用户名: 密码: 验证码:
合金元素对Cf/Al复合材料微观组织及性能影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以航天器结构件为背景,开发新型高比强度、高比刚度的碳纤维增强铝基复合材料(Cf/Al)。复合材料采用压力浸渗法制备,纤维体积分数为60%,基体合金为不同Mg含量的Al-Mg合金。利用扫描电镜(SEM)、透射电镜(TEM)、高分辨电镜(HREM)、能谱仪(EDAX)、布氏硬度计和多功能电子拉伸机等多种手段对复合材料的微观组织、界面结构及形成机理进行了系统的研究,测试了复合材料的力学性能和腐蚀性能,分析了相关的影响因素。
     论文通过改变基体合金成分来分析Mg元素对复合材料界面结构与微观组织以及力学性能的影响。
     为研究碳纤维增强铝基复合材料的浸渗原理,采用真空座滴法对不同Mg含量的基体合金与碳纤维布之间的润湿行为进行了分析。结果表明,基体铝中Mg元素的添加,可以降低铝合金对纤维的润湿角,当Mg元素增加到13 wt.%以上,其基体合金对纤维的润湿角急剧下降,润湿效果明显得到改善。由润湿角变化又可直接计算出在压力浸渗条件下制备复合材料的最低制备压力,可以用以指导复合材料的制备。
     研究发现,Mg元素具有明显的界面偏聚现象,可以改变界面处的第二相析出行为。随着基体合金中Mg元素含量的增加,复合材料界面上析出的Al4C3相逐渐减少直至消失,取而代之的是开始在界面和晶内形成亚稳结构的β′(Al3Mg2)。在复合材料中,由于大量界面的引入,改变了析出条件,使得亚稳相结构的β′不能进一步形成稳定结构β相。
     随着基体合金中Mg元素含量的增加,界面反应产物改变,复合材料的力学性能得到大幅度提高。Mg含量由0到8.5 wt.%时抗弯强度急剧增加,由425 MPa增加到1350 MPa,而由Mg元素8.5 wt.%增加到17 wt.%时强度增加幅度变缓,由1350 MPa增加到1500 MPa。随着基体合金中Mg含量增加,复合材料断口也发生变化,由平直型断裂到有大量纤维拔出的混合断口断口过渡,表明复合材料界面适度“脱粘”可以大幅度提高断裂功。
     在Cf/Al-Mg复合材料中基体合金中Mg元素含量的增加,复合材料的腐蚀性能明显下降。
     在Cf/Al-17Mg复合材料基体合金中加入稀土元素Nd之后,Nd元素在纤维附近局部偏析,Nd元素比Mg元素更容易在界面上富集并生成大量的纳米球Al11Nd3析出相,由于Nd元素分布的不均匀导致有的区域Al元素直接与碳纤维接触,在复合材料的界面处就生成了一定量的脆性相Al4C3,使复合材料力学性能大幅度下降,从未添加稀土元素的1500MPa下降到800MPa。但是对复合材料的弹性模量的影响不大。
Under the background of the spacecraft structure, carbon fiber reinforced aluminum matrix composite with new high specific strength, high specific stiffness was developed. Composites with carbon fiber volume fraction of 60% and matrix of Al-XMg alloy were successfully prepared by pressure infiltration method in this paper. By using scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution electron microscopy (HREM), energy dispersive spectroscopy (EDAX), Brinell durometer and tensile machine, microstructure, interface structure and formation mechanism of composite materials were investigated. In addition, mechanical and corrosion properties of composite materials were tested, and related factors were analyzed.
     Composition of matrix alloy in composite was designed to reveal the effect of Mg element on the structure, microstructure of the interface, and mechanical properties of composites.
     In order to investigate the infiltration principle of carbon fiber reinforced aluminum matrix composites, the vacuum sessile drop method was used to analyze the wetting behavior between matrix alloy and two-dimensional carbon fibers. With the addition of Mg element in the aluminum matrix, the wetting angle between aluminum and fiber can be reduced. When the Mg element was added to 13 wt.%, the wetting angle decreased faster, which indicated that the wettability between them was better. The minimum pressure to prepare composites with pressure infiltration method can be directly calculated by the variation of wetting angle and it can guide the preparation of composites.
     Mg segregated at the interface of Cf/Al-Mg composite, which resulted in the change of precipitation behavior at the interface. With the increase of Mg, amount of Al4C3 phase decreased and even disappeared at the interface, while metastableβ′(Al3Mg2) phase generated at the interface and in the grains. Transformation of metastableβ′(Al3Mg2) phase to stableβ(Al3Mg2) phase is difficult due to the introduction of a large number of interfaces and variation of precipitation condition. Mechanical properties of composites were greatly improved with the increase of Mg in matrix alloy. When Mg content was added from 0 to 8.5 wt.% in composite, the bending strength can be increased sharply from 425 MPa to 1350 MPa. However, when Mg content was added from 8.5 to 17 wt.% in composite, the bending strength can only be increased slightly from 1350 MPa to 1500MPa. Variation of fracture from flat fractography to a large number of fibers pulled out indicated that moderate sticky point of composite interface can effectively improve work of fracture. In the Cf/Al-Mg composites, the increase of Mg in matrix alloy can greatly reduce the corrosion property of composites.
     Nd was easier to segregate partially than Mg at the interface of Cf/Al-17Mg-Nd composites. A lot of nano-scaled Al11Nd3 phase precipitated at the interface of the composites. Because of the non-uniform distribution of Nd, there existed no Nd in some areas, which resulted in the direct contact of Al and carbon fiber and the generation of a certain amount of brittle phase Al4C3 at the interface. With the increase of Nd element, UTS of composites significantly declined from 1500MPa to 800MPa. But it had little influence on the elastic modulus of composites.
引文
1吴人洁.金属基复合材料的发展现状和应用前景.航空制造技术. 2001, (3): 19-21
    2李建辉,李春峰,雷廷权.金属基复合材料成形加工研究进展.材料科学与工艺. 2002, 10(2):207-212
    3 W. L. E. Wong, M. Gupta. Using Hybrid Reinforcement Methodology to Enhance Overall Mechanical Performance of Pure Magnesium. Journal of Materials Science. 2005, 40(11): 2875-2882
    4郝元恺.金属基复合材料工艺.航天制造技术. 1992, (3): 32-36
    5 C. J. Ma, M. P. Liu, G. H. Wu, W. J. Ding, Y. P. Zhu. Tensile Properties of Extruded ZK60-RE Alloys. Materials Science and Engineering A. 2003, 349(1-2): 207-212
    6李荣华,黄继华,殷声.镁基复合材料研究现状与展望.材料导报. 2002, 16(8): 17-19
    7 X. Q. Zhang, L. H. Liao, N. H. Ma, H. W. Wang. Mechanical Properties and Damping Capacity of Magnesium Matrix Composites. Composites: Part A. 2006, 37(11): 2011-2016
    8张涛,王小微,吴运学,艾玉春.金属基复合材料热膨胀特性研究.宇航材料工艺. 1994, (4): 37-41
    9钟厉,韩西,周上祺.纤维增强铝基复合材料研究进展.机械工程材料. 2002, 26(12): 12-14
    10赵浩峰,刘红梅,钱继锋,苏俊义.浸渗铸造纤维增强金属基复合材料及界面反应.材料导报. 2002, 16(10): 35-38
    11谭娟,马南钢.镁基复合材料的制备方法研究.材料导报. 2006, 20(5): 261-264
    12林德春,潘鼎,高健,陈尚开.碳纤维复合材料在航空航天领域的应用.玻璃钢. 2007, (1): 18-28
    13孙德伟,张广玉,张其馨,武高辉.石墨纤维增强铝基复合材料在空间遥感器镜筒结构中的应用.光学精密工程. 2009, 17(2): 368-374
    14朱逸生.纤维材料在航空领域的应用.合成纤维. 2009, (4): 1-4
    15 A. Mortensen, V. J. Michaud, M. C. Flemings. Pressure-Infiltration Processing of Reinforced Aluminum Matrix Composite. Jom-Journal of the Minerals Metals & Materials Society. 1993, 45(1): 36-43
    16周国华,曾效舒,袁秋红,戚道华.消失模铸造法制备CNTs/ZM5镁合金复合材料的研究.热加工工艺. 2008, 37(9): 11-15
    17 M. Mizumoto, Y. Kaneko, A. Kagawa. Microstructure Control of Fiber Reinforced Metal Matrix Composites Fabricated by Low Pressure Infiltration Process. Journal of the Japan Institute of Metals. 2004, 68(12): 1047-1052
    18艾涛,王汝敏.低成本、高性能复合材料的成型技术.纤维复合材料. 2004, 42(2): 42-44
    19张国定.碳(石墨)纤维增强金属复合材料.机械工程材料. 1983, (1): 53-57
    20汤彬,李培杰,曾大本,刘树勋,刘明星.镁基复合材料研究的现状和展望.特种铸造及有色合金. 2002, (3): 34-37
    21 Q. Zhang, G. Wu, G. Chen, L. Jiang, B. Luan. The Thermal Expansion and Mechanical Properties of High Reinforcement Content SiCp/Al Composites Fabricated by Squeeze Casting Technology. Composite Part: A. 2003, 34: 1023-1027
    22 M. F. Amateau. Progress in the Development of Graphite Aluminum Composites Using Liquid Infiltration Technology. Journal of Composite Materials. 1976, 10(4): 279-296
    23 C. Hemambar, B. S. Rao, V. Jayaram. Al-SiC Electronic Packages with Controlled Thermal Expansion Coefficient by a New Method of Pressureless Infiltration. Materials and Manufacturing Process. 2001, 16(6): 779-788
    24 M. R. Ghomashchi. Fabrication of Near Net Shaped Al Based Intermetallics Matrix Composites. Journal of Materials Processing Technology. 2001, 112(2~3): 227-235
    25 J. M. Torralba, C. E. D. Costa, F. Velasco. P/M Aluminum Matrix Composites: an Overview. Journal of Materials Processing Technology. 2003, 133(1-2): 203-206
    26余永宁,房志刚.金属基复合材料导论.冶金工业出版社, 1996: 113-117
    27邹祖讳.复合材料的结构与性能.科学出版社, 1999: 151-185
    28郭红光.光电器件用金属基复合材料研究进展.兵器材料科学与工程. 1996, 19(4): 67-72
    29 D. A. Koss, R. R. Petrich, M. N. Kallas, J. R. Hellmann. Interfacial Shear and Matrix Plasticity during Fiber Push out in a Metal Matrix Composite. Composites Science and Technology. 1994, 51(1): 27-33
    30李冰,王旭,蒋大鸣. Cf/Al复合材料界面结构及性能的影响因素.轻合金加工技术. 2010, 38 (3): 13-17
    31 J. J. Lewandowski, C. Liu, W. H. Hunt. Effects of Matrix Microstructure and Particle Distribution on Fracture of an Aluminum Metal Matrix Composite. Materials Science and Engineering A. 1989, 107: 241-247
    32 V. V. Bhanuprasad, R. Mitra, K. K. Ray. Effect of Thermal Cycling On Creep Behavior of Powder-Metallurgy-Processed and Hot-Rolled Al and Al SiC Particulate Composites. Metallurgical And Materials Transactions A. 2009, 40(13): 3171-3185
    33 N. Nagendra, V. Jayaram. Influence of Matrix Characteristics on Fracture Toughness of High Volume Fraction Al2O3/Al Composites. Journal of Materials Research. 2000, 15(5): 1145-1153
    34 S. G. Song, R. U. Vaidya, A. K. Zurek, G. T. Gray. Stacking Faults In SiC Particles and Their Effect on the Fracture Behavior of 15 Vol Pct SiC 6061 Al Matrix Composite. Metallurgical And Materials Transactions A. 1996, 27: 459-565
    35王玉庆,郑久红,唐风军,周本濂.挤压铸造铝基复合材料.稀有金属材料与工程. 1994, (2): 56-62
    36 J. W. Kaczmar, K. Pietrzak, W. Wlosinski. The Production and Application of Metal Matrix Composite Materials. Journal of Materials Processing Technology. 2000, 106(1-3): 58-67
    37 H. P. Degischer. Innovative Light Metals: Metal Matrix Composites and Foamed Aluminium. Materials and Design. 1997, 18(4): 221-226
    38 R. Asthana. Processing Effects on the Engineering Properties of Cast Metal-Matrix Composites. Advanced Performance Materials. 1998, 5: 213-255
    39 Alcoa. Aluminum Matrix Composites Supplied for Semiconductors. Advanced Materials & Processes. 1995, 148(4): 8-12
    40 A. Vassel. Continuous Fibre Reinforced Titanium and Aluminium Composites: a Comparison. Materials Science and Engineering A. 1999, 263: 305-313
    41 S. P. Rawal. Interface Structure in Graphite Fiber Reinforced Metal MatrixComposites. Surace and Interface Analysis. 2001, 31: 692-700
    42 L. Johnson, J. German, M. Randall. Role of Solid-state Skeletal Sintering During Processing of Mo-Cu Composites. Metallurgical and Materials Transactions A. 2001, 32(3): 605-613
    43 C. M. I. Pech, M. M. Makhlouf. Processing of Al-SiCp Metal Matrix Composites by Pressureless Infiltration of SiCp performs. Journal of Materials Synthesis and Processing. 2000, 8(1): 35-53
    44 P. Kalakkath, S. Seshan. Microstructure and Properties of Squeeze Cast Cu Carbon Firber Metal Matrix Composites. Journal of Material. Science. 1999, 34: 5045-5048
    45 C. Mayencourt, R. Schaller. Mechanical Stress Relaxation in Magnesium Based Composites. Materials Science and Engineering A. 2002, 325(1-2): 286-291
    46张国定,邹龙飞.单向纤维增强铝复合材料的基体合金化.中国有色金属学报. 1994, (3): 55-59
    47李华伦,毛志英,商宝禄.碳纤维涂层技术进展.复合材料学报. 1990, 7(2): 39-44
    48张国定,冯绍仁, J. A. Cornie.压力浸渍过程中P-55纤维和铝合金界面反应的控制.航空学报. 1991, 12(12): 570-575
    49肖长发.纤维复合材料.中国石化出版社. 1995: 4-6
    50张鹏.碳纤维的应用及市场.新材料产业. 2001, (7): 27-29
    51 T. Hiramatsu. Recent Technological Progress of PAN-Based Carbon Fiber. Materias & Desicn. 1989, 10(2): 93-100
    52 S. V. Prasad, R. Asthana. Aluminum Metal-Matrix Composites for Automotive Applications Tribological Considerations. Tribology Letters. 2004, 17(3): 445-453
    53赵稼祥.复合材料在风力发电上的应用.高科技纤维与应用. 2003, 28(4): 1-4
    54赵稼祥.日本东丽公司及其碳纤维事业.高科技纤维与应用. 1998, 23(2): 16-23
    55沈曾民.新型碳材料.化学工业出版社. 2003: 35-36.
    56吴人洁.复合材料.天津大学出版社. 2000: 86-102
    57周国华,曾效舒,袁秋红,徐强. Al含量对CNTs/镁基复合材料显微组织和力学性能的影响.铸造技术. 2009, 30(2): 100-102
    58 X. Wang, D. Jiang, B. Li, P. Li, G. Wu. Effect of Mg Content on the Mechanical Properties and Microstructure of Grf/Al Composite. Materials Science and Engineering A. 2008, 497 (1-2): 31-36
    59 W. H. Hunt, D. B. Miracle. Automotive Applications of Metal-Matrix Composites. Materials Park, OH: ASM International. 2001: 1029-1032
    60 I. A. Ibrahim, F. A. Mohamed, E. J. Lavernia. Particulate reinforced metal matrix composites - a review. Journal of Materials Science. 1991, 26(5): 1137-1156
    61 D. B. Miracle. Metal Matrix Composites From Science to Technological Significance. Composites Science and Technology. 2005, 65: 2526-2540
    62 Y Xia, Y Wang, Y Zhou, S Jeelani. Effect of Strain Rate on Tensile Behavior of Carbon Fiber Reinforced Aluminum Laminates. Materials Letters. 2007, 61: 213-215
    63 Z Shi, X Wang, Z Ding. The Study of Electroless Deposition of Nickel on Graphite Fibers. Applied Surface Science. 1999, 140: 106-110
    64 I. Dutta. Role of Interfacial and Matrix Creep During Thermal Cycling of Continuous Fiber Reinforced Metal Matrix Composites. Acta Materialia. 2000, 48(5): 1055-1074
    65 R. Nagarajan, I. Dutta, J. V. Funn, M. Esmele. Role of Interfacial Sliding on the Longitudinal Creep Response of Continuous Fiber Reinforced Metal Matrix Composites. Materials Science and Engineering A. 1999, 259(1-2): 237-252
    66 A. Ure?a, J. Rams, M. D. Escalera, M. Sánchez. Effect of Copper Electroless Coatings on the Interaction between a Molten Al-Si-Mg Alloy and Coated Short Carbon Fibres. Composites: Part A. 2007, 38(8): 1947-1956
    67 R. E. Taylor. Thermal Expansion of Graphite Fiber-Reinforced Metals. International Journal of Thermophysics. 1991, 12(4): 723-729
    68胡连喜,丛飞,李念奎,聂波.加压浸渗工艺制备CF/Al复合材料的研究.轻金属. 1998, (10): 53-56
    69 M. Rabinovitch, M. H. Vidalsetif, J. C. Daux. An Approach to Optimize Interfaces in Carbon/Aluminium and Carbon/Magnesium Melt Matrix Composites Eleborated by Hot Pressing. Madrid: ICCM9, 1993: 683-690
    70郑立德,张国定,王文龙,施培元.碳—铝复合材料显微组织研究.航空学报. 1982, (1): 92-96
    71 A. Daoud. Wear Performance of 2014 Al Alloy Reinforced with Continuous Carbon Fibers Manufactured by Gas Pressure Infiltration. Materials Letters. 2004, 58(25): 3206-3213
    72 T. Shalu, E. Abhilash, M. A. Joseph. Development and Characterization of Liquid Carbon Fibre Reinforced Aluminum Matrix Composite. Journal of Materials Processing Technology. 2009, 209(10): 4809-4813
    73 H. Z. Ye, X. Y. Liu. Review of Recent Studies in Magnesium Matrix Composites. Journal of Materials Science. 2004, 39(20): 6153-6171
    74王德庆,石子源,高宏.碳纤维增强铝基复合材料的制备及其拉伸性能.大连铁道学院学报. 2000, 21(4): 47-49
    75 T. P. D. Rajan, R. M. Pillai, B. C. Pai. Review Reinforcement Coatings and Interfaces in Aluminium Metal Matrix Composites. Journal of Materials Science. 1998, 33: 3491-3503
    76 R. Wendt, M. Misra. Fabrication of Near-Net Shape Graphite/Magnesium Composites for Large Mirrors. A. John. Advances in Optical Structure Systems. Orlando, USA. 1990: 554-564.
    77 H. M. Cheng, A. Kitahara, S. Akiyama, K. Kobayashi, Y. Uchiyama, B. L. Zhou. Characteristics of Several Carbon Fibre Reinforced Aluminium Composites Prepared by a Hybridization Method. Journal of Materials Science. 1994, 29(16): 4342-4350
    78 H. G. Seong, H. F. Lopez, D. P. Robertson, P. K. Rohatgi. Interface Structure in Carbon and Graphite Fiber Reinforced 2014 Aluminum Alloy Processed with Active Fiber Cooling. Materials Science and Engineering A. 2008, 487(1-2): 201-209
    79张帆,李小璀,王松.碳(石墨)/铝复合材料制备工艺及力学性能的研究.热加工工艺. 1999, (2):5-7
    80杨盛良,卓钺,尹新方,杨德明.碳纤维增强铝复合材料的界面微观结构.材料工程. 2001, (7): 19-21
    81 B. B. Singh, M. Balasubramanian. Processing and Properties of Copper Coated Carbon Fibre Reinforced Aluminium Alloy Composites. Journal of Materials Processing Technology. 2009, 209(4): 2104-2110
    82杨海宁,顾明元,蒋为吉,张国定.石墨碳纤维增强Al基复合材料界面反应机制研究.金属学报. 1994, 30(8): 379-383
    83 S. Abraham, B. C. Pal, K. G. Satyanarayana, V. K. Vaidyan. Studies on Nickel Coated Carbon Fibres and Their Composites. Journal of Materials Science. 1990, 25(6): 2839-2845
    84 J. Rams, A. Urn?a, M. D. Escalera, M. Sa?nchez. Electroless Nickel Coated Short Carbon Fibres in Aluminium Matrix Composites. Composites Part:A. 2007, 38(2): 566-575
    85 A. Daoud. Microstructure and Tensile Properties of 2014 Al Alloy Reinforced with Continuous Carbon Fibers Manufactured by Gas Pressure Infiltration. Materials Science and Engineering A. 2005, 391(1-2): 114-120
    86 A. Urn?a, J. Rams, M. D. Escalera, M. Sa?nchez. Characterization of Interfacial Mechanical Properties in Carbon Fiber Aluminium Matrix Composites by the Nanoindentation Technique. Composites Science and Technology. 2005, 65(13): 2025-2038
    87 J. F. Silvain, A. Proult, M. Lahaye, J. Douin. Microstructure and Chemical Analysis of C/Cu/Al Interfacial Zones. Composites Part: A. 2003, 34(12): 1143-1149
    88 Y. Tang, L. Liu, W. Li, B. Shen, W. Hu. Interface Characteristics and Mechanical Properties of Short Carbon Fibers Al Composites with Different Coatings. Applied Surface Science. 2009, 255(8): 4393-4400
    89 S. G. Warrier, C. A. Blue, R. Y. Lin. Control of Interfaces in Al-C Fibre Composites. Journal of Materials Science. 1993, 28(3): 760-168
    90 M. Lancin, C. Marhic. TEM Study of Carbon Fibre Reinforced Aluminium Matrix Composites: Influence of Brittle Phases and Interface on Mechanical Properties. Journal of the European Ceramic Society. 2000, 20(10): 1493-1503
    91 T. Etter, P. Schulz, M. Weber, J. Metz, M. Wimmler, J. F. L?ffler, P. J. Uggowitzer. Aluminium Carbide Formation in Interpenetrating Graphite Aluminium Composites. Materials Science and Engineering A. 2007, 448(1-2): 1-6
    92陈荣,张国定,吴人洁.合金元素对碳/铝复合材料强韧性的影响.材料工程. 1989, (6): 28-31
    93郑国斌,陈新国,沈祖洪,杜海峰.用K2ZrF6溶液处理碳化硅涂层碳纤维制造碳/铝复合丝.复合材料学报. 1993, 10(1): 57-61
    94 Y. Wang, B. Zhou. Effect of a Fiber Coating on the Fabrication of FiberReinforced Metal Matrix Composites. Journal of Materials Processing Technology. 1998, 73(1-3): 78-81
    95 K. G. Kreider主编,温仲元等译.金属基复合材料.北京:国防工业出版社, 1982. 340-360
    96李明,顾明元,张国定.基体合金化元素Cu对C/A1复合材料界面微结构的影响.材料工程. 1994, (1): 1-3
    97 H. Cheng, B. Zhou, A. Kitahara, S. Akiyama, K. Kobayashi. Effect of Silicon Additions on Characteristics of Carbon Fiber Reinforced Aluminum Composite During Thermal Exposure. Journal of Materials Research. 1996, 11(5): 1284-1389
    98 Y. M. Ryu, E. P. Yoon, M. H. Rhee. The Behavior of The Nickel Layer in an Aluminum Matrix Composite Reinforced with Nickel Coated Carbon Fiber. Journal of Materials Science Letters. 2000, 19(12): 1103-1108
    99 J. T. Blucher, U. Narusawa, M. Katsumata, A. Nemeth. Continuous Manufacturing of Fiber Reinforced Metal Matrix Composite Wire Technology and Product Characteristics. Composites Part: A. 2001, 32(12): 1759-1766
    100 E. Pippel, J. WolterSdorf, M. Doktor, J. Blucher, H. P. Degischer. Interlayer Structure of Carbon Fibre Reinforced Aluminum Wires. Journal of Materials Science. 2000, 35(9): 2279-2289
    101 K. Pradeep, V. Tiwari, N. Gupta. Squeeze Infiltration Processing of Nickel Coated Carbon Fiber Reinforced Al 2014 Composite. Journal of Materials Science. 2006, 41(21): 7232-1239
    102 S. Li, C. Chao. Effects of Carbon Fiber Al Interface on Mechanical Properties of Carbon Fiber Reinforced Aluminum Matrix Composites. Metallurgical and Materials Transactions A. 2004, 35(7): 2153-2160
    103 B. Revzin, D. Fuks, J. Pelleg. Influence of Alloying on the Solubility of Carbon Fibers in Aluminium Based Composites: Non-Empirical Approach. Composite Science and Technology. 1996, 56(1): 3-10
    104 J. Pelleg, D. Ashkenazi, M. Ganor. The Influence of a Third Element on the Interface Reactions in Metal-Matrix Composites (MMC): Al-Graphite System. Materials Science and Engineering A. 2000, 281(1-2): 239-247
    105 T. Matsunaga, K. Matsuda, T. Hatayama, K. Shinozaki, M. Yoshida. Fabrication of Continuous Carbon Fiber Reinforced Aluminum Magnesium AlloyComposite Wires Using Ultrasonic Infiltration Method. Composites: Part A. 2007, 38(8): 1902-1911
    106 N. Sobczak, J. Sobczak, S. Seal, J. Morgiel. TEM Examination of the Effect of Titanium on the Al/C Interface Structure. Materials Chemistry and Physics. 2003, 81(2-3): 319-322
    107 A. P. Diwanji, I. W. Hall. Fibre and Fibre Surface Treatment Effects in Carbon/Aluminium Metal Matrix Composite. Journal of Materials Science. 27: 2093-2100
    108 I. H. Khan. The Effect of Thermal Exposure on the Mechanical Properties of Aluminum Graphite Composites. Metallurgical and Materials Transactions A. 1976:1281-1289
    109 A. A. Zabolotsky. Structure and Properties Formation of Metal Matrix Composites. Composites Science and Technology. 1992, 45:233-240
    110 M. Jacquesson, A. Girard, M. H. VidalSe′tif, R. Valle. Tensile and Fatigue Behavior of Al-Based Metal Matrix Composites Reinforced with Continuous Carbon or Alumina Fibers: Part I. Quasi-Unidirectional Composites. Metallurgical and Materials Transactions A. 2004, 35: 3289-3305
    111 R. S. Bushby, V. D. Scott. Evaluation of Aluminum Copper Alloy Reinforced With Pitch Based Carbon Fibres. Composires Science and Technology. 1997, 57: 119-128
    112 C. C. Poteet, I. W. Hall. High Strain Rate Properties of a Unidirectionally Reinforced C/Al Metal Matrix Composite. Materials Science and Engineering A. 1997, 222: 35-44
    113 R. Pepper, R. C. Rossi, E. Georgekedall. The Tensile Properties of a Graphite Fiber Reinforced Al-Si Alloy. Metallurgical and Materials Transactions B. 1971, 117-120
    114 D. Aidun, P. Martin, I. Sun. Fracture and Mechanical Properties of P100 Gr/6061Al Composite. Journal of Materials Engineering and Performance. 1992, 1: 463-468
    115 M. H. VidalSe′tif, M. Lancin, C. Marhic, R. Valle, J. L. Raviart, J. C. Daux. On the Role of Brittle Interfacial Phases on the Mechanical Properties of Carbon Fibre Reinforced Al-Based Matrix Composites. Materials Science and Engineering A. 1999, 272: 321-333
    116 J. Wang, T. Hong, G. Li, P. Li. A Combined Process of Coating and Hybridizing for the Fabrication of Carbon Fiber Reinforced Aluminum Matrix Composites. Composites Part: A. 1997, 28: 943-948
    117 I. W. Hall, F. Manrique. Surface Treatment of Carbon Fibers for Aluminum Alloy Matrix Composites. Scripta Metallurgica et Materialia. 1995, 33(12): 2037-2043
    118 T. Suzuki. The Compatibility of Pitch-Based Carbon Fibers with Aluminum for the Improvement of Aluminum Matrix Composites. Composites Science and Technology. 1996, 56: 147-153
    119 S. Rawal. Metal-Matrix Composites for Space Applications. Journal of the Minerals Metals and Materials Society. 2001, 53(4): 14-17
    120 S. Y. Oh, J. A. Corine, K. C. Russell. Wetting of Ceramic Particulates with Liquid Aluminum Alloys: Part I. Experimental Techniques. Metallurgical and Materials Transactions A. 1989, 20(5): 527-532
    121 S. Y. Oh, J. A. Corine, K. C. Russell. Wetting of Ceramic Particulates with Liquid Aluminum Alloys: Part II. Study of Wettability. Metallurgical and Materials Transactions A. 1989, 20(5): 533-541
    122陈康华,包崇玺,刘红卫.金属/陶瓷的润湿性(上).材料科学与工程. 1997, 3(15): 1-6
    123黄祖洽,丁鄂江.表面浸润和浸润相变.上海科学技术出版社. 1994: 65-86
    124 F. Delannay, L. Froyen, A. Deruyttere. The Wetting of Solid by Molten Metals and its Relation to Preparation of Metal Matrix Composites. Journal of Materials Science. 1987, 22: 1-16
    125 X. B. Zhou, J. TM. De. Hosson. Reactive Wetting of Liquid Metals on Ceramic Substrates. Acta Materialia. 1996, 44: 421-426
    126 D. H. Kim, S. H. Huang, S. S. Chun. Wetting Behavior of Aluminum and Aluminum Alloy on Al2O3 and CaO. Journal of Materials Science. 1991, 26: 3233-3234
    127 S. W. Ip, R. Sridhar, J. M. Toguri, T. F. Stephenson, A. E. M. Warner. Wettability of Nickel Coated Graphite by Aluminum. Materials Science and Engineering A, 1998, 244: 31-38
    128 C. A. Leon, V. H. Lopez, E. Bedolla, R. A. L. Drew. Wettability of TiC by Commercial Aluminum Alloys. Journal of Materials Science, 2002, 37:3509-3514
    129 N Eustathopoulos. Dynamics ofWetting inReactive Metal/Ceramic Systems. Acta Materialia. 1998, 46: 2319-2327
    130 T. P. Swiler, R. E. Loehman. Molecular Dynamics Simulations of Reactive Wetting in Metal-Ceramic Systems. Acta materialia. 2000, 48: 4419-4424
    131 C. G. Cordovilla, E. Louis, A. Pamies. The Surface Tension of Liquid Pure Aluminium and Aluminium-Magnesium Alloy. Journal of Materials Science. 1986, 21: 2787-2792
    132 S. Wang, H. Geng, J. Zhang, Y. Wang. Interpenetrating Microstructure and Properties of Si3N4/Al–Mg Composites Fabricated by Pressureless Infiltration. Applied Composite Materials. 2006, 13: 115-126
    133张雄飞,王达健,陈书荣,谢刚.液态铝与陶瓷的润湿性改变机理.粉末冶金技术. 2003, 21(1): 42-45
    134 H. Kaufmann, A. Mortensen. Wetting of SAFFIL Alumina Fiber Preforms by Aluminum at 973 K. Metallurgical and Materials Transactions A. 1992, 23: 2071-2073
    135 A. R. Guerrero, S. A. Sanchez, J. Narciso, E. Louis, F. R. Reinoso. Pressure Infiltration of Al–12 wt. % Si–X (X = Cu, Ti, Mg) Alloys into Graphite Particle Performs. Acta Materialia. 2006, 54:1821-1831
    136 S. Ali, M. Halali. An Investigation on The Wetting of Polycrystalline Alumina by Aluminium. Journal of Materials Processing Technology. 2008, 97: 56-60
    137 V. Laurent, C. Rado, N. Eustathopoulos. Wetting Kinetics and Bonding of A1 and A1 Alloys on u-SiC. Materials Science and Engineering A. 1996, 205: 1-8
    138 P. Shen, H. Fujii, K. Nogi. Effect of temperature and surface roughness on the wettability of boron nitride by molten Al. Journal of Materials Science. 2007, 42:3564–3568
    139李戈扬,中江秀雄,羽根哲哉,戴嘉维.铝液在Al2O3上润湿性的改善.材料工程. 2000, 4: 11-13
    140 J. A. Champion, B. J. Keene, J. M. Sillwood.Wetting of Aluminium Oxide by Molten Aluminium and Other Metals. Journal of Materials Science. 1969, 4: 39-49
    141 T. R. Jonas, J. A. Cornie, K. C. Russell. Infiltration and Wetting of Alumina Particulate Preforms by Aluminum and Aluminum-Magnesium Alloys.Metallurgical and Materials Transactions A. 1995, 26: 1491-1497
    142 D. A. Weirauch, W. J. Krafack. The Effect of Carbon on Wetting of Aluminum Oxide by Aluminum. Metallurgical and Materials Transactions A. 1990, 21: 1745-1751
    143 A. Mortensen, J. A. Cornie. On the Infiltration of Metal Matrix Composites. Metallurgical and Materials Transactions A. 1987, 18: 1160-1163
    144汪海云,寇勤.单向纤维增强金属基复合材料金属液相浸渗方向对浸渗压力的影响.机械工程师. 1998, (S1): 11-12
    145张坤. Cf/Mg复合材料纤维涂层及液相浸渗研究.西北工业大学博士学位论文. 1995: 27-49
    146 S. Long, Z. Zhan, H. M. Flower. Hydrodynamic Analysis of Liquid Infiltration of Unidirectional Fiber Arrays By Squeeze Casting. Acta Metallurgica et Materialia. 1994, 42(4): 1389-1397
    147王浩伟,吴人洁,张国定.液相浸渗中纤维非润湿性的处理.上海交通大学学报. 1994, 28(4): 90-93
    148 R. G. Wendt, W. C. Moshier, B. Shaw, P. Miller, D. L. Olson. Corrosion Resistant Aluminum Matrix for Graphite-Aluminum composites. Corrrosion. 1994, 50: 819-826
    149 I. Gurrappa, P. V. V. Bhanu. Corrosion characteristics of aluminum based metal matrix composites. Materials Science and Technology, 2006, 22(1): 115-122
    150郭树启,隋全武,唐风军,刘钢.影响碳-铝复合材料耐蚀性的因素.复合材料学报. 1991, 3(8): 9-15
    151 Z. Ahmad, B. J. A. Aleem. Effect of Velocity and Elevated Temperature on Pitting of 6013-20SiCp Composite in 3.5wt.% NaCl. British Corrosion Journal. 1998, 33: 230-236
    152 L. Libo, M. Z. An, G. H. Wu. A new electroless nickel deposition technique to metallice SiCp/Al composites. Surface and Coatings Technology. 2006, 200(16-17): 5102-5112
    153于兴文,严川伟,张鉴清,曹楚南.稀土盐封孔Al 6061/SiCp复合材料阳极氧化膜性能研究.中国表面工程. 2000, 4: 29-32
    154 D. M. Aylor, P. Moran. Pitting Corrosion Behavior of 6061 Aluminum Alloy Foils in Sea Water. Journal of the Electrochemical Society. 1986, 3: 949-951
    155 A. Albiter, A. Contreras, M. Salazar, J. G. G. Rodriguez, Corrosion Behaviour ofAluminium Metal Matrix Composites Reinforced with TiC Processed by Pressureless Melt Infiltration. Journal of Applied Electrochemistry. 2006, 36: 303-308
    156 S. Yoshiaki, N. Toshiyasu, M. Iwao. Corrsion Resistance of Al-Based Metal Matrix Composites. Materials Science and Engineering A. 1995, 198: 113-118
    157 L. C. Dash. The Mechanism of Corrosion and Corrosion Control of Aluminum/Graphite Metal Matrix Composites. P. H. D. diss, Ohio State University, 1988
    158贺春林.碳化硅颗粒增强铝基复合材料的微结构和力学与腐蚀行为研究.东北大学博士学位论文. 2002: 15-30
    159 S. L. Winkler, M. P. Ryan, H. M. Flower, Pitting Corrosion in Cast 7xxx Aluminum Alloys and Fibre Reinforced MMCs. Corrosion Science. 2004, 46: 893-902
    160 S. L. Winkler, H. M. Flower, Stress Corrosion Rrecking of Cast 7xxx Aluminum Fibre Reinforced Composite. Corrosion Science. 2004, 46: 902-915
    161 S. L. Pohlman. Corrosion and Electrochemical Behavior of Boron/aluminum composites. Corrosion. 1978, 34(5): 156-159
    162 A. Dorner, B. Wielage, C. Schuèrer, Improvement of theCorrosion Resistance of C/Al-composites by Diamond-like Carbon Coatings. Thin Solid Films. 1999, 355-356: 214-218
    163 B. Wielage, A. Dorner, Corrosion Studies on Aluminium Reinforced with Uncoated and Coated Carbon Fibres. Materials Science and Technology, 1999, 59: 1239-1245
    164 S. L. Coleman, V. D. Scott, B. Mcenaney. Corrosion Behaviour of Aluminium-Based Metal Matrix Composites. Journal of Materials Science. 1994, 29: 2826-2834
    165 I. Dutta, L. R. Elkin, J. D. King. Corrosion Behavior of a P130x Graphite Fiber Reinforced 6063 Aluminum Composite Laminate in Aqueous Environments. Journal of the Electrochemical Society. 1991, 138: 3199-3209
    166 A. Pardo, M. C. Merino, R. Arrabal. Improvement of Corrosion Behavior of A3xx.x/SiCp Composites in 3.5wt.% NaCl Solution by Ce Surface Coatings. Journal of the Electrochemical Society. 2006, 153(2): 52-60.
    167 R. C. Paciej, V. S. Agawala. Influence of Processing Variables on the CorrosionSuscentibilitv of Metal-Matrix Composites. Corrosion. 1998, 44: 680-684
    168 S. Payan, Y. Le. Petitcorps, J. M. Olive, H. Saadaoui. Experimental Procedure to Analyse the Corrosion Mechanisms at the Carbon/Aluminium in Composite Mateals. Composites Part: A. 2001, 32: 585-589
    169 L. H. Hihara, R, M, Latansion. Localized Corrosion Induced in Graphite Aluminum Metal-Matrix Composites by Residual Microstructural Choride. Corrosion. 1991, 47: 335-346
    170 M. Saxena, O. P. Modi, A. H. Yegneswaran, P. K. Rohatgi. Corrosion Characteristics of Cast Aluminum Alloy-3wt.% Graphite Particulate Composites in Different Environments. Corrosion Science. 1987(27): 249-256
    171 D. M. Alyor. R. M. Kain. Assessing the Corrosion Resistance of Metal Matrix Composite Materials in Marine Environments in: Recent Advances in Composites in the United States and Japan. ASTM, American society for testing and materials, Philadelphia. 1985: 632-647
    172 B. J. A. Aleem. Effect of Temper on Seawater Corrosion of an Aluminum-Silicon Carbide Composite Alloy. Corrosion. 1996(52): 857-964
    173 I. Gurrappa, V. Prasad, V. Bhanu. Corrosion Characteristics of Aluminum Based Metal Matrix Composites. Materials Science and Technology. 2006, 22(1): 115-122.
    174 R. L. Deuis, L.Green, C. Subramanian, J. M. Yellup. Influence of Reinforcement Phase on the Corrosion of Aluminum Composite Coatings. Journal of Materials Science Letter. 1997(16): 440-444
    175 L. H. Hihara, R. M. Latanision. Galvanic Corrosion of Aluminum Matrix Composites. Corrosion. 1992: 546-552
    176 D. M. Aylor, P. J. Maran. Effect of Reinforcement on the Pitting Behavior of Aluminum-Base Metal Matrix Composites. Journal of the Electrochemical Society. 1985, 132: 1277-1281
    177 D. M. Aylor, R. J. Ferrara, R. M. Kain. Marine cCorrosion and Protection for Graphite/Aluminum Metal Matrix Composites. Materials Performance. 1984, (7): 32-38
    178 C. Y. Wang, Q. Zhang, J. Zhou, G. H. Wu. Study on Anticorrosive Ce Conversion Coating of Cf/6061Al Composite Surface. Rare Earths. 2006, 24: 64-67.
    179 F. Mansfeld, S. Lin, S. Kim Corrosion protection of Al alloys and Al based metal matrix composites by chemical passivation. Corrosion, 1989, 45(8): 615-629
    180 F. Mansfeld. Surface Modifications of Al/15%SiC Metal Matrix Composites in Molten Salts Containing CeCl3. Surface Coating Technology, 1996, 86-87: 449-453.
    181宋美惠. Cf/Mg复合材料界面及热膨胀各向同性设计.哈尔滨工业大学博士学位论文. 2009: 21-50
    182冼爱平,王连文.液态金属的物理性能.科学出版社. 2006: 1-17
    183扬于兴. X射线衍射分析.上海交通大学出版社. 1989: 28-46
    184张云鹤. Cf/Al复合材料界面特性及层间金属针穿刺强化机理研究.哈尔滨工业大学博士学位论文. 2009: 68-101
    185 K. Landry, S. Kalogeropoulou, N. Eustathopoulos. Wettability of Carbon by Aluminum and Aluminum Alloys. Materials Science and Engineering A, 1998, 254(1-2): 99-11
    186于志强. Al2O3颗粒表面稀土改性及其对Al基复合材料组织性的影响.哈尔滨工业大学博士学位论文. 2003: 66-84
    187 H. N. Yang, M. Y. Gu, W. J. Jiang, G. D. Zhang. Interface Microstructure and Reaction in Gr/Al Metal Matrix Composites. Journal of Materials Science. 1996, 31: 1903-1907
    188 V. L. Solozhenko, O. O. Kurakevych. Equation of State of Aluminum Carbide Al4C3. Solid State Communications. 2005, 133: 385-388
    189 D. Hamana, L. Baziz, M. Bouchear. Kinetics and Mechanism of Formation and Transformation of MetastableβPhase in Al–Mg Alloys. Materials Chemistry and Physics. 2004, 84: 112-119
    190王振玲. Al-Mg合金高压凝固组织与相演变研究.哈尔滨工业大学博士学位论文. 2007: 49-80
    191 D. Hamana, A. Azizi. Low Temperature Post-Precipitation After Precipitation ofβ/andβPhases in Al-12 wt.% Mg Alloy. Materials Science and Engineering A. 2008, 476: 357-365
    192 J. L. Murray. Aluminium-Magnesium System. Bulletin of Alloy Phase Diagrams. 1982, 3(1): 60-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700