用户名: 密码: 验证码:
城市地下空间热能综合利用系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发利用地下空间是医治―城市综合症‖和解决城市人口、资源、环境三大难题的有效途径,同时也是践行科学发展观和建设两型社会的重要方面。通风空调系统作为营造保障地下空间人工环境、进而实现其可持续发展的一个主要手段,应在保证室内空气品质的前提下尽可能地实现节能环保。针对常规系统在资(能)源和环境两大方面存在的问题,本文遵循能和热的梯级合理利用原则,提出了统筹考虑多种用热、以热泵为主要设备的热能综合利用系统新理念。而且,还统筹考虑城市地下空间密集区域内的各类建筑,进一步得到了一种以水环路为主要特点的系统应用形式,实现了热能在空间上的转移和回用。此外,还提出了一种置于排风井内的水-空气-制冷剂三流体复合换热器,以之作为系统排热和补热设备。
     依此理念,对热能综合利用系统所涉及的通风空调系统、卫生热水系统、复合换热器及空气源热泵机组和系统整体进行了数学建模,以研究系统水环路及与之相连的主要设备的热力特性。其中,空调机组空气处理过程主要基于-NTU法;冷水机组制冷过程按照压缩机理论循环耗功计算和基于测试数据的热损失拟合两部分叠加考虑;卫生热水蓄热水箱基于考虑了热水分层效应的多节点模型;复合换热器中的空气直接冷却仍采用-NTU法,间接蒸发冷却则基于各传热阶段的热平衡;对于热能综合利用系统整体,对其立体环网的各个管段采用质点法,重点考虑其热量平衡和质量平衡。
     运用所得数学模型,将一个基于现实区域的系统应用案例分别置于哈尔滨、北京、西安、上海、重庆和广州的典型年气候条件下进行了基于逐时热平衡的准动态模拟。通过从终端效果、热能需求、热源消耗、水环路性能和主要设备运行等方面对模拟结果的不同季节典型日逐时值、各自然月度平均值和年度统计值进行考察,认为系统能够在不同地区不同气候条件下实现正常运转,但其电耗整体呈现出南方高于北方、夏季高于冬季的总趋势;同时,也发现复合换热器虽能完成排热任务,但其水侧进出口温差小,致使系统水环路水温震荡、水泵功耗过高,工作效能还有待改善。
     为评价前述案例模拟所得运行数据,建立了包括效能评价和节能评价两大方面的热能综合利用系统能量性能评价指标体系。在效能评价方面,从系统整体的能量总输出/输入比、室内余热的有效利用量与总发生量之比、有效回收热量与热回收设备电耗之比、水环路承载热量与水泵电耗之比等角度分别提出了综合能效比、热能综合利用率、热回收效能、水环路效能等指标,还结合了通风空调系统能效比、单位温差能耗、单位人均新风量能耗及卫生热水系统能效比等。在节能评价方面,则从热能综合利用系统能耗相对于常规系统能耗的当量热量、等效电量、等价发电煤耗等不同方面的节能率/量指标来进行评价。此外,还基于案例评价内容,分析了热能综合利用系统的地区适用性。
     最后,还提出了针对热能综合利用系统整体和通风空调系统自身的多类优化策略,并以前述案例印证了优化效果。本文也探讨了以能源管理模式对热能综合利用系统进行运作。
Underground space development is an effective approach to solve the City Syndrome and problems on population, resources and environment, and it’s also an important way to implement the concept of scientific development and to construct the society with resource conservation and environment friendness. As a major mean to create and maintain built environment and consequently to ensure sustainable development of underground space, HVAC system should be energy-saving and environmentally benign on the premise of indoor air quality. Aiming at resource and environment disadvantages of conventional system, and following the principle of step utilization on thermal energy, the thesis brought up a new concept of thermal comprehensive utilization system (TCUS), using kinds of heat pump as major equipments and considering multiple thermal usage. Furthermore, it gives out an application form of the TCUS using water loop as major characteristics, which takes different building types in concentrated area of underground space into consideration, and hence achieves thermal energy shift and utilization in spatial dimension. To remove heat surplus and fill heat gap of TCUS, it also brought up a water-to-air-to-refrigerant triple-fluid heat exchanger installed in exhaust air shaft.
     According to the concept of TCUS, mathematics models of involved HVAC system, sanitary hot-water (SHW) system, triple-fluid heat exchanger and air-source heat pump (ASHP), and the whole system were created, in order to study energy performance of water loop and major equipments in the system. The models include (a) air handling process in AHU using -NTU method; (b) refrigeration circulation in chiller, consisting of compressor energy consumption in refrigeration theory circulation and fitted heat loss based on test data; (c) thermal storage water tank based on multinode considering thermal stratification; (d) triple-fluid heat exchanger, both directly air cooling using -NTU method and indirectly evaporation cooling based on thermal balance; and (e) each pipe in TCUS’s ridimensional ring network using particle method, focusing on heat balance and mess balance.
     Using those models, quasi dynamic simulation based on hourly heat balance state for an application case in real area was accomplished, under the data of typical meteorological year of Harbin, Beijing, Xi’an, Shanghai, Chongqing and Guangzhou, respectively. By examining hourly parameter in typical day of each season, average value of each month and statistic data of the whole year of simulation results, from aspects of terminal performance, thermal quantity requirement, energy consumption, water loop performance and main equipment operation, respectively, it’s concluded that TCUS can be used in different cities and climate, and the general trend of electricity consumption is Southern higher than Northern and summer higher than winter. Although triple-fluid heat exchanger achieves to remove heat surplus, small temperature difference between inlet and outlet water results in strong temperature fluctuation in water loop and high energy consumption of water pump, and indicates requirement on efficiency improvement.
     For operation data simulated in case study, evaluation index system on energy performance of TCUS was established, including energy efficiency evaluation and energy saving evaluation. On energy efficiency evaluation, comprehensive EER, thermal comprehensive utilization rate, thermal recovery efficiency and water loop efficiency, was presented from angles of overall energy output/input ratio, usage/generation ratio of indoor remaining heat, the ratio of recovered heat to used energy of recovery equipments and the ratio of carried heat of water loop to consumed energy of its water pump, respectively, together with indices of EER, energy consumption per temperature difference and energy consumption per fresh air volume per person of HVAC system, and EER of SHW system. On energy saving evaluation, saving quantity and/or rate of TCUS compared to conventional system was assessed, in terms of equivalent heat, equivalent electricity and equivalent power coal consumption, respectively. In addition to evaluation on studied case, it’s followed by area applicability analysis of TCUS.
     At last, optimization strategies on the whole TCUS and HVAC system were given out, and their effect were corroborated by former studied case. Introduction of energy management mode into TCUS operation was also put forward.
引文
1 Y. Yuan, H. Ji, Y. Du, et al. Semi-Analytical Solution of Roof-on-Grade Attached Underground Engineering Envelope. Building and Environment. 2008, 43: 1138~1146
    2 Y. Yuan, H. Ji, Y. Du, et al. Semi-Analytical Solution for Steady-Periodic Heat Transfer of Attached Underground Engineering Envelope. Building and Environment. 2008, 43: 1147~1152
    3 Y. Yuan, B. Cheng, J. Mao, et al. Effect of the Thermal Conductivity of Building Materials on the Steady-State Thermal Behaviour of Underground Building Envelopes. Building and Environment. 2006, 41: 330~335
    4 S. Choi, M. Krarti. Thermally Optimal Insulation Distribution for Underground Structures. Energy and Buildings. 2000, 32: 251~265
    5 S. Choi. Heat Transfer for Commercial Underground Buildings. Ph.D thesis of University of Colorado at Boulder. 1996
    6刘军,姚杨,王清勤.地下建筑围护结构传热的模拟与分析.全国暖通空调制冷2004年学术年会文集.兰州, 2004.北京,中国建筑工业出版社
    7宋翀芳,赵敬源,赵秉文.地下建筑壁面动态传热的数值分析研究.西北建筑工程学院学报(自然科学版). 2001, 18(2): 32~35
    8彭梦珑,黄敬远,丁力行,等.深埋地下建筑岩壁耦合传热过程的动态计算.建筑科学. 2007, 23(6): 37~40
    9朱培根,周艳,罗青,等.地下建筑供暖空调负荷模拟软件的研究与开发.暖通空调. 2006, 36(12): 119~121
    10 H. Zhang, X. Fu. Simulation of Heat and Moisture Transfer for Lining Walls in Underground Workshops. Journal of Central South University of Technology. 2006, 13(Suppl.1): 55~59
    11张华玲.水电站地下厂房热湿环境研究.重庆大学博士学位论文. 2007
    12赵平歌.地下建筑的防潮除湿研究.地下空间与工程学报. 2007, 3(6): 987~989
    13耿世彬,郭海林.地下建筑湿负荷计算.暖通空调. 2002, 32(6): 70~71
    14王昭俊,赵加宁,刘京.室内空气品质.化学工业出版社, 2006
    15王丹宁,姚杨,姜东.地下商场空气品质调查分析.建筑热能通风空调. 2002, 21(3): 33~34
    16李晓冬,傅斌,王丽娜.地下商业街室内CO2浓度的控制研究.哈尔滨工业大学学报. 2005, 37(4): 544~548
    17 K.Y. Kim, Y.S. Kim, Y.M. Roh, et al. Spatial Distribution of Particulate Matter (PM10 and PM2.5) in Seoul Metropolitan Subway Stations. Journal of Hazardous Materials. 2008, 154: 440~443
    18 J.C. Raut, P. Chazette, A. Fortain. New Approach Using Lidar Measurements to Characterize Spatiotemporal Aerosol Mass Distribution in an Underground Railway Station in Paris. Atmospheric Environment. 2009, 43: 573~583
    19 E. Bogomolova, I. Kirtsideli. Airborne Fungi in Four Stations of the St. Petersburg Underground Railway System. International Biodeterioration & Biodegradation. 2009, 63: 156~160
    20谢小保,欧阳友生,曾海燕,等.广州地铁站空气微生物污染状况研究.中国卫生检验杂志. 2008, 18(9): 1883~1884
    21 J. Miles. Development of Maps of Radon-Prone Areas Using Radon Measurements in Houses. Journal of Hazardous Materials. 1998, 61: 53~58
    22 T. Anastasiou, H. Tsertos, S. Christofides, et al. Indoor Radon (222Rn) Concentration Measurements in Cyprus Using High-Sensitivity Portable Detectors. Journal of Environmental Radioactivity. 2003, 68: 159~169
    23尚爱国,于春文,秦晋,等.地下坑道空气中氡浓度变化的测量研究.辐射防护. 2008, 28(2): 118~124
    24刘培源,姚杨,王清勤,等.地下空间氡的产生机理及通风控制.建筑热能通风空调. 2006, 25(6): 64~68
    25 X. Li, B. Zheng, Y, Wang, et al. A Survey of Radon Level in Underground Buildings in China. Environment International. 2006, 32: 600~605
    26 K.N. Yu, E.C.M. Young, M.J. Stokes, et al. A Survey of Radon Properties in Underground Shopping Centers in Hong Kong. Applied Radiation and Isotopes. 1997, 48: 863~866
    27 W.K. Chow, L.T. Wong, W.Y. Fung. Field Study on the Indoor Thermal Environment and Carbon Monoxide Levels in a Large Underground Car Park. Tunnelling and Underground Space Technology. 1996, 11: 333~343
    28 J.C. Ho, H. Xue, K.L. Tay. A Field Study on Determination of Carbon Monoxide Level and Thermal Environment in an Underground Car Park. Building and Environment. 2004, 39: 67~75
    29 H. Xue, J.C. Ho. Modelling of Heat and Carbon Monoxide Emitted from Moving Cars in an Underground Car Park. Tunnelling and Underground Space Technology. 2000, 15: 101~115
    30 K. Papakonstantinou, A. Chaloulakou, A. Duci, et al. Air Quality in an UndergroundGarage Computational and Experimental Investigation of Ventilation Effectiveness. Energy and Buildings. 2003, 35: 933~940
    31王春,冯炼,刘应清.用相对热指标确定成都地铁环控设计中的温度设计标准.中国铁道科学. 2002, 23(5): 126~130
    32 F. Ampofo, G. Maidment, J. Missenden. Underground Railway Environment in the UK Part 1: Review of Thermal Comfort. Applied Thermal Engineering. 2004, 24: 611~631
    33 F. Ampofo, G. Maidment, J. Missenden. Underground Railway Environment in the UK Part 2: Investigation of Heat Load. Applied Thermal Engineering. 2004, 24: 633~645
    34张立琦.北京地铁十号线知春路站通风空调设计.铁道勘测与设计. 2006, (1): 25~28
    35王岳怡.上海地铁M8线复兴路站空调通风设计.制冷与空调(四川). 2006, (1): 62~66
    36付强.集中供冷系统在广州地铁二号线的应用.暖通空调. 2004, 34(7): 78~80
    37李国庆.城市轨道交通通风空调系统技术发展新趋势.都市快轨交通. 2004, 17(6): 5~7
    38罗曼,毕翔宇.深圳地铁变风量组合式空调机组样机验收.现代城市轨道交通. 2005, (6): 21~23
    39黄建辉.地铁车站设备房变冷媒流量(VRV)系统使用分析.现代城市轨道交通. 2006, (3): 33~34
    40李雁.地铁暖通空调系统设计中关键问题的探索.都市快轨交通. 2005, 18(3): 76~80
    41王永镖,李炳熙.地铁排热回收热泵系统的技术经济性分析.沈阳工程学院学报(自然科学版). 2005, 1(1): 26~29
    42李辉.回/排风在广州地铁中央空调冷却水系统中的工程应用前景.制冷与空调(四川). 2006, (2): 67~71
    43何叶从,付祥钊,肖益民,等.地铁空调系统冷却技术探讨.暖通空调. 2008, 38(3): 46~48
    44 G.G. Maidment, J.F. Missenden. Evaluation of an Underground Railway Carriage Operating with a Sustainable Groundwater Cooling System. International Journal of Refrigeration. 2002, 25: 569~574
    45 F. Ampofo, G. Maidment, J. Missenden. Underground Railway Environment in the UK Part 3: Methods of Delivering Cooling. Applied Thermal Engineering. 2004, 24: 647~659
    46 J.A. Thompson, G.G. Maidment, J.F. Missenden. Modelling Low-Energy Cooling Strategies for Underground Railways. Applied Energy. 2006, 83: 1152~1162
    47 J.A. Thompson, G.G. Maidment, J.F. Missenden, et al. Geothermal Cooling through Enhancement of the Natural Heat Sink Effect– Proof of Concept. Experimental Thermal and Fluid Science. 2007, 31: 551~558
    48陈虹.地下商业建筑暖通设计问题的探讨.中国建设信息供热制冷. 2003, (3): 61~64
    49曲满洪.地下商业建筑的冬季排风热回收.应用能源技术. 1995, (1): 1~3
    50陆饮方.上海市人民广场地下商业街空调防火设计.暖通空调. 2004, 34(4): 53~55
    51俞健.地下商场冰蓄冷低温送风的分析研究.制冷与空调(四川). 2007, 21(3): 81~87
    52王海文.地下商场空调负荷计算与节能的浅见.地下空间. 1988, 8(3): 51~54
    53潘志信,王雪锦,刘东,等.地下车库诱导通风射流及风口的计算.暖通空调. 2007, 37(7): 79~82
    54葛凤华,刘巽俊,王月志.地下停车库的自然通风.暖通空调. 2006, 36(8): 97~99
    55 S. Shao, W. Shi, X. Li, et al. A New Inverter Heat Pump Operated All Year Round with Domestic Hot Water. Energy Conversion and Management. 2004, 45: 2255~2268
    56 G. Gong, W. Zeng, L. Wang, et al. A New Heat Recovery Technique for Air-Conditioning/Heat-Pump System. Applied Thermal Engineering. 2008, 28: 2360~2370
    57 H. Jiang, Y. Jiang, Y. Wang, et al. An Experimental Study on a Modified Air Conditioner with a Domestic Hot Water Supply (ACDHWS). Energy. 2006, 31: 1789~1803
    58 H.I. Abu-Mulaweh. Design and Performance of a Thermosiphon Heat Recovery System. Applied Thermal Engineering. 2006, 26: 471~477
    59 J. Arias, P. Lundqvist. Heat Recovery and Floating Condensing in Supermarkets. Energy and Buildings. 2006, 38: 73~81
    60赵建成,周喆.张海涛,等.排风热回收系统在工程中的应用.建筑科学. 2006, 22(6A): 70~72
    61中国建筑标准设计研究院.空调系统热回收装置选用与安装.中国计划出版社, 2006
    62江亿.我国建筑耗能状况及有效的节能途径.暖通空调. 2005, 35(5): 30~40
    63 Y. Zhang, Y. Jiang, L.Z. Zhang, et al. Analysis of Thermal Performance and EnergySavings of Membrane Based Heat Recovery Ventilator. Energy. 2000, 25: 515~527
    64 M.A.A. El-Baky, M.M. Mohamed. Heat Pipe Heat Exchanger for Heat Recovery in Air Conditioning. Applied Thermal Engineering. 2007, 27: 795~801
    65 D. Liu, G.F. Tang, F.Y. Zhao, et al. Modeling and Experimental Investigation of Looped Separate Heat Pipe as Waste Heat Recovery Facility. Applied Thermal Engineering. 2006, 26: 2433~2441
    66 A. Nguyen, Y. Kim, Y. Shin. Experimental Study of Sensible Heat Recovery of Heat Pump during Heating and Ventilation. International Journal of Refrigeration. 2005, 28: 242~252
    67 S.B. Riffat, M.C. Gillott. Performance of a Novel Mechanical Ventilation Heat Recovery Heat Pump System. Applied Thermal Engineering. 2002, 22: 839~845
    68 M. Fehrm, W. Reiners, M. Ungemach. Exhaust Air Heat Recovery in Buildings. International Journal of Refrigeration. 2002, 25: 439~449
    69 D. Sakellari, P. Lundqvist. Modelling and Simulation Results for a Domestic Exhaust-Air Heat Pump Heating System. International Journal of Refrigeration. 2005, 28: 1048~1056
    70 Y.I. Aristov, I.V. Mezentsev, V.A. Mukhin. A New Approach to Regenerating Heat and Moisture in Ventilation Systems. Energy and Buildings. 2008, 40: 204~208
    71谭洪卫.城市中未利用能源在建筑空调系统中的应用(一)分类与应用形式.上海节能. 2006, (4): 13~17
    72华贲.集成创新可使中国建筑物能效加倍.建筑科学. 2007, 23(2): 9~14
    73 K. Narita, T. Maekawa. Energy Recycling System for Urban Waste Heat. Energy and Buildings. 1991, 16: 553~560
    74马最良,姚杨,赵丽莹.污水源热泵的应用前景.中国给水排水. 2003, 19(7): 41~43
    75龙惟定.建筑节能管理的重要环节——区域建筑能源规划.暖通空调. 2008, 38(3): 31~38
    76 N. Colak, A. Hepbasli. A Review of Heat Pump Drying: Part 1– Systems, Models and Studies. Energy Conversion and Management. 2009, 50: 2180~2186
    77 R. Daghigh, M.H. Ruslan, M.Y. Sulaiman, et al. Review of Solar Assisted Heat Pump Drying Systems for Agricultural and Marine Products. Renewable and Sustainable Energy Reviews. 2010, 14: 2564~2579
    78 R.T. Ogulata. Utilization of Waste-Heat Recovery in Textile Drying. Applied Energy. 2004, 79: 41~49
    79 E. Pulat, A.B. Etemoglu, M. Can. Waste-Heat Recovery Potential in Turkish Textile Industry: Case Study for City of Bursa. Renewable and Sustainable Energy Reviews. 2009, 13: 663~672
    80 J.C. Lam, W.W. Chan. Life Cycle Energy Cost Analysis of Heat Pump Application for Hotel Swimming Pools. Energy Conversion and Management. 2001, 42: 1299~1306
    81 M.R. Conde. Energy Conservation with Tumbler Drying in Laundries. Applied Thermal Engineering. 1997, 17: 1163~1172
    82 S. Garimella. Innovations in Energy Efficient and Environmentally Friendly Space-Conditioning Systems. Energy. 2003, 28: 1593~1614
    83 Y. Hirota, Y. Sugiyama, M. Kubota, et al. Development of a Suction-Pump-Assisted Thermal and Electrical Hybrid Adsorption Heat Pump. Applied Thermal Engineering. 2008, 28: 1687~1693
    84 C. Keil, S. Plura, M. Radspieler, et al. Application of Customized Absorption Heat Pumps for Utilization of Low-Grade Heat Sources. Applied Thermal Engineering. 2008, 28: 2070~2076
    85 M. Eriksson, L. Vamling. Future Use of Heat Pumps in Swedish District Heating Systems: Short- and Long-Term Impact of Policy Instruments and Planned Investments. Applied Energy. 2007, 84: 1240~1257
    86 D.R. Hart, M.A. Rosen. Environmental and Health Benefits of District Cooling Using Utility-Based Cogeneration in Ontario, Canada. Energy. 1996, 21: 1135~1146
    87 Y.J. Wu, M.A. Rosen. Assessing and Optimizing the Economic and Environmental Impacts of Cogeneration District Energy Systems Using an Energy Equilibrium Model. Applied Energy. 1999, 62: 141~154
    88 Y. Shimoda, T. Nagota, N. Isayama, et al. Verification of Energy Efficiency of District Heating and Cooling System by Simulation Considering Design and Operation Parameters. Building and Environment. 2008, 43: 569~577
    89 T. Nagota, Y. Shimoda, M. Mizuno. Verification of the Energy-Saving Effect of the District Heating and Cooling System—Simulation of an Electric-Driven Heat Pump System. Energy and Buildings. 2008, 40: 732~741
    90 F.W.H. Yik, J. Burnett, I. Prescott. A Study on the Energy Performance of Three Schemes for Widening Application of Water-Cooled Air-Conditioning Systems in Hong Kong. Energy and Buildings. 2001, 33: 167~182
    91 T.T. Chow, A.L.S. Chan, C.L. Song. Building-Mix Optimization in District-Cooling System Implementation. Applied Energy. 2004, 77: 1~13
    92 T.T. Chow, K.F. Fong, A.L.S. Chan, et al. Energy Modelling of District Cooling System for New Urban Development. Energy and Buildings. 2004, 36: 1153~1162
    93杜敬三,付林,江亿.区域供冷系统最佳供冷面积探讨.暖通空调. 2003, 33(6): 111~113
    94 M. Sakawa, K. Kato, S. Ushiro. Operational Planning of District Heating andCooling Plants through Genetic Algorithms for Mixed 0–1 Linear Programming. European Journal of Operational Research. 2002, 137: 677~687
    95 L. Trygg, S. Amiri. European Perspective on Absorption Cooling in a Combined Heat and Power System– A Case Study of Energy Utility and Industries in Sweden. Applied Energy. 2007, 84: 1319~1337
    96 A.A. Rentizelas, I.P. Tatsiopoulos, A. Tolis. An Optimization Model for Multi-Biomass Tri-Generation Energy Supply. Biomass and Bioenergy. 2009, 33: 223~233
    97 A.L.S. Chan, T.T. Chow, S.K.F. Fong. Performance Evaluation of District Cooling Plant with Ice Storage. Energy. 2006, 31: 2750~2762
    98 H. Bo, E.M. Gustafsson, F. Setterwall. Tetradecane and Hexadecane Binary Mixtures as Phase Change Materials (PCMs) for Cool Storage in District Cooling Systems. Energy. 1999, 24: 1015~1028
    99 H. Tanaka, T. Tomita, M. Okumiya. Feasibility Study of a District Energy System with Seasonal Water Thermal Storage. Solar Energy. 2000, 69: 535~547
    100 T.T. Chow, W.H. Au, R. Yau. Applying District-Cooling Technology in Hong Kong. Applied Energy. 2004, 79: 275~289
    101邓波,龙惟定,冯小平.大型地表水源热泵在上海世博园区域供冷系统中的应用.建筑热能通风空调. 2007, 26(6): 95~97
    102朱颖心,王刚,江亿.区域供冷系统能耗分析.暖通空调. 2008, 38(1): 36~40
    103 A.L.S. Chan, V.I. Hanby, T.T. Chow. Optimization of Distribution Piping Network in District Cooling System Using Genetic Algorithm with Local Search. Energy Conversion and Management. 2007, 48: 2622~2629
    104 J. S?derman. Optimisation of Structure and Operation of District Cooling Networks in Urban Regions. Applied Thermal Engineering. 2007, 27: 2665~2676
    105 E.M. Moe. Building Performance with District Cooling. ASHRAE Journal. 2005, 47(7): 46~53
    106 F.W.H. Yik, J. Burnett, I. Prescott. Predicting Air-Conditioning Energy Consumption of a Group of Buildings Using Different Heat Rejection Methods. Energy and Buildings. 2001, 33: 151~166
    107 F.W.H. Yik, J. Burnett, I. Prescott. A Study on the Energy Performance of Three Schemes for Widening Application of Water-Cooled Air-Conditioning Systems in Hong Kong. Energy and Buildings. 2001, 33: 167~182
    108肖尧荣.城市排热的有效利用——利用蓄热式热泵的区域供冷暖系统.暖通空调.1985, 15(2): 42~45
    109龙惟定,白玮,梁浩,等.低碳城市的能源系统.暖通空调. 2009, 39(8): 79~84
    110龙惟定.建筑节能与建筑能效管理.中国建筑工业出版社, 2005
    111姚杨.能量利用系数——空调系统节能控制的最佳化准则.哈尔滨建筑工程学院硕士学位论文. 1988
    112 S. Deng, J. Burnett. A Study of Energy Performance of Hotel Buildings in Hong Kong. Energy and Buildings. 2000, 31: 7~12
    113 Z. Wei, R. Zmeureanu. Exergy Analysis of Variable Air Volume Systems for an Office Building. Energy Conversion and Management. 2009, 50: 387~392
    114 R. Zmeureanu, X.Y. Wu. Energy and Exergy Performance of Residential Heating Systems with Separate Mechanical Ventilation. Energy. 2007, 32: 187~195
    115 R.M. Pulselli, E. Simoncini, F.M. Pulselli, et al. Emergy Analysis of Building Manufacturing, Maintenance and Use: Em-Building Indices to Evaluate Housing Sustainability. Energy and Buildings. 2007, 39: 620~628
    116 F. Meillaud, J.B. Gay, M.T. Brown. Evaluation of a Building Using the Emergy Method. Solar Energy. 2005, 79: 204~212
    117 A.T. Chan, V.C.H. Yeung. Implementing Building Energy Codes in Hong Kong: Energy Savings, Environmental Impacts and Cost. Energy and Buildings. 2005, 37: 631~642
    118 S. Kalogirou. Thermal Performance, Economic and Environmental Life Cycle Analysis of Thermosiphon Solar Water Heaters. Solar Energy. 2009, 83: 39~48
    119 W.L.Lee, J. Burnett. Benchmarking Energy Use Assessment of HK-BEAM, BREEAM and LEED. Building and Environment. 2008, 43: 1882~1891
    120 D. Castro-Lacouture, J.A. Sefair, Laura Flórez, et al. Optimization Model for the Selection of Materials Using a LEED-Based Green Building Rating System in Colombia. Building and Environment. 2009, 44: 1162~1170
    121 H.H. Ali, S.F. Al Nsairat. Developing a Green Building Assessment Tool for Developing Countries– Case of Jordan. Building and Environment. 2009, 44: 1053~1064
    122 N.W. Alnaser, R. Flanagan, W.E. Alnaser. Model for Calculating the Sustainable Building Index (SBI) in the Kingdom of Bahrain. Energy and Buildings. 2008, 40: 2037~2043
    123江亿,秦佑国,朱颖心.绿色奥运建筑评估体系研究.中国住宅设施. 2004, (5): 9~14
    124马最良,姚杨,姜益强.暖通空调热泵技术.中国建筑工业出版社, 2008
    125 A.M. Omer. Ground-Source Heat Pumps Systems and Applications. Renewable and Sustainable Energy Reviews. 2008, 12: 344~371
    126纪格文,郝学军,杨晖.星级宾馆用于回收优质杂排水热量的换热器研究.北京建筑工程学院学报. 2009, 25(1): 4~8
    127 D.E. Kalz, J. Wienold, M. Fischer, et al. Novel Heating and Cooling Concept Employing Rainwater Cisterns and Thermo-Active Building Systems for a Residential Building. Applied Energy. 2010, 87: 650~660
    128 G. Gan, S.B. Riffat, C.S.A. Chong. A Novel Rainwater-Ground Source Heat Pump– Measurement and Simulation. Applied Thermal Engineering. 2007, 27: 430~441
    129 Z. Qi, Y. Zhao, J. Chen. Performance Enhancement Study of Mobile Air Conditioning System Using Microchannel Heat Exchangers. International Journal of Refrigeration. 2010, 33: 301~312
    130招伟.一种空调用平行流蒸发器:中国, ZL 200820050318.0. 2009-05-20
    131 L.L. Shao, L. Yang, C.L. Zhang. Comparison of Heat Pump Performance Using Fin-and-Tube and Microchannel Heat Exchangers under Frost Conditions . Applied Energy. 2010, 87: 1187~1197
    132徐传汉.排热风室在地铁环控设计中布置方式.建筑热能通风空调. 2003, (4): 10~11
    133钱颂文.换热器设计手册.化学工业出版社, 2002
    134何叶从.地铁专用间接蒸发冷却器研究.重庆大学博士学位论文. 2009
    135刘建航,俞加康.上海地铁网络的重要枢纽——人民广场站.地下工程与隧道. 2006, (1): 1~5
    136边志美.地铁屏蔽门、闭式和开式系统环控能耗分析研究.同济大学硕士学位论文. 2007
    137曹青,冀兆良,马惠芳.广州地区某地下商场空调系统的调查研究.全国暖通空调制冷2008年学术年会资料集.重庆, 2008
    138周志仁,谭洪卫,王恩丞.酒店热水用水规律与热泵热回收系统设计.建筑节能. 2009, 37(1): 27~30
    139王凯,李建风,曹锋,等.中高温水源热泵研究与发展趋势.流体机械. 2007, 35(3): 68~72
    140刘南希,史琳,韩礼钟,等.高温工质HTR01水源热泵机组的研究.暖通空调. 2004, 34(8): 48~52
    141李延勋,郭开华,王如竹,等.非共沸混合工质R22/R141b高温热泵实验研究.化工学报. 2002, 53(5): 542~545
    142高攀,赵力.中高温热泵系统循环工质的研究.暖通空调. 2006, 36(1): 24~27
    143许志浩.地铁负荷计算及采用冰蓄冷系统的负荷分析.制冷与空调(四川). 2002, (1): 11~14
    144张永涛.用等效干工况法计算表冷器湿工况.江苏工学院学报. 1983, (4): 78~85
    145倪美琴,刘光远,杨卫波,等.表冷器热力计算方法的分析与比较.暖通空调.2008, 38(7): 75~78
    146 R.D. Graves. Thermodynamic Modeling and Optimization of a Screw Compressor Chiller and Cooling Tower System. Master Thesis of Texas A&M University. 2003
    147 B. Solati. Computer Modeling of the Energy Performance o Screw Chillers. Master Thesis of Concordia University. 2002
    148 J.A. Duffie, W.A. Beckman. Solar Engineering of Thermal Processes. Third Edition. John Wiley & Sons Inc., 2006
    149于国清,汤金华,邹志军.太阳能热水系统蓄热水箱温度分层作用研究.建筑科学. 2007, 23(4): 70~73
    150 P. Chen, H. Qin, Y. Huang, et al. A Heat and Mass Transfer Model for Thermal and Hydraulic Calculations of Indirect Evaporative Cooler Performance. ASHRAE Transactions. 1991, 97: 852~865
    151陈沛霖.间接蒸发空气冷却器热工计算的改进模型及其实验验证.制冷学报. 1992, (2): 22~26
    152 L. Li. Dynamic Modeling and Optimal Operation of District Heating Systems. Master Thesis of Concordia University. 2003
    153王芃.集中供暖系统动态仿真与优化调节.哈尔滨工业大学硕士学位论文. 2006
    154江亿,刘兰斌,杨秀.能源统计中不同类型能源核算方法的探讨.中国能源. 2006, 28(6): 5~8
    155马最良,姚杨,姜益强.双级耦合热泵供暖的理论与实践.流体机械. 2005, 33(9): 30~34
    156郭宏新,原思成,张鲁新.青藏铁路低温热管应用的能量基础条件.东南大学学报(自然科学版). 2009, 39(5): 967~972
    157王金忠,宁智.应用热管技术和自然能的地下贮冷式冷库的实践及其性能分析.节能. 1994, (4): 19~22
    158李华山,冯晓东,刘通.我国风力致热技术研究进展.太阳能. 2008, (9): 37~40
    159王越.空调系统冷凝热回收石蜡基相变材料的实验研究.流体机械. 2004, 32(10): 57~59
    160吕磊磊,章学来,叶金,等.复合相变蓄热器在空调系统冷凝热回收中的应用.能源技术. 2007, 28(6): 353~355
    161 M. Kenisarin, K. Mahkamov. Solar Energy Storage Using Phase Change Materials. Renewable and Sustainable Energy Reviews. 2007, 11: 1913~1965
    162 Q. Qi, S. Deng, Y. Jiang. A Simulation Study on a Solar Heat Pump Heating System with Seasonal Latent Heat Storage. Solar Energy. 2008, 82: 669~675
    163 S. Gehlin. Thermal Response Test– In-Situ Measurements of Thermal Properties in Hard Rock. Licentiate Thesis of Lulea University of Technology, 1998
    164王登云,许文发.低碳城市与建筑区域能源规划.建设科技. 2010, (13): 68~71
    165余延顺,李迪,李先庭,等.季节性冰雪蓄冷技术的研究现状与技术展望.暖通空调. 2005, 35(3): 24~30
    166任世瑶.节能型风机的研制成果.工业用水与废水. 2006, 37(增刊): 29~31
    167 Y.M. Han, R.Z. Wang, Y.J. Dai. Thermal Stratification within the Water Tank. Renewable and Sustainable Energy Reviews. 2009, 13: 1014~1026
    168龙惟定.我国大型公共建筑能源管理的现状与前景.暖通空调. 2007, 37(4): 19~23
    169 E. Vine, H. Nakagami, C. Murakoshi. The Evolution of the US Energy Service Company (ESCO) Industry: from ESCO to Super ESCO. Energy. 1999, 24: 479~492
    170 P. Bertoldi, S. Rezessy, E. Vine. Energy Service Companies in European Countries: Current Status and a Strategy to Foster their Development. Energy Policy. 2006, 34: 1818~1832

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700