were 204.8μM and 234.4μM. The crude aqueous extract L was precipitated with 50%(v/v) and then 67%(v/v) ethanol to collect fractions LA and LB. Antioxidative fraction LB2 was extracted from LB on Sephadex-G75 column. LB2 is a polysaccharide-protein complex with a molecular weight of 18.8 kDa. HPLC data showed that LB2 was composed of mannose, rhamnose, glucose, galactose and xylose with a mol ratio 2:8:7:8:1. LB2 was identified as a polysaccharide sulfate containingα/β-pyranoid and a-furanoid monose by FTIR. The antioxidative capability of LB2 on erythrocyte hemolysis assay was 72.2%(125μg/ml) and 83.2%(250μg/ml) on lipid peroxidation.
     HIV-1 integrase (IN) is a critical enzyme of HIV-1. It is an ideal target for anti-HIV therapy because previous researches have not found any functional integrase analogue in human bodies. But the agents against integrase were developed so slow that there was only one drug against IN named Raltegravir approved by FDA in 32 anti-HIV drugs. Proper screening model is the most important of drug development. In the present studies, two novel drug screening models named 3'-process model and double-plasmid model were established for IN inhibition screening. Two mutant sites F185K and C280S were introduced into cDNA of IN, which could improve the solubility of IN. In the 3'-process model, soluble IN was purified by NTA-Ni2+ from the lysate of pET-IN (BL21) induced by IPTG. Recombinant IN was identified by Western Blot. It showed high 3'-process activity on substrate plasmid pLTRs to make them linearization in vitro. The ratio of linear DNA to total DNA reflected the activity of IN. LB2 exhibited the highest inhibitory activity on IN with an IC50 value of 5.28μM. The inhibitory activities of L2f-2 (IC50: 412.45μM) and L2f-3 (IC50:432.40μM) on IN were higher than that of Raltegravir (IC50:686.17μM). Double-plasmid screening system contained two recombinant plasmids named pET-IN and pLTR in E.coli BL21. IN expressed by pET-IN acted on pLTR in bacteria which could inhibit their growth and samples with potential IN inhibition could recover the growth of bacteria. LB2 showed higher inhibitory rate (47.48%) on IN than Raltegravir (42.92%) at 10μM. The inhibitory rate of L2f-3 on IN was 48.78% at 100μM. The survival rates of splenic cells incubated with 1mM L2f-3 and LB2 were 100% when tested with MTT method, which exhibited that L2f-3 and LB2 did not show any cytotoxicity on normal cells. Raltegravir showed higher cytotoxicity than L2f-3 and LB2. Only 20% cells survived after incubated with 1mM Raltegravir.
     It was the first time that multiple effects of compounds from Nelumbo nucifera Gaertn were studied. HIV-1 reverse transcriptase (RT) and protease (PR) are other two critical enzymes of HIV-1. L2f-2, L2f-3 and LB2 could strongly inhibit RT with the IC50 values of 10.41μM,9.58μM and 33.70μM. The inhibitory rates of L2f-2 and L2f-3 on PR were 17.61% and 15.66% at 70μg/ml, while the inhibitory rate of Pepstatin A (standard PR inhibition) was only 7.36%. Immune reconstitution of HIV-infected patients was the most important part of immune function recovery. Cytokines were critical regulatory factors and played important roles in immune system. Real-time PCR was used to test the expressive levels of cytokines. The results demonstrated that both L2f-2 and L2f-3 could up-regulate the gene expressive levels of IL-2 and IL-6, while down-regulate IL-10. These regulations would be helpful to increase the organic immunity and balance immune system. Moreover, L2f-3 could inhibit HIV-1 directly by down-regulating TNF-αand inhibiting the activation of Tat on LTR. LB2 exhibited positive regulation on IL-2, IL-4 and IL-10. It could improve the inhibitory state of cytokines in HIV-1 sufferer and balance the immune system.
     In the present researches, two novel IN inhibitor screening models were established for quick and large scale drug screening. Natural products from Nelumbo nucifera Gaertn were examined in antioxidation, inhibition on the key enzymes of HIV-1 and immune regulation. Most chemically synthetic HIV-1 inhibitor could not deal with mutant virus. Natural products with multiple anti HIV-1 effects would overcome this disadvantage. Therefore, this research is significant for anti HIV-1 drug development and application of natural products to HIV-1 therapy.
引文
[1]田晓华.氧化应激与HIV疾病.解放军预防医学杂志,1997,15:228-231
    [2]Rodrigo C, Rajapakse S. HIV, poverty and women. International Health,2010,2:9~16
    [3]Roberrtson D L, Anderson J P, Bradac J A, et al. An African HIV-1 nomenclature proposal. Science,2000,288:55~56
    [4]Broder S. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antiviral Research,2010,85:1~18
    [5]杨贵贞.医学免疫学.第5版.北京:高等教育出版社,2003:19~21
    [6]Luban J. Absconding with the chaperone:essential cyclophilin-gag interaction in HIV-Ⅰ virion, Cell,1996,87:1157~1159
    [7]Dalgleish A G, Beverley P C, Clapham P R, et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature,1984,312:763~767
    [8]Wyatt R, Joseph S. The HIV-1 envelope glycoproteins:fusogens, antigens and immunogens. Science,1998,280:1884~1889
    [9]Essink B B O, Berkhout B, Das A T. HIV-1 reverse transcriptase discriminates against non-self tRNA primers. J Mol Biol,1996,264:243~254
    [10]McCutchan F E. HIV-1 genetic diversity. AIDS,1996,10:13~15
    [11]Zouhiri F, Mouscadet J F, Medkouar K, et al. Structure activity relationships and binding mode of styrylquinolines as potent inhibitors of HIV-1 integrase and replication of HIV-1 in cell culture. J Med Chem,2000,43:1533~1540
    [12]张晓莉,李赢,韩美君.医学免疫和微生物学.军事医学科学出版社,1998,236~238
    [13]Huang M J. Incorporation of p160 gag-pol into virus particles requires the presence of both the major homology region and adjacent C-terminal capsid sequences with the Gag-Pol polyprotein. J Virol,1997,71:4412~4418
    [14]Fisher R J, Rein A, Fivash M, et al. Sequence-specific binding of human immunodeficiency virus type 1 nucleocapsid protein to short oligonucleotides. J Virol, 1998,72:1902~1909
    [15]Littvak S. Retroviral Reverse Transcriptase. R G Lands Company,1996
    [16]Meek T D, Dayton B D, Metcalf B W, et al. Human immunodeficiency virus 1 protease expressed in Escherichia coli behaves as a dimeric aspartic protease. Proc Natl Acad Sci U.S.A.,1989,86:1841~1845
    [17]Navia M A, Fitzgerald P M, McKeever B M, et al. Three-dimensional structure aspartyl protease from human immunodeficiency virus HIV-1. Nature,1989,337:615~620
    [18]Walodawer A, Miller M, Jaskolski M, et al. Conserver folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science,1989,245:616~621
    [19]Andrake M D and Skalka A M. Retrovial integrase, putting the pieces together. J Biol Chem,1996,271:19633~19636
    [20]Cai M, Huang Y, Caffrey M, et al. Solution structure of the N-terminal zinc binding domain of HIV integrase. Nat Struct Biol,1997,4:567~577
    [21]Nair V, Chi G C. HIV integrase inhibitors as therapeutic agents in AIDS. Rev Med Virol, 2007,17:277~295
    [22]Gerton J L, Shanon O, Mari 0, et al. Effects of mutations in residues near the active site of human immunodeficiency virus type I integrase on specific enzyme-substrate interaction. J Virol,1998,72:5046~5055
    [23]刘新泳.抗艾滋病药物研究.人民卫生出版社,2006:204-205
    [24]Tramontano E, Onidi L, Esposito F, et al. The use of a new in vitro reaction substrate reproducing both U3 and U5 regions of the HIV-1 3'-ends increases the correlation between the in vitro and in vivo effects of the HIV-1 integrase inhibitors. Biochem Phar, 2004,67:1751~1761
    [25]Vivet B V, Sidierjean J, Isel C, et al. Nucleoside and nucleotide inhibitors of HIV-1 replication. Cell Mol Life Sci,2006,63:163~186
    [26]Goldschmidt V, Marquet R. Primer unblocking by HIV-1 reverse transcriptase and resistance to nucleoside RT inhibitiors (NRTIs). The International Journal of Biochemistry & Cell Biology,2004,36:1687~1705
    [27]Pauwels R. New non-nucleoside reverse transcriptae inhibitors (NNRTls) in development for the treatment of HIV infections. Curr Opin Pharmacol,2004,4:437~446
    [28]Winkler P. Lymphocyte proliferation and apoptosis in HIV-seropositive and healthy subjects during long-term ingestion of fruit juices or a fruit-vegetable-concentrate rich in polyphenols and antioxidant vitamins. Europein journal of Chinical Nutrition,2004,58: 317~325
    [29]Goldgur Y, Craigie R, Cohen GH, et al. Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor:a platform for antiviral drug design. Proc Natl Acad Sci USA, 1999,96:13040~13043
    [30]沈燕玲,王毅红,吴卫星.抗HIV/AIDS药物的市场现状和发展趋势分析.经济与市场,2008,2:29-38
    [31]Este J A, Cihlar T. Current status and challenges of antiretroviral research and therapy. Antiviral Research,2010,85:25~33
    [32]Temesgen Z, Siraj, D S. Raltegravir:first in class HIV integrase inhibitor. Ther Clin Risk Manag,2008,4:493~500
    [33]Collins R A, Ng T B. Polysaccharopeptide from coriolus Verszcolor has potential for against human immunodeficiency virus type 1 infection. Life Sciences,1997,60:383~387
    [34]Wang H X, Ng T B. Isolation of lilin, a novel arginine-and glutamate-rich protein with potent antifungal and mitogenic activities from lily bulbs. Life Sciences,2002,70: 1075~1084
    [35]Cimino P, Bifulco G, Casapullo A, et al. Isolation and NMR characterization of rosacelose, a novel sulfated polysaccharide from the sponge Mixylla rosacea. Carbohydrate Research, 2001,334:39-47
    [36]Lima M A S, Silveira E R, Marques M S L. Biologically active flavonoids and terpenoids from Egletes viscose. Phytochemistry,1996,41:217~223
    [37]Matsuse I T, Lim Y A, Hattori M, et al. A search for anti-viral properties in Panamanian medicinal plants. The effects on HIV and its essential enzymes. Journal of Ethnopharmacology,1999,64:15~22
    [38]Lam T L, Lam M L, Au T K, et al. A comparison of human immunodeficiency virus type-1 protease inhibition activities by the aqueous and methanol extracts of Chinese medicinal herbs. Life Sciences,2000,67:2889~2896
    [39]陈瑗,周玫.自由基医学基础与病理生理.人民卫生出版社,2002,12-13
    [40]Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine. Clarendon Press,1999:148~154
    [41]Minotti G. Sources and role of iron in lipid peroxidation. J Chem Res toxicol.1993,6: 134~146
    [42]张文玲,魏丽勤,王林嵩等.活性氧对生物大分子的氧化性损伤. 河南师范大学学报(自然科学版),2000,28:69~71
    [43]Kasai H. Analysis of a form of oxidative DNA damage,8-hydroxy-2-deoyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res,1997,387:147~163
    [44]Robertson R P, Harmon J, Tran P O T, Poitout V. β-Cell Glucose Toxicity, Lipotoxicity, and Chronic Oxidative Stress in type 2 Diabetes. Diabetes,2004,53:12~24
    [45]Cohen J H, Kristal A R, Stanford J L. Fruit and vegetable intakes and prostate despite a high intake of saturated fats and relatively high plasma cancer risk. J Natl Cancer Inst,2000, 92:61~68
    [46]Packer L, Weber S U, Rimbach G. Molecular aspects of alpha-tocotrienol antioxidant action and cell signalling. J Nutr,2001,131:369~373
    [47]Simon H U, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in the apoptosis induction. Apoptosis,2000,5:415~418
    [48]金小荣,秦俊法,楼蔓藤等.氧化应激与艾滋病.广东微量元素科学,2009,16:1~20
    [49]孙存普.自由基生物学导论.中国科学技术大学出版,1999,276
    [50]郑荣梁.自由基生物学.高等教育出版社,1992,48~54
    [51]赵宝路,氧自由基和天然抗氧化剂.科学出版社,1999,123-125
    [52]Yamashita I, Maemura T, Haramo T, et al. Polymorphic extracellular glucoamylase genes and their evolutionary origin in the yeast Saccharomyces diastaticus. Chem.Pharm.Bull, 1988,36:574~582
    [53]Hayashi M, Ohkuni K, Yamashita I. Control of division arrest and entry into meiosis by extracellular alkalisation in Saccharomyces cerevisiae. Yeast,1998,14:905~913
    [54]孙存普.自由基生物学导论.中国科学技术大学出版社,1999,284
    [55]刘莉华,宛晓春,李大祥.黄酮类化合物抗氧化活性构效关系的研究进展(综述).安徽农业大学学报,2002,29:265-270
    [56]张立新,杭瑚,王宗花等.某些常见蔬菜抗氧化活性的研究.食品科学,1999,11:21-23
    [57]钱明赛.蔬果中的抗氧化物质.食品工业,1998,8:15-17
    [58]许申鸿,杭瑚.葡萄籽和葡萄皮清除白由基的研究.食品科学,1999,12:28-30
    [59]王常青,倪淑华.黄刺玫果汁的抗氧化作用及对大鼠血液流变学的影响.中国公共卫生学报,1995,14:169~172
    [60]Stohs S J, Al-Bayati Z F, Hassan M Q, et al. Glutathione peroxidase and reactive oxygen species in TCDD-induced Iipid peroxidation. J Adv Exp Med Biol,1986,37:137~145
    [61]林忠宁,于竞,汪家梨等.新鲜蔬菜对实验性肝损伤小鼠的抗氧化作用探讨.中国公共卫生学报,1994,13:355-362
    [62]杨莉,林秀月,吴开国.龙凤益寿馔对小鼠脂质过氧化和SOD活力的影响.广西预防医学,1995,1:48-49
    [63]Korotdova E I, Avramchik O A, Kagiya T V. Study of antioxidant properties of water-solulble Vitamin E derivate-tocophenol monoglucoside (TMG) by differential pulse voltammetry. Talanta,2004,63:729~734
    [64]Thomos S R, Witting P K, Stocker R.3-Hydyoxyanthranilic acid is an efficient, cell-derived coantioxidant for alphatocopherol, inhibiting human low density lipoprotein and plasma lipid peroxidation. J Biol Chem,1996,271:32714~32721
    [65]董晓慧,杨原志.自由基与维生素E的抗氧化作用.饲料研究,2003,6:15-18
    [66]Heaton P R, Reed C F, Mann S J. Role of dietary antioxidants to protect against DNA damage in adult dogs. The American Society for Nutritional Scienes,2002,132: 1720~1724
    [67]田迪英,杨荣华.果蔬抗氧化活性的研究.食品与发酵工业,2003,29:37~40
    [68]郭长江,韦京豫,杨继军等.66种蔬菜、水果抗氧化活性的比较研究.营养学报,2003,25:203-207
    [69]Good R. The geography of the flowering plants. Longman Group Ltd.1974,346
    [70]中国科学院武汉植物研究所.中国莲.科学出版社,1987,1
    [71]Sridhar K R, Bhat R. Lotus—a potential nutraceutical source. J Agric Tech,2007,3: 143~155
    [72]江苏新医学院.中药大辞典(下册).上海人民出版社,1977
    [73]中国科学院武汉植物研究所.中国莲.科学出版社,1987,151~152
    [74]Yen G C, Duh P D, Su H J. Antioxidant p roperties of lotus seed and its effect on DNA damage in human lymphocytes. Food Chem,2005,89:379~385
    [75]Mukherjee P K, Mukherjee D, Maji A K, et al. The sacred lotus (Nelumbo nucifera)-phytochemical and therapeutic profile. J Pharm Pharmacol,2009,61:407~422
    [76]Jung H A, Kim J E, Chung H Y, et al. Antioxidant principles of Nelumbo nucifera stamens. Arch Pharm Res,2003,26:279~285
    [77]王玲玲,刘斌,石任兵等.荷叶黄酮类化学成分研究.北京中医药大学学报,2008,31:116~118
    [78]Elegami A A, Bates C, Cray A L, et al. Two very unusual macrocyclic flavonoids from the water lily Nymphaea lotus. Phytochemistry,2003,63:727~773
    [79]富田真雄,渡边真男,富田真次等.莲的生物碱.药学杂志(日),1961,469
    [80].陈怡,罗顺德,宋金春等.莲子心中酚性生物碱3种主要成分定量分析及其特征图谱研究.中国医院药学杂志,2004,24:205-208
    [81]陈婵,郑宝东,黄艳莲子可溶性多糖提取工艺的研究.福建轻纺,2006,11:91-94
    [82]林善财,叶国维,吴锦忠等.“太空莲36号”与“建莲”莲子的化学成分比较研究.海峡药学,2005,17:91-93
    [83]Vogel S, Hadacek F. Contributions to the functional anatomy and biology of Nelumbo nucifera (Nelumbonaceae) Ⅲ. An ecological reapp raisal of floral organs. Plant Syst Evol, 2004,249:173~189
    [84]王辉,刘刚,杨柳等.莲心碱的体外抗氧化作用.中国中药杂志,2005,30(14):1132-1135
    [85]Agnihotri V K, Elsohyl H N, Khan S I, et al. Antioxidant constituents of Nymphaea caerulea flowers. Phytochemistry,2008,69:2061~2066
    [86]Rai S, Wahile A, Mukherjee K, et al. Antixidant activity of Nelumbo nucifera (sacred lotus) seeds. Journal of Ethnopharmacology,2006,104:322~327
    [87]Sohn D H, Kim Y C, Oh S H, et al. Hepatop rotectiveand free radical scavenging effects of Nelumbo nucifera. Phytomedicine,2003,10:165~169
    [88]苗明三,徐瑜玲,方晓艳.莲子多糖对衰老模型小鼠抗氧化作用的研究.中国现代应用药学杂志,2005,22:11-12
    [89]Huang B, Ban X Q, He J S, et al. Hepatoprotective and antioxidant activity of ethanolic extracts of edible lotus(Nelumbo nucifera Gaertn.) leaves. Food Chemistry,2010,120: 873~878
    [90]Hu M, Skibsted L H. Antioxidative capacity of rhizome extract and rhizome knot extract of edible lotus(Nelumbo nuficera). Food Chem,2002,76:327~333
    [91]Pan Y, Cai B, Wang K, et al. Neferine enhances insulin sensitivity in insulin resistant rats. J Ethnopharmacol,2009,124:98~102
    [92]杜立军,孙虹,李敏,等.荷叶大豆及其合剂调脂活性部位的研究.中草药,2000,31:526~528
    [93]关章顺,吴俊,喻泽兰等.荷叶胶囊对人体血脂异常的调脂作用研究.心血管康复医学杂志,2003,12:294-296
    [94]李鸣宇,陈健芬,钱伏刚等.荷叶提取物对牙周主要致病菌的抑制作用.中华口腔 医学杂志,2003,38:274
    [95]唐裕芳,张妙玲,刘忠义,等.荷叶生物碱的提取及其抑菌活性研究.广州食品工业科技,2004,20:51-52
    [96]李敬华.荷叶金银花保健口香糖的研制.食品科学,2004,25:210-213
    [97]凌和平,王建荣,李良俊等.荷叶生物碱的研究进.长江蔬菜,2009,16:10~13
    [98]严守雷,王清章,彭光华.莲藕多酚抗氧化作用研究.中国粮油学报,2005,20:77-81
    [99]Khattak K F, Simpson T J, Ihasnullah. Effect of gamma irradiation on the microbial load, nutrient composition and free radical scavenging activity of Nelumbo nucifera rhizome. Radiation Physics and Chemistry,2009,78:206~212
    [100]Yang H C, Xing S, Shan L, et al. Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. J Clin Invest,2009,119:3473~3486
    [101]陈春英,周井炎,徐辉碧.氧化应激、抗氧化剂与艾滋病.生命的化学,1996,16:35-37
    [102]Polyakov V M, Snepelev A P, Kokovkiva O E, et al. Superoxide anion production and enzymatic disbalance in peripheral blood cells isolated from HIV-infected children. Free Radic Biol Med,1994,16:15~21
    [103]Flores S C, Marecki J C, Harper K P, et al. The HIV-1 Tat protein represses Mn-superoxide dismutase expression in Hela cells. Proc Natl Acad Sci U.S.A.,1993,90: 7632~7636
    [104]Ogunro P S, Ogungbamigbe T O, Ajala M O, et al. Total antioxidant status and lipid peroxidation in HIV-1 infected patients in a rural area of south western Nigeria. Afr J Med Med Sci,2005,34:221~225
    [105]Israel N, Gougerot-Pocidalo M A. Oxidative stress in human immunodeficiency virus infection. Cell. Mol. Life Sci.,1997,53:864~870
    [106]Romero-Avira D, Roche E. The keys of oxidative stress in acquired immune deficiency syndrome apoptosis. Med. Hypotheses,1998,51:169~173
    [107]Mates J M, Sanchez-Jimenez F M. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol,2000,32:157~170
    [108]Hamilos D L. Glutathione:Its role in modulation of immune function. J Immunol immunopharmacol,1992,12:11~15
    [109]Droege W. Cysteine and glutathione deficiency in AIDS patients:A rationale for the treatment with N-acetyl-cysteine. Pharmacology,1993,46:61~65
    [110]Iwate S, Hori T, Sato N, et al. Thiol-mediated redox regulation of lymphocyte proliferation, J Immunol,1994,152:5633~5642
    [111]Sandstrom P A, Roberts B, Folks T, et al. HIV gene expression enhances T cell susceptibility to hydrogen peroxide-induced apoptosis. AIDS Res. Hum. Retroviruses, 1992,9:1107~1113
    [112]Olivier R, Dragic T, Lopez O, et al. An antioxidant prevents apoptosis and early cell death in lymphocytes from HIV-infected individuals. Int Conf AIDS,1992,8:19~24
    [113]Peng J S, Vigorito M, Liu X Q, et al. The HIV-1 transgenic rat as a model for HIV-1 infected individuals on HAART. Journal of Neuroimmunology.2010,218:94~101
    [114]Koen K A, Van Rompay. Evaluation of antiretrovirals in animal models of HIV infection. Antiviral Research.2010,85:159~175
    [115]Julia A, Maksim S, Evgeni Z, et al. HIV-1 integrase can process a 3'-end crosslinked substrate. FEBS,2004,271:205~211
    [116]Faure A, Calmels C, Desjobert C, et al. HIV-1 integrase crosslinked oligomers are active in vitro. Nucleic Acids Research,2005,33:977~986
    [117]Young H, Denise R, Frederic B. Rapid microtiter assays for poxvirus topoisomerase, mammalian type IB topoisomerase and HIV-1 integrase:application to inhibitor isolation. Nucleic Acids Res,2000,28:4884~4892
    [118]Kui G, Steven W, Frederic B. Metal Binding by the D,DX35E Motif of Human Immunodeficiency Virus Type 1 Integrase Selective Rescue of Cys Substitutions by Mn2+ in vitro. JV1,2004,78:6715~6722
    [119]Nakatani N. Antioxidants from plants. Protein Nucleic Acid Enzyme,1993,38: 1766~1777
    [120]韩驰.茶的抗氧化作用研究.卫生研究,2005,34:234-237
    [121]Erlund I. Plasma concentrations of the flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual diets, and diets high or low in fruit and vegetables. Europein journal of Chinical Nutrition,2002,56:891~898
    [122]李绍军,龚月桦,王俊儒等.关于茚三酮法测定脯氨酸含量中脯氨酸与茚三酮反应之探讨.植物生理学通讯,2008,41:365~368
    [123]赵超,陈华国,靳凤云等.槐枝中总黄酮的含量测定.光谱实验室,2010,27(1):188-191
    [124]李春阳,许时婴,王璋.香草醛-盐酸法测定葡萄籽、梗中原花青素含量的研究.食品科学,2004,25:157-161
    [125]Kawagishi H, Nomura A, Mizuno T, et al. Isolation and characterization of a lectin from Grifola frondosa fruiting bodies. Biochemical & Biophysical. Acta,1990,134:247~252
    [126]Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the folin phenol reagent. J Biol Chem,1951,193:265~275.
    [127]Orii Y, King T E. On the nature of the three intermediate species formed after reaction of reduced cytochrome oxidase with oxygen. J Biol Chem,1976,251:7487~7493
    [128]杨光明,王栋,张芳芳等.镰形棘豆总黄酮和总酚含量测定.药学与临床研究,2009,17:376-379
    [129]饶金华,刘文英,江佳峪.柱前衍生化高效液相色谱法分析淫羊藿多糖中单糖的组成.时珍国医国药,2007,18:366-367.
    [130]韩晶,陈晓辉,孙立新等.柱前衍生HPLC法分析白土茯苓多糖中单糖的组成.中药材,2009,32:893-895
    [131]Miki M, Tamai H, Mino M, et al. Free-radical chain oxidation of rat red blood cells by molecular oxygen and its inhibition by a-tocopherol. Arch Int Physiol Biochim Biophys, 1987,258:373~380
    [132]Li L, Ng T B, Zhao L, et al. Correlation of antioxidant activity with content of phenolics in extracts from the culinary-medicinal Abalone mushroom Pleurotus abalones Han, Chen et Cheng (Agaricomycetideae). International Journal of Medicinal Mushrooms,2005,7: 237-242
    [133]Ng T B, Liu F, Wang Z T. Antioxidative activity of natural products from plants. Life Sci, 2000,66:709~723
    [134]Liu F, Ng T B. Antioxidative and free radical scavenging activities of selected medical herbs. Life science,2000,66:725~735
    [135]Yang D M, Wang Q S, Ke L Q, et al. Antioxidant activities of various extracts of lotus (Nelumbo nuficera Gaertn) rhizome. Asia Pac J Clin Nutr,2007,16:158~163
    [136]陈铭祥,王定勇.天然产物提取分离新技术的研究进展.研究进展,2009,6:9-10
    [137]Tang F, Zhang Q L, Nie Z, et al. Sample preparation for analyzing traditional Chinese medicines. Trends in Analytical Chemistry,2009,28:1253~1262
    [138]Zhao H, Kalivendi S, Zhang H, et al. Superoxide reacts with hydroethidine but forms fluorescent product that is distinctly different from ethidium:potential implications in intracellular fluorescence detection of superoxide. Free Radical Biology & Medicine,2003, 34:1359~1368
    [139]李华,李佩洪,王晓宇等.抗氧化检测方法的相关性研究.食品与生物技术学报,2008,27:6-11
    [140]Slater T F, Cheeseman K H. Free radical mechanisms in relation to tissue injury. Proc Nutr Soc,1987,46:1~12
    [141]Sugiyama H, Fung K P, Wu T W. Purpurogallin as an antioxidant protector of human erythrocytes against lysis by peroxyl radicals. J Life Sci,1993,53:39~43
    [142]罗成,周达,鲁晓翔.天然产物抗氧化机理的研究进展.食品工业科技,2009,30:335~339
    [143]严浪,石宝霞,李全宏.莲藕多糖的分离纯化及抗氧化活性研究.食品科学,2008,29:66-69
    [144]Uchida K, Kawakishi S. Sequence-dependent reactivity of histidine containing peptides with copper (II)/ascorbate. Journal of Agricultural and Food Chemistry,1992,40:13~16
    [145]Chen H M, Muramoto K, Yamauchi F, et al. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J Agric Chem. 1996,44:2619~2623
    [146]Wang J S, Zhao M M, Zhao Q Z, et al. Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems. Food Chemistry,2007,101:1658~1663
    [147]Galijasevic S, Abdulhamid I, Abu-Soud H M. Potential role of tryptophan and chloride in the inhibition of human myeloperoxidase. Free Radical Biology & Medicine,2008,44: 1570~1577
    [148]Marcuse R. The effect of some amino acids on the oxidation of linoleic acid and its methyl ester. J Amer Oil Chem Soc,1962,39:97~103
    [149]Le F N, Seve B. Biological roles of tryptophan and its metabolism:Potential implications for pig feeding. Livestock Science,2007,112:23~32
    [150]Fukutomi J, Fukuda A, Fukuda S, et al.. Scavenging activity of indole compounds against cisplatin-induced reactive oxygen species. Life Sciences,2006,80:254~257
    [151]Shi J, Yu J, Pohorly J E, et al. Polyphenolics in grape seeds-biochemistry and functionality. J Med Food,2003,6:291~299
    [152]Kubola J, Siriamorupun S S. Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chemistry, 2008,110:881~890
    [153]Amici M, Boufili L, Spina M, et al. Wheat sprout extract induces changes on 20S proteasomes functionality. Biochimie,2008,90:790~801
    [154]Ling Z Q, Xie B J, Yang E L. Isolation, characterization and determination of antioxidative activity of Oligomeric procyanidins from the seedpod of Nelumbo nucifera Gaertn. J Agric Food Chem,2005,53:2441~1445
    [155]Yan S L, Wang Q Z, Peng G H. Determination of catechin in lotus rhizomes by high-performance liquid chromatography. International Journal of food sciences and nutrition,2009,60:432~438
    [156]Miyagawa C, Wu C, Kennedy D O, et al. Protective effect of green tea extract and tea polyphenols against the cytotoxicity of 1,4-naphthoquinone in isolated rat hepatocytes. Bioscience Biotechnology and Biochemistry,1997,61:1901~1905
    [157]Roginsky V A, Barsukova T K, Remorova A A, et al. Moderate antioxidative efficiencies of flavonoids during peroxidation of methyl linoleate in homogeneous and micellar solutions. J Am Oil Chem Soc,1996,73:777~786
    [158]Senevirathne M, Kim S, Siriwardhana N, et al. Antioxidant potential of Ecklonia cava on reactive oxygen species scavenging metal chelating, reducing power and lipid peroxidation inhibition. Food Science Technology International,2006,12:27~38.
    [159]Suja K P, Jayalekshmy A, Arumughan C. Antioxidant activity of sesame cake extract. Food Chemistry,2005,91:213~219
    [160]Kaur C, Kapoor H C. Antioxidants in fruits and vegetables-the millenniums health. International Journal of Food Science and Technology,2001,36:703~725
    [161]Vinson J A, Su X.H, Zubik L, et al. Phenol antioxidant quantity and quality in foods: fruits. J Agric Food Chem,2001,49:5315~5321
    [162]Chen Y, Xie M Y, Nie S P, et al. Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chemistry, 2008,107:231-241
    [163]Gao G S, Hou B, Wu S R, et al. Research Progress and Thinking in Chemical Structure and Bioactivities of Polysaccharides of Tremella aurantialba. Edible Fungi of China,2007, 26:8-10
    [164]严浪,张树明,张凡华等.莲藕渣中多糖的提取及性质初步研究.食品科学,2007,28:226-230
    [165]李南,张健慧,凌世金.HIV-1整合酶的纯化及活性检测.中国药科大学学报,2000,31:70~73
    [166]Sherman P A, Fyfe J A. Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity. Proc.Natl.Acad.Sci,1990,87: 5119~5123
    [167]程绍辉,马晓慧,何红秋等.HIV-1整合酶蛋白的可溶性表达及功能研究.中国生物工程杂志,2006,26:22-26
    [168]Jenkins T M, Hickman A B, Dyda F, et al. Catalytic domain of human immunodeficiency virus type 1 integrase:Identification of a soluble mutant by systematic replacement of hydrophobic residues. Proc Natl Acad Sci U S A,1995,92:6057~6061
    [169]Jenkins T M, Engelman A, Ghirlando R, et al. A Soluble Active Mutant of HIV-1 Integrase. J Biological Chemistry,1996,271:7712~7718
    [170]Calmels C, Richard de Soultrait V, Caumont A, et al. Biochemical and random mutagenesis analysis of the region carrying the catalytic E152 amino acid of HIV-1 integrase. Nucleic Acids Res,2004,32:1527~1538
    [171]Bushman F D, Craigie R. Activities of human immunodeficiency virus (HIV) integration protein in vitro:Specific cleavage and intergration of HIV DNA. Proc Natl Acad Sci,1991, 88:1339~1343
    [172]Desfarges S, Filippo J S, Fournier M, et al. Chromosomal integraton of LTR-flanked DNA in yeast expressing HIV-1 integrase:down regulation by RAD51. Nucleic Acids Research,2006,34:6215~6224
    [173]Hazuda D J, Hastings J C, Wolfe A L, et al. A novel assay for the DNA strand-transfer of HIV-1 integrase. Nucleic Acids Res,1994,22:1121~1122
    [174]Abad M L, Verdura T, Vela A, et al. Construction and characterization of a minimized version of the HIV-1 pNL4.3 plasmid and its application for pseudotyping HIV-1 vectors. Mol Biotechnol,2004,28:87~95
    [175]伍欣星,聂广,胡继鹰.医学分子生物学原理与方法.科学出版社,2000
    [176](美)F.M.奥斯伯,R.布伦特,R.E.金斯顿等.精编分子生物学实验指南(第五版).2008,127-149
    [177]Sambrook J, Fritsch E F, Maniatis T. Molecular cloning:A laboratory Mannual (2nd ed).1989
    [178]Carayon K, Leh H, Henry E, et al. A cooperative and specific DNA-binding mode of HIV-1 integrase depends on the nature of the metallic cofactor and involves the zinc-containing N-terminal domain. Nucleic Acids Research,2010, doi:10.1093/nar/gkq087
    [179]冯微宏,黄建松,詹金彪.ELISA法分析HIV-1整合酶的生物学活性.浙江大学学报(医学版),2007,36:179-184
    [180]邹媛,詹金彪.人类免疫缺陷病毒(HIV-1)整合酶抑制剂筛选及其活性测定.生物化学与生物物理进展,2007,34:965~970
    [181]Wang Y, Klock H, Yin H, et al. Homogeneous high-throughput screening assays for HIV-1 integrase 3beta-processing and strand transfer activities. J Biomol Screen,2005,10: 456~462
    [182]Prikazchikova T A, Volkov E M, Zubin E M, et al. Inhibition of HIV-1 Integrase by Modified Oligonucleotides:Optimization of the Inhibitor Structure. Molecular Biology, 2007,41:118~125
    [183]Ng T B, Lam T L, Au T K, et al. Inhibition of human immunodeficiency virus type 1 reverse transcriptase, protease and integrase by bovine milk proteins. Life Sciences.2001, 69:2217~2223
    [184]Yamamoto N, Tanaka C, Wu Y F, et al. Analysis of human immunodeficiency virus type 1 integration by using a specific, sensitive and quantitative assay based on real-time polymerase chain reaction. Virus Genes,2006,32:105~113
    [185]Caumont A, Jamieson G, De Soultrait V R, et al. High affinity interaction of HIV-1 integrase with specific and non-specific single-stranded short oligonucleotides. FEBS Lett, 1999,455:154~158
    [186]刘连兴,郝彦玲,袁国亮等.HIV整合酶在大肠杆菌中的表达纯化及其应用.Virologica Sinica,2006,21:413~416
    [187]Weng Y P, Hsu F C, Yang W S, Optimization of the overexpression of glutamate mutase S component under the control of T7 system by using lactose and IPTG as the inducers. Enzyme and Microbial Technology,2006,38:465~469
    [188]Kyratsous C A, Silverstein S J, DeLong C R, et al. Chaperone-fusion expression plasmid vectors for improved solubility of recombinant proteins in Escherichia coli. Gene,2009, 440:9-15
    [189]Wang L D. Influence of Mg2+ on the binding modes of HIV-1 integrase with thiazolothiazepine inhibitor studied by molecular simulation. Computers in Biology and Medicine,2009,39:355~360
    [190]Witmer M, Danovich R. Selection and Analysis of HIV-1 Integrase Strand Transfer Inhibitor Resistant Mutant Viruses. Methods,2009,47:277~282
    [191]Cocohoba J, Dong B J. Raltegravir:The First HIV Integrase Inhibitor. Clinical Therapeutics,2008,30:1747~1765
    [192]Pommier Y, Marchand C, Neamati N. Retroviral integrase inhibitors year 2000:update and perspectives. Antiviral Research,2000,47:139~148
    [193]Caumont A B, Jamieson G A, Pichuantes S, et al. Expression of functional HIV-1 integrase in the yeast Saccharomyces cerevisiae leads to the emergence of a lethal phenotype:potential use for inhibitor screening. Curr Genet,1996,29:503~510
    [194]Parissia V, Caumont A, de Soultrait V R, et al. The lethal phenotype observed after HIV-1 integrase expression in yeast cells is related to DNA repair and recombination events. Gene, 2003,322:157~168
    [195]Novick R P. Plasmid incompatibility. Microbiol Rev,1987,51:381~395
    [196]Yang W, Zhang L, Lu Z G, et al. A new method for protein coexpression in escherichia coli using two incompatible plasmids. Prot Expre and Purifi,2001,22:472~478
    [197]饶桂荣,杨富强,莫国玉等.抗HBV的治疗性双质粒DNA疫苗的构建及初步药效学研究.中国免疫学杂志,2008,24:1121~1132
    [198]孙剑,王健琪,翟朝阳.不相容双质粒共表达人内皮抑素及简化人纤溶酶原饼环区5.Sichuan Univ (Med Sci Edi),2006,37:839-843
    [199]Nefedova L N, Ljubomirskaya N V, Ilyin Y V, et al. Precise excision of long terminal repeats of the gypsy(mdg4) retrotransposon of Drosophila melanogaster detected in Escherichia coli cells is explained by its integrase function. Russian Journal of Genetics, 2006,42:1398~1404
    [200]Hyoung J K, Eun-Rhan W, Shin C J, et al. A new flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. J Nat Prod,1998,61:145~148
    [201]Tewtrakul S, Nakamura N, Hattori M, et al. Flavanone and flavonol glycosides from the leaves of Thevetia peruviana and their HIV-1 reverse transcriptase and HIV-1 integrase inhibitory activities. Chem Pharm Bull (Toyok),2002,50:630~635
    [202]Mazumder A, Raghavan K, Weinstein J N, et al. Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochem Pharmacol,1995,49:1165~1170
    [203]Tewtrakul S, Miyashiro H, Nakamura N, et al. HIV-1 integrase inhibitory substances from Coleus parvifolius. Phytother Res,2003,17:232~239
    [204]Kashiwada Y, Aoshima A, Ikeshiro Y, et al. Anti-HIV benzylisoquinoline alkaloids and flavonoids from leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorg med chem.2005,13:443~448
    [205]Lameira J, Medeiros I G, Reis M, et al. Structure-activity relationship study of flavone compounds with anti-HIV-1 integrase activity:A density functional theory study. Bioorganic & Medicinal Chemistry,2006,14:7105~7112
    [206]Singh I P, Bharate S B, Bhutani K K. Anti-HIV natural products. Curr Sci,2005,89 (2): 269~290.
    [207]马明华,易杨华,汤海峰.多糖抗病毒作用的研究概况.Pharm Care & Res,2004,4(4):305-308
    [208]卢永科,李秋娟,宫德正等.利用原代培养细胞进行药物短期毒性筛选方法的建立.卫生毒理学杂志,2003,17(2):112~114
    [209]Li Y L, Ooi L S M, Wang H, et al. Antiviral Activities of Medicinal Herbs Traditionally Used in Southern Mainland China. Phytother Res,2004,18:718~722
    [210]De Clercq, E. Anti-HIV drugs:25 compounds approved within 25 years after the discovery of HIV. International Journal of Antimicrobial Agents,2009,33:307~320
    [211]Gil L, Martinez G, Gonzalez I, et al. Contribution to characterization of oxidative stress in HIV/AIDS patients. Pharmacol Res,2003,47:217~224
    [212]Sonza S, Maerz A, Deacon N, et al. Human immunodeficiency virus type 1 replication is blocked prior to reverse transcription and integration in freshly isolated peripheral blood monocytes. Journal of Virology,1996,70:3863~3869
    [213]Iqbal N, Oliver J R, Wagner F H, et al. T Helper 1 and T Helper 2 Cells Are Pathogenic in an Antigen-specific Model of Colitis. J. Exp. Med,2002,195:71~84
    [214]Wong J H, Chan H Y E, Ng T B. A mannose/glucose-specific lectin from Chinese evergreen chinkapin (Castanopsis chinensis). Biochimica et Biophysica Acta,2008,1780: 1017~1022
    [215]Rodriguez A B, Nogales G, Ortega E, et al. Melatonin controls superoxide anion level: Modulation of superoxide dismutase activity in ring dove heterophils. J Pineal Res,1998, 24:9-14
    [216]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method. Methods,2001,25:402~408
    [217]Fonteh P N, Keter F K, Meyer D, et al. Tetra-chloro-(bis-(3,5-dimethylpyrazolyl)methane) gold (III) chloride:An HIV-1 reverse transcriptase and protease inhibitor. Journal of Inorganic Biochemistry,2009,103:191~194
    [218]Nakane H, Ono K. Differential inhibitory effects of some catechin derivatives on the activities of human immunodeficiency virus reverse transcriptase and cellular deoxyribonucleic and ribonucleic acid polymerases. Biochemistry,1990,29:2841~2845
    [219]Tillekeratne L M, Sherette A, Fulmer J A, et al. Differential inhibition of polymerase and strand-transfer activities of HIV-1 reverse transcriptase. Bioorg Med Chem Lett,2002,12: 525~528
    [220]Tillekeratne L M V, Sherette A, Grossman P, et al. Simplified Catechin-Gallate Inhibitors of HIV-1 Reverse Transcriptase. Bioorganic & Medicinal Chemistry Letters,2001,11: 2763~2767
    [221]Notka F, Meier G R, Wagner R. Inhibition of wild-type human immunodeficiency virus and reverse transcriptase inhibitor-resistant variants by Phyllanthus amarus. Antiviral Res, 2003,58:175~186
    [222]Artan M, Li Y, Karadeniz F, et al. Anti-HIV-1 activity of phloroglucinol derivative, 6,60-bieckol, from Ecklonia cava. Bioorganic & Medicinal Chemistry,2008,16, 7921~7926
    [223]杨敏,蒙义文.潜在新型抗病毒药物—多糖硫酸酯的研究进展.天然产物研究与开发,2002,14:69-76
    [224]Wei Y, Ma C M, Chen D Y, et al. Anti-HIV-1 protease triterpenoids from Stauntonia obovatifoliola Hayata subsp. intermedia. Phytochemistry,2008,69:1875~1879
    [225]Mahmood N, Piacente S, Pizza C, et al. The anti-HIV activity and mechanisms of action of pure compounds isolated from Rosa damascena. Biochem Biophys Res Commun,1996, 229:73~79
    [226]Cheenpracha S, Karalai C, Ponglimanont, C, et al. Anti-HIV-1 protease activity of compounds from Boesenbergia pandurata. Bioorganic & Medicinal Chemistry,2006,14: 1710~1714
    [227]彭宗根,陈鸿珊,郭志敏等.牛膝多糖硫酸酯体外和体内抗艾滋病病毒作用.药学学报,2008,43:702-706
    [228]Tricarico C, Pinzani P, Bianchi S, et al. Quantitative real-time reverse transcription polymerase chain reaction:normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem,2002,309:293~300.
    [229]Reddi A R, Jensen L T, Naranuntarat A, et al. The overlapping roles of manganese and Cu/Zn SOD in oxidative stress protection. Free Radical Biology and Medicine,2009,46: 154~162
    [230]Kedzierska K, Crowe S M. Cytokines and HIV-1:interactions and clinical implications. Antiviral Chemistry & Chemotherapy,2001,12:133~150
    [231]Beadling C B, Smith K A. DNA array analysis of interleukin-2-regulated immediate/early genes. Med Immunol,2002,1:2
    [232]Waldmann T A, Tagaya Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu. Rev, Immunol,1999,17:19~49
    [233]Fan J, Li P, Kok T, et al. AZT blocks down-regulation of IL-2 and IFN-gamma gene expression in HIV acutely infected cells. Archives of Virology,1997,142:1035~1043
    [234]Hu R, Oyaizu N, Kalyanaraman V, et al. HIV-1 gp 160 as a modifier of Th1 and Th2 cytokine response:gp160 suppresses interferon-gamma and interleukin-2 production concomitantly with enhanced interleukin-4 production in vitro. Clinical Immunology and Immunopathology,1994,73:245~251
    [235]Waldmann T A. "The biology of interleukin-2 and interleukin-15:implications for cancer therapy and vaccine design". Nature Rev. Immun.,2006,6:595~601
    [236]Hong M, Wakim V, Salomao S, et al. IL-2 and IFN-gamma, but not IL-4 secretion by peripheral blood mononuclear cells (PBMC) are related to CD4+ T cells and clinical status in Brazilian HIV-1-infected subjects. Revista do Instituto de Medicina Tropical de Sao Paulo,1998,40:351~354
    [237]Schluger N W, Perez D, Liu Y M. Reconstitution of immune responses to tuberculosis patients with HIV infection who receive antiretroviral therapy. Chest,2002,122:597~602
    [238]Olver S, Apte S, Baz A, et al. "The duplicitous effects of interleukin 4 on tumour immunity:how can the same cytokine improve or impair control of tumour growth?" Tissue Antigens,2007,69:293~298
    [239]Gauthier S, Tremblay M J. Interleukin-4 inhibits an early phase in the HIV-1 life cycle in the human colorectal cell line HT-29. Clin Immunol,2010,135:146~155
    [240]van der Poll T, Keogh C V, Guirao X, et al. Interleukin-6 gene-deficient mice show impaired defense against pneumococcal pneumonia. J Infect Dis,1997,176:439~444
    [241]Febbraio M A, Pedersen B K. Contraction-induced myokine production and release:is skeletal muscle an endocrine organ? Exerc Sport Sci Rev,2005,33:114~119
    [242]Esser R, Glienke W, Andreesen R, et al. Individual cell analysis of the cytokine repertoire in human immunodeficiency virus-1-infected monocytes/macrophages by a combination of immunocytochemistry and in situ hybridization. Blood,1998,91:4752~4760
    [243]Marfaing-Koka A, Aubin J T, Grangeot-Keros L, et al. In vivo role of IL-6 on the viral load and on immunological abnormalities of HIV-infected patients. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology,1996,11:59~68
    [244]Mocellin S, Panelli M C, Wang E, et al. The dual role of IL-10. Trends Immunol,2004, 24:36~43
    [245]Bortesi L, Rossato M, Schuster F, et al. Viral and murine interleukin-10 are correctly processed and retain their biological activity when produced in tobacco. BMC Biotechnol, 2009,9:22-34
    [246]Rizzardi G, Marriott J, Cookson S, et al. Tumour necrosis factor (TNF) and TNF related molecules in HIV-1+ individuals:relationship with in vitro Th1/Th2-type response. Clinical and Experimental Immunology,1998,114:61~65
    [247]Collins K R, Quinones-Mateu M E, Toossi Z, et al. Impact of tuberculosis on HIV-1 replication, diversity, and disease progression. AIDS Rev,2002,4:165~176
    [248]Bal A M, Lakhashe S K, Thakar M R, et al. Dysregulation of proinflammatory and regulatory cytokines in HIV infected persons with active tuberculosis. Cytokine,2005,30: 275~281
    [249]Sindhu S, Toma E, Cordeiro P, et al. Relationship of In Vivo and Ex Vivo Levels of TH1 and TH2 Cytokines With Viremia in HAART Patients With and Without Opportunistic Infections. Journal of Medical Virology,2006,78:431~439
    [250]Munoz-Fernandez M, Navarro J, Garcia A, et al. Replication of human immunodeficiency virus-1 in primary human T cells is dependent on the autocrine secretion of tumor necrosis factor through the control of nuclear factor-kappa B activation. Journal of Allergy and Clinical Immunology,1997,100:838~845
    [251]Singh N, Kumar S, Singh P, et al. Extract inhibits TNF-a-induced expression of cell adhesion molecules by inhibiting NF-κB activation and microsomal lipid peroxidation. Phytomedicine,2008,15:284~291
    [252]Kim J H, Na H J, Kim C K, et al. The non-provitamin A carotenoid, lutein, inhibits NF-κB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-κB-inducing kinase pathways:Role of H2O2 in NF-κB activation. Free Radical Biology & Medicine,2008,45:885~896
    [253]Mollace V, Nottet H S, Clayette P, et al. Oxidative stress and neuroAIDS:triggers, modulators and novel antioxidants. Trends Neurosci,2001,24:411~416
    [254]Yu M Y, Liu X Y, De Clercq E. NF-κB:The Inducible Factors of HIV-1 Transcription and their Inhibitors. Mini-Reviews in Medicinal Chemistry,2009,9:60~69
    [255]Copeland K F. Modulation of HIV-1 transcription by cytokines and chemokines. Mini Rev Med Chem,2005,5:1093~1101
    [256]Leghmari K, Contreras X, Moureau C, et al. HIV-1 Tat protein induces TNF-α and IL-10 production by human macrophages:Differential implication of PKC-bII and-d isozymes and MAP kinases ERK1/2 and p38. Cellular Immunology,2008,254:46~55
    [257]Avidan O, Hizi A. Expression and characterization of the integrase of bovine immunodeficiency virus. Virology,2008,371:309~321

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700