用户名: 密码: 验证码:
框架结构移位托换节点受力机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
框架柱托换节点的设计是框架结构移位成功的关键技术,其受力机理非常复杂,且托换节点的承载力至今没有统一的计算公式。本文通过16组缩尺托换节点的试验,研究了托换节点的受力机理,分析了托换节点承载力的影响因素,提出了“空间拉杆拱”的力学模型,并结合混凝土结构方面的研究理论和有限元软件ABAQUS,对托换节点在界面上的受力机理进行了深入的探讨。
     第一,研究了行走梁剪跨比、托换梁纵筋配筋参数、托换梁箍筋配箍率、梁柱结合面插筋配筋参数、行走梁混凝土强度五种因素对托换节点破坏荷载的影响,得出行走梁剪跨比对破坏荷载的影响程度最大,其次是纵筋配筋参数和箍筋配箍率。同时对行走梁的计算模型进行简化,通过试验数据的线性回归,得出托换节点行走梁抗剪承载力的计算公式。
     第二,依据16组试件的破坏现象和破坏形态,探讨了托换节点在界面冲切滑移前阶段的受力机理,提出了托换节点的“空间拉杆拱”力学模型,在此基础上推导出托换节点承载力的理论公式,并与试验结果进行了对比,二者吻合较好。同时结合界面剪切理论,分析托换节点在界面冲切滑移后阶段的受力机理,在通过未裂和预裂混凝土界面剪力传递的研究成果的基础上,结合试验回归得出,托换节点的最小界面高度计算公式和最小插筋配筋量计算公式。
     第三,运用有限元软件ABAQUS,对试验中的两个典型托换节点进行了界面冲切滑移前阶段的有限元分析。得出托换节点界面法向应力和剪应力分布比较复杂,界面底部出现拉应力,但界面开裂范围很小;托换梁压应力呈明显的“拱形压杆”分布,拉应力呈底部“通长拉杆”分布,与本文提出的托换节点的“空间拉杆拱”力学模型吻合的很好。
     第四,针对已完成的5个建筑物移位工程的17个托换节点进行设计复核,得出行走梁抗剪承载力计算公式、托换节点承载力理论公式、托换节点最小界面高度计算公式和最小界面插筋配筋量计算公式的结果与工程结果吻合较好;并通过17个托换节点工程结果的再次回归,得到既能包络试验结果又能包络工程结果的行走梁抗剪承载力设计公式。
Frame column underpinning joint design was a key technology to frame structure moving, but the mechanical behavior of column underpinning joint was very complex, and the calculation equation of the underpinning joint bearing capacity hadn't been unified until today. Based on sixteen groups scale-model experiment, factors influencing bearing capacity of the underpinning joint were analysed, the mechanical behavior of column underpinning joint was discussed, at the same time, considering the theory of concrete structure and finite element software ABAQUS, a in-depth study was done on the complex mechanical behavior of column underpinning joint of frame structure.
     First, five factors were discussed to make sure the influence to failure load, which were moving-beam shear span ratio, underpinning beam stirrup steel bar ratio, underpinning beam longitudinal steel bar parameter, planted reinforcement parameter, and column moving-beam strength, the conclusions were drawn, that was, the first factor to the failure load was the moving-beam shear span ratio, secondly was underpinning beam longitudinal steel bar parameter, thirdly was underpinning beam stirrup steel bar ratio. At the same time, the moving-beam caculation model was simplified, considering linear regression analysis of experiment data, the moving-beam shear equation of column underpinning joint was drawn.
     Second, based on the failure phenomena and failure type, the mechanical behavior of the stage before interface untipunching slip of the underpinning joint was discussed. Furthermore the mechanical model "space tension bar arch" was put forward, and based on the theory, theoritical bearing capacity equation was set up, and the equation's result was agreement with experiment's result. At the same time, considering the theory of interface shear, the interface failure mechanism of the stage after interface untipunching slip of the underpinning joint was studied, and based on the experiment linear regression, the minimum interface height calculation equation and the minimum planted reinforcement calculation equation was drawn.
     Third, design check was done about seventeen underpinning joints of five completed projects of building moving, four calculation equations drawn by this paper, which was moving-beam shear equation, theoretical bearing capacity equation, the minimum interface height design equation and the minimum planted reinforcement design equation, the conclusion was drawn that the equations results were good agreement with projects results; and based on the linear regression analysis of project data, a new moving-beam shear design equation was drawn.
     Finally, by means of finite element software ABAQUS, the analysis of two experiment sample underpinning joints of finite element was done for the stage before interface untipunching slip, and the result was drawn,that was, interface press stress and shear stress distributing was complex, and tension stress was appeared at the bottom of interface while the cracking was small; and underpinning beam press stress distributing was like "arch press bar", and the tension press distributing was like "long tension bar" at bottom, which were good agreement with the "space tension bar arch" model put forward by this paper.
引文
[1]张鑫,贾留东,魏焕卫,夏风敏.建筑物平移与纠倾技术[M].北京:中国水利水电出版社,2008.4.
    [2]都爱华,张鑫,赵考重,等.建筑物整体平移技术的试验研究[J].工业建筑,2002,32(7):4-6.
    [3]张鑫.建筑物整体平移技术的发展综述[J].山东建筑工程学院学,2005,20(5):75-81.
    [4]Lamar Kay, Pan Deitz and Stan Barber. Photo from southcombe's collection, New Plymouth, New Zealand [J]. The structural mover,1999,17(1):40.
    [5]Lamar Kay,Pan Deitz and StanBarber.University of IOWA Work[J].The structural mover,1999,17(1):11-14.
    [6]苏琳林.浅谈房屋整体平移[J].广西土木建筑,1993,24(1):23-27.
    [7]唐业清.建筑物改造与病害处理[M].北京:中国建筑工业出版社,2000.6.
    [8]Pryke J F S. The Pynford Underpinning Method[M]. London:IABSE,1983.
    [9]Pryke J F S. Relevelling, Raising and Re-sitting Historicbuildings[J]. Proc. Symp. IABSE, London,1983,32(6):11-12.
    [10]Lamar Kay, Pan Deitz and Stan Barber.Kim Browminz,from Boca Raton to Fort Pierce[J]. The structural mover,1999,17(1):5-8.
    [11]Esslco.The Shubert theater was self-propelled[J].The structual mover,1999,17(2):11-15.
    [12]Jim Anders. The hatteras Lighthouse[J]. The structural mover,2000,18(1):50-55.
    [13]John Lewis. Forged master cylinder gives lighthouse a lift[J].Design newa,Boston,1999,11 (1):1.
    [14]Gini Koster. Supermove'99 gopenhagen Airport [J].The structural mover,2000,18(1):24-31.
    [15]Terminal building,Newarkairport[J].The structural mover,2001,19(11):1-10.
    [16]Ken Adair. Moving[J]. The Structural Mover,2001,19(4):46-47.
    [17]Carla Messier.Moving by R ail[J].TheS tructuralM over,2000,18(2):18-19.
    [18]Gino.J, Koster.A. Mammoth Building[J].The Structural M over,2001,19(4):52-59.
    [19]Gino J Koster. Bridge Replacement In Belgium Bridge Out And In[J]. The Structural Mover, 2001,19(3):50-54.
    [20]X.L.Lu, W.S.Lu, X.Zhang. New Resolution for Historic Building Conservation by Building Moving Technology[C].7th International Conference on Structural Analysis of Historic Constructions Strengthening and Retrofitting.shanghai,2010(1):19-25.
    [21]李爱群,吴二军.我国建筑物整体平移技术及工程应用进展[J].江苏建筑,2003增刊:48-54.
    [22]65m高井塔平移75m[J].特种结构,1994,11(3):61.
    [23]刘祖荣.工业及民用建筑搬迁方法[P].中国专利,91106695,1991-05.
    [24]陈祖强.五层教学楼平移转向设计与施工[J].施工技术,1999,28(2):14-16.
    [25]阮蔚文,阮涟,阮毅.三层砖混结构整体旋转62度技术[J].施工技术,1993,12(19):30.
    [26]阮蔚文.建筑物搬迁方法[P].中国专利,92111913,1992-09-25.
    [27]张新中,解伟,李友琳,等.建筑物整体迁移技术应用与发展[J].华北水利水电学院学报,1998,19(4):16-18.
    [28]赵淑敏,李铁成.六层不规则砖混结构房屋整体平移技术[J].建筑结构,1999,(3)24-25.
    [29]杨赞琳,苏琳琳.斜向整体平移技术[J].广西土木建筑,1999,24(4):154-155.
    [30]张天宇,侯伟生.建筑群远距离整体平移工程实例[J].福建建筑科技,2000(2):24-25。
    [31]李小波,谷伟平,李国雄,蒋利民.阳春大酒店平移工程的设计与实践[J].施工技术,2001,30(2):24-26
    [32]张鑫,贾留东,贾强.临沂市国家安全局8层办公楼整体平移施工及现场监测[J].工业建筑,2002,32(7):11-13
    [33]贾强,张鑫,贾留东.临沂国家安全局办公楼整体平移施工过程中的预控及调整[J].建筑施工,2005,27(1):40-41
    [34]卫龙武,吴二军.江南大酒店整体平移工程的关键技术[J].建筑结构,2001,31(12):6-8.
    [35]赵世峰,李爱群.江南大酒店平移工程隔震设计与地震反应分析[J].建筑结构,2001,31(12):9-10.
    [36]李爱群,卫龙武.江南大酒店整体平移工程的设计[J].建筑结构,2001,31(12):3-5.
    [37]树盟,和平.辽宁盘锦4000吨办公楼分体转向平移[N].光明日报,2001-11-22.
    [38]王辉.分体、长距、转向辽宁盘锦移楼移出三个全国之最[N].辽沈晚报,2001-11-01.
    [39]林福益.孙中山曾批示“永远保留”广州将整体平移锦纶会馆[N].羊城晚报,2001-5-20.
    [40]谢光.锦纶会馆平移工程的设计[J].广东土木与建筑,2002(4):28-30.
    [41]吴二军,李爱群,陈道政.江都供电局综合楼双向整体平移方案的选择[J].建筑结构,2003,33(4):22-25.
    [42]傅祖洪,刘传楷.重庆市梁平7层高楼将整体平移14米[N].重庆晨报,2002-08-20.
    [43]吴定安.上海音乐厅抬升和平移工程[J].流体传动与控制,2005(4):33-35.
    [44]章明,陈绩明.上海音乐厅整体平移和修缮工程[J].建筑学报,2005(11):36-38.
    [45]蓝戊己.上海音乐厅平移与顶升施工技术[J].岩土工程界(增刊),2005(2):9-11.
    [46]尹天军,朱启华,蓝戊己.吴忠宾馆整体平移工程设计与实施[J].建筑结构,2006,36(9):1-7.
    [47]唐小军.吴忠宾馆平移工程分荷结构研究[J].建筑技术,2007,38(6):419-421.
    [48]贾留东,夏风敏,张鑫,张爱社.莱芜高新区15层综合楼平移设计与现场监测[J].建筑结构学报,2009,30(6):134-141.
    [49]彭戈.成熟石羊场三环路上演“奇迹”一万吨大桥平移23米[N].商务早报,2001-04-05.
    [50]徐祥兴,郑立波.北京燕化两高塔整体液压平移成功[J].施工技术,2001,30(10):9.
    [51]田春季.输电线路特塔平移技术[J].中州煤炭,1999(2):30.
    [52]阮蔚文,阮涟,阮毅..五层框架结构整体平移技术[J].施工技术,1993,22(12):28-29.
    [53]阮蔚文,阮涟,等.旧城改造中的房屋整体平移、旋转技术实例[J].建筑技术,1994,21(8):496-498.
    [54]陈瑜,徐福全.多层组合结构建筑的整体平移旋转技术[J].建筑结构,2001,31(12):15-16.
    [55]吴二军,李爱群,等.江都市供电局综合楼双向整体平移方案的选择[J].建筑结构,2003,33(10):75-79.
    [56]李辉,毛杰,王一.澄江万余吨高楼被推移10米[N].云南日报,2002-08-15.
    [57]孙肃,卢明全,程向阳.高层建筑物整体移位技术的探讨[J].大连水产学院学报,2005,20(1):57-60.
    [58]左庆.13小时,揭秘民国老宅30公里乾坤大挪移[N].济南生活日报,2009-03-03.
    [59]陈国政,赵湘顺,陈守平.预压桩托换法和建筑物的顶升纠偏[J].土工基础,2003,17(4):29-32.
    [60]王明波.地铁车站桩基托换施工及监控量测技术[J].河北交通科技,2006,3(3):22-25.
    [61]赵来顺.钢筋混凝土预压桩基础托换设计浅析[J].西安矿业学院学报,(增刊),1999(19):95-99.
    [62]曾巨潮.临时顶升应力的受力体系转换在桩基托换中的应用[J].广东建材,2006(8):106-108.
    [63]朱宏平,邱小松,等.建筑联合体整体平移的基础处理技术[J].岩土力学2003,24(1):30-34.
    [64]冯卫星,曹金文.地铁施工中的桩基托换技术[J].石家庄铁道学院学报,2000,13(3):79-81.
    [65]孙海,黄鼎业.一种新型预应力托换节点的试验研究[J].工业建筑,2003,33(12):54-56.
    [66]李广平.桩基承台的破坏机理及其承载力设计方法的研究[J].工业建筑, 2000,30(6):63-67.
    [67]张良宽,杨军,贾燕.建筑改造工程中的基础托换技术与应用[J].山东建材学院学报,2000,14(3):245-247.
    [68]韦廷彦.高层建筑物桩基托换的受力分析与接头强度试验[J].石家庄铁道学院学报,2004,17(3):84-87.
    [69]刘明振.墩式托换用于柱基纠偏[J].岩土工程学报,1995,17(6):89-95.
    [70]郑俊杰,袁内镇,徐铁雄.梁式静压桩托换法[J].施工技术,1998(9):8-9.
    [71]孙剑平,徐向东,张鑫,李树明.微型桩托换技术[J].工业建筑,1999,29(8):8-9.
    [72]张媛,赵来顺,唐丽云,郭志勇.预压托换桩的回弹机理及控制方法研究[J].岩土工程学报,2007,29(1):35-41.
    [73]彭振武.托换工程设计计算与施工[M].北京:中国地质大学出版社,1997.7.
    [74]柯在田,高岩,张澍曾.深圳地铁大轴力桩基托换模型试验研究[J].中国铁道科学,2003,24(5):15-22.
    [75]苏慧.托换技术在建筑工程中的应用[J].建筑技术开发,2003,30(4):46-47.
    [76]张天宇.建筑物整体平移中的动力分析[J].福建建设科技,1998(4):4-5.
    [77]姚忠国,黄自新.房屋整体平移技术及模拟试验研究[J].建筑结构,1995,25(11):53-57.
    [78]袁广林,袁迎曙.大空间、复杂结构建筑物平移技术研究与应用[J].中国矿业大学学报,2001,30(2):135-137.
    [79]张鑫,都爱华,张绘军.建筑物平移技术牵引力计算公式和动力分析的研究[J].山东建筑大学学报,2010,25(3):222-225.
    [80]赵世峰,李爱群.江南大酒店平移工程隔震设计与地震反应分析[J].建筑结构,2001,31(12):93-96.
    [81]Du,AH, Zhang,X, Zhu,WS, Sun,YZ. Study on Pull Force Formula and Dynamic Response of Building Moving[C].Innovation & Sustainability of Structure in Civil Engineering. Guangzhou, 2009(2):1290-1295.
    [82]吴二军,李爱群.建筑物整体平移工程的可靠度计算与风险评估[J].建筑技术,2004,35(6):412-414.
    [83]袁广林,袁迎曙.建筑物整体平移中的滚轴及其应用[J].四川建筑科技研究,2006,32(2):129-131.
    [84]张正先,黄小许,张原.新旧砼界面连接试验研究[J].华南理工大学学报(自然科学版),2000,28(10):81-86.
    [85]张正先.配有钢筋的新旧砼界面连接试验研究[J].华南理工大学学报(自然科学版)2002,30(10):97-101.
    [86]贾留东,张鑫,孙剑平,徐向东.临沂市国家安全局8层办公楼整体平移设计[J].工业建筑,2002,32(7):7-10.
    [87]吴二军,李爱群,等.型钢对拉螺栓柱托换节点抗剪性能试验研究[J].东南大学学报,2003,33(5):631-634.
    [88]毕重,王清湘,何秀斌.素混凝土托换柱承载力试验研究[J].辽宁工程技术大学学报,2005,24(5):692-694.
    [89]刘建宏.钢筋混凝土柱托换分析方法与应用[D].上海:同济大学土木工程学院.2007.
    [90]杜健民,袁迎曙,王波,蒋建华.框架柱托换体系抗冲剪承载力的试验研究[J].建筑技术,2008,39(7):548-551.
    [91]杜健民,袁迎曙,向伟.框架柱托换体系抗冲剪承载力预计模型研究[J].中国矿业大学学报,2007,36(1):60-64.
    [92]韩菊红,张雷顺,赵国藩.新老混凝土粘结断裂韧度计算方法探讨[J].水利学报.2002(7):116-119.
    [93]赵志方,周厚贵,刘健,等.新老混凝土粘结复合受力的强度特性[J].工业建筑,2002,32(10):37-39.
    [94]CARLES G A, SAUCIER F, GRANDER J, et al.New-to-old concrete bonding:influence of sulfates type of new concrete interface microstructure[J]. Cement and Concrete Research,1993, 23(3):431-441.
    [95]郭进军,王少波,张雷顺,张启明..新老混凝土粘结的剪切性能试验研究[J].建筑结构,2002,32(28):43-45.
    [96]刘建.新老混凝土的粘结的力学性能研究[D].大连:大连理工大学,2000.
    [97]赵志方..新老混凝土粘结的粘结机理和测试方法[D].大连,大连理工大学,1998.
    [98]赵志方,赵国藩,黄承逵.新老混凝土粘结的劈拉性能研究[J].工业建筑,1999,29(11):56-59.
    [99]中华人民共和国国家标准.GB50152-1992混凝土结构试验方法标准[S].北京:中国建筑工业出版社,1992.
    [100]熊仲明,王社良.土木工程结构试验[M].北京:中国建筑工业出版社,2006.7.
    [101]姚振纲,刘祖华.建筑结构试验[M].上海:同济大学出版社,1996.9.
    [102]方开泰.正交与均匀试验设计[M].北京:科学出版社,2001.10.
    [103]中华人民共和国国家标准.GB50367-2006混凝土结构加固设计规范[S].北京:中国建筑工业出版社,2006.
    [104]王恒.托换梁剪跨比对柱托换节点受力性能影响的试验研究[D].济南:山东建筑大学.2010.
    [105]司道林.托换梁纵筋配筋对柱托换节点受力性能影响的试验研究[D].济南:山东建筑大学.2010.
    [106]李玉平.托换梁配箍率对柱托换节点受力性能影响的试验研究[D].济南:山东建筑大学.2010.
    [107]谭天乐.移位建筑柱托换节点梁柱结合面受力性能试验研究[D].济南:山东建筑大学.2010.
    [108]刘华新,孙荣书,张晓东.钢筋混凝土深梁抗剪承载力影响因素分析[J].武汉理工大学学报,2007,29(2):65-67.
    [109]Huang Shyhjiann, Lu Wenyao, Lee Hungjen. Shear Strength Prediction for Deep Beams[J].ACI Structural Journal,2000,97(3):367-376.
    [110]Matamoros Adolfo B, Kuok Hong Wong. Design of Simply Supported Deep Beams Using Strut-and-Tie Models[J]. ACI Structural Journal,2003,100(6):704-712.
    [111]抗剪强度计算研究组.钢筋混凝土的抗剪强度计算[C].钢筋混凝土结构研究报告选集,北京:中国建筑工业出版社,1977.
    [112]Kani G N J. Basic Facts Concerning Shear Failure[J]. ACI,1966,63(5):675-692. [113] Placas.A, Regan P E. Shear Failure of Reinforced Concrete Beam[J]. ACI,1971,68(10): 763-773.
    [114]中华人民共和国国家标准.GB50152-1992混凝土结构试验方法标准[S].北京:中国建筑工业出版社,1992.
    [115]Building Code Requirements for Reinforced Concrete (ACI 318-71)[C]. American Concrete Institute, Detroit.1971.
    [116]ACI-ASCE Committee 326, Shear and Diagonal Tension. Journal ACI[M].1962,59(1):1-30; 1962,59(4):277-344; 1962,59(4):252-396.
    [117]Joint ASCE-ACI Task Committee 426, The Shear Strength of Reinforced Concrete Members. Journal of the Structural Division, ASCE[J].1973,99(6):1091-1187.
    [118]E. Hognestad. What Do We Know About Diagonal Tension and Web Reinforcement in Concrete?A Historical Study. University of Hlinois Bulletin[J].1952,49(50):47.
    [119]F. Leonlardt. Reducing the Shear Reinforcement in Reinforced Concrete Beams and Slabs. Magazine of Concrete Research[J].1965,17(53):187-198.
    [120]H.P. J. Taylor. Investigation of the Dowel Shear Forces Carried by the Tensile Steel in Reinforced Concrete Beams. Cement and Concrete Association[M]. London, TRA431,1969.
    [121]T. Baumann and H. Rusch, Versuche zum Studium der Verdubelungswirkung der Biegezugbewchrung eines Stahlbetenbaikens. Deutscher Ausschuss for Stahlbeton[M]. Bulletin No.210, Berlin,1970.
    [122]A. J. O'Leary, Shear, Flexure and Axial Tension in Reinforced Concrete Members. Ph. D. Thesis [D]. University of Canterbury, Christchurch, New Zealand,1970.
    [123]周朝阳.配置抗冲切钢筋的混凝土板柱连接的破坏形态与承载力分析[J].建筑结构学报,1997,18(6):26-32.
    [124]PERRY A, DANIEL K, MICHEAL P C. Strut and tie models for the design of pile caps. an experimental study[J]. ACI Structural Journal 1987,87(3/4):296-302.
    [125]R. Park, T. Paulay. Reinforced Concrete Structure[M]. New York:Wiley,1975.
    [126]CARLES G A, SAUCIER F. GRANDER J, et al. New-to-old concrete bonding; influence of sulfates type of new concrete interface microstructure[J]. Cement and Concrete Research,1993, 23(3):431-441.
    [127]R. F. Mast, Auxiliary Reinforcement in Concrete Connections, Journal of the Structural Division, ASCE[J].1968,94(6):1485-1504.
    [128]A. H. Mattock and N. M. Hawkins, Shear Transfer in Reinforced Concrete-Recent Research, PCI Journal [J].1972(3):55-75.
    [129]T. Paulay and P. J. Lceber, Shear Transfer by Aggregate Interlock,Shear in Reinforced Concrete[M]. Detroit:ACI Special Publication.1974.
    [130]T. Paulay, R. Park, and M. H. Phillips, Horizontal Construction Joints in Cast in Place Reinforced Concrete, Shear in Reinforced Concrete [M]. Detroit:ACI Special Publication 42,1974.
    [131]张正先,黄小许张原.新旧混凝土界面连接试验研究[J].华南理工大学学报,2000,28(10):81-86.
    [132]万墨林,韩继云.混凝土结构加固技术的研究(二)[J].施工技术,1994,23(2):47-49.
    [133]中华人民共和国国家标准.GB50007-2002建筑地基基础设计规范[S].北京:中国建筑工业出版社,2002.
    [134]中华人民共和国国家标准.GB50010-2002混凝土结构设计规范[S].北京:中国建筑工 业出版社,2002.
    [135]杨成增.新旧混凝土结合界面的强度及其工艺技术[J].水运工程,1995(6):49-54.
    [136]李广平.桩基承台的破坏机理及其承载力设计方法的研究[J].工业建筑,2000,30(6):63-67.
    [137]H.Wangs,Lu.W,Lee. H.shear strength prediction for reinforced concrete corbels[J].ACI Structural Journal,2000,97(4):543-552.
    [138]Hagberg. T. Design of concrete brackets:on the application of the truss analogy[J].ACI Structural Journal,1983,18(6):3-12.
    [139]American Concrete Institute. ACI318-05 Building code requirements for structural concrete [S].2005.
    [140]中华人民共和国国家标准.GB50011-2002建筑抗震设计规范(2008版)[S].北京:中国建筑工业出版社,2008.
    [141]庄茁.ABAQUS非线性有限元分析与实例[M].北京:清华大学出版社,2004.6
    [142]庄茁,由小川,廖剑晖,等.基于ABAQUS的有限元分析与应用[M].北京:清华大学出版社,2009.1.
    [143]王玉镯,傅传国,等.ABAQUS结构工程分析及分析实例详解[M].北京:中国建筑工业出版社,2010.3.
    [144]石亦平,周玉蓉,等.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2007.4.
    [145]中华人民共和国国家标准.《建筑荷载设计规范》(GB5009-2001)(2006版)[S].北京:中国建筑工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700