用户名: 密码: 验证码:
桥建合一大型站房结构关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“十一五”期间,我国逐步发展成为世界上高速铁路发展最快、系统技术最全、集成能力最强、运营里程最长、运营速度最高、在建规模最大的国家。国家发改委宏观研究院表示,未来五年内我国高速铁路建设将维持大规模投入,投资额将保持在每年7000亿元左右。
     与之相应的配套站房建设也随之快速进行。在站房结构形式上多采用桥建合一的结构形式。该结构形式能提供较大的内部空间,同时给乘客提供良好的视觉效果。这类结构的屋盖结构一般采用大跨度空间网架屋盖结构,具有整体刚度好、质量轻、柔性大、阻尼小等特点,但由于该类结构主要采用钢材,而钢结构特别是焊接钢结构对动荷载特别敏感。在桥建合一的结构形式中,高速列车通过的轨道桥梁是上部大跨结构的基础。因此,高速列车引起的桥梁动力响应会影响对上部结构。针对这一特点,本文研究了大跨、轻柔、焊接钢结构在高速列车通过时的动力响应以及由此引发的结构疲劳和振动舒适度等关键技术。进行了如下几方面的工作:
     1.移动荷载作用下车桥系统的耦合分析
     以武汉火车站为工程背景,建立高速列车荷载作用下的车桥耦合分析模型,分析桥梁的动力响应特性。
     2.列车荷载作用下大跨度空间钢结构的动力响应分析
     通过移动荷载-桥梁计算模型,计算得出桥梁支座处的反力,并与实测结果进行比较分析;并以此为基础,建立大跨度结构的有限元模型,分析其动力响应特性。
     3.列车荷载作用下站桥合一结构的振动舒适度研究
     以数值模拟和现场实测比较分析了,武汉站的站台、候车及办公区间的振动舒适度
     4.由高速列车荷载影响下焊接钢结构疲劳寿命
     针对两类关键性的铸钢节点(柱角铸钢节点和多管下弦铸钢节点),建立其包含焊缝的精细有限元模型。基于线性累积损伤理论,预测结构在车振荷载影响下的疲劳寿命;
     5.考虑人群荷载影响的桥建合一结构振动舒适度研究
     考虑到目前由人群荷载引起的结构动力安全和舒适度问题正越来越受到人们的关注,以郑州东站为背景,研究了考虑人群荷载影响的结构的振动舒适度
     本文研究成果对确保站桥合一结构安全使用具有重要意义,研究成果可为国内今后类似工程的动力分析与设计提供参考。
Recent years, the construction of high speed railway develop fastly. According to announcement of the national development and reform commission, in the future five years, the investment of high-speed railway construction will maintain the present status, the annual investment 7,000 billion yuan.
     The ancillary facility is also large-scale construct, such as station building. The structure of bridge-building is widely used to the station building. The features of which is that larger interior space and good visual effect. its roof is designed to use long-span space frame roof structure and adopts steel to be the building materials. The characteristics of this kind of structure is that good holistic stiffness, light mass, large flexible and small damping. But it is sensitive to the dynamic loads. In the bridge-building structure, the railway beam which is carrying the high-speed railway is the foundation of the upper large-span structure. So the dynamic rasponse due to high-speed railway loads can influence on the upper structure. In this paper, the dynamic response of large-span structure due to high-speed railway is researched. the following research works are carried out:
     1. Coupled analysis of train-bridge system due to moving loads.
     The engineering background is Wuhan railway station. The coupled analysis model of train-bridge system is done due to high-speed train loads. The dynamic characteristic of train-bridge is analysised.
     2. the dynamic response analysis of large-span construct due to high-speed train loads
     The reaction at support is get from the model of train-bridge calculation, that is compared with the measurement results to ensure the accuracy. And based on it, the finite element model of large-span structure is eatablished. The dynamic response of large-span structure is analysis.
     3. Vibration comfort research of bridge-building structure due to high-speed train loads
     The vibration comfort of wuhan railway station is done by the method of the numerical simulation and in-situ measurement. Measure point is located in the platform, waiting room and office area of Wuhan railway station.
     4. The fatigue analysis of large-span structure due to high-speed train loads
     The finite element model of two types of cast steel joints(cast steel joint at column angle and cast steel joint at bottom chord) is established. Based on the linear accumulative damage theory, the fatigue charateristic is analysised.
     5. Vibration comfort research of bridge-building structure due to co- work of high-speed train loads and pedestrian loads.
     Now, the safety and vibration comfort probrlem due to pedestrian loads are more and more attention. In this text, the influence of pedestrian loads is considered. The virbation comfort of zhengzhou east railway station is analysis due to the pedestrian loads and high-speed train loads.
     The research of this paper is significant to ensure the safe use of bridge-buidling structure. For the domestic the similar projects in the future, the research of this paper can provide the reference to the dynamic analysis and structure design.
引文
[1]霍学晋.车桥耦合振动影响因素研究及随机振动分析[D].天津大学硕士学位论文,2007.
    [2]Michaltsos G, Sophianopoulos D. and Kounads N. A. The effect of a moving mass and other parameters on the dynamic response of a simply supported beam [J]. Journal of Sound and Vibration,1996,191 (3):357-362.
    [3]Museros P. and Martinez-Rodrigo M. D. Vibration control of simply supported beams under moving loads using fluid viscous dampers [J]. Journal of Sound and Vibration,2007,300 (1-2):292-315.
    [4]Garinei A. Vibrations of simple beam-like modeled bridge under harmonic moving loads [J]. International Journal of Engineering Science,2006,44 (3): 778-787.
    [5]Garinei A. and Risitano G. Vibrations of railway bridges for high speed trains under moving loads varying in time [J]. Engineering Structures,2008,30(4): 724-732.
    [6]Walter L. and Valerio C. Dynamic response of arch bridges traversed by high-speed trains [J]. Journal of Sound and Vibration,2007,304(1-2):72-90.
    [7]Yau J. D., Yang Y. B. and Kuo S. R. Impact response of high speed rail bridges and riding comfort of rail cars [J]. Engineering Structures,1999,21 (21): 836-844.
    [8]Yang Y. B. and Yau J. D. Vehicle-bridge interaction element for dynamic analysis [J]. Journal of Structural Engineering, ASCE,1997,123 (11):1512-1518.
    [9]Yang Y. B, Yau J. D and Hsu L. C. Vibration of simple beams due to trains moving at high speeds [J]. Engineering Structures,1997,19 (11):936-944.
    [10]Yang Y. B. Lin C. L. Yau J. D. and Chang D. W. Mechanism of resonance and cancellation for train-induced vibration on bridges with elastic bearings [J]. Journal of Sound and Vibration,2004,269 (1):345-360.
    [11]Ju S. H. and Lin H. T. Resonance characteristics on high-speed trains passing simply supported bridges [J]. Journal of Sound and Vibration,2003,198 (5): 1127-1141.
    [12]Ju S. H. Finite element analysis of structure-borne vibration from high-speed train [J]. Soil Dynamics and Earthquake Engineering,2007,27 (3):259-273.
    [13]Ju S. H. and Lin H. T. Experimentally investigating finite element accuracy for ground vibrations induced by high-speed trains [J]. Engineering Structures, 2008,30 (3):733-746.
    [14]Ju S. H., Lin H. T. and Huang J. Y. Dominant frequencies of train-induced vibrations [J]. Journal of Sound and Vibration,2009,319 (1-2):247-259.
    [15]沈锐利.高速铁路梁式桥竖向振动分析方法研究[J].桥梁建设,1996,(2)46-49.
    [16]沈锐利.高速铁路线上简支梁车桥共振问题初探[J].西南交通大学学报,1995,30(3):275-282.
    [17]沈锐利.高速铁路简支梁桥竖向振动响应研究[J].中国铁道科学,1996,17(3):24-34.
    [18]夏禾,陈英俊.车-梁-墩体系动力相互作用分析[J].土木工程学报,1992,25(2):3-12.
    [19]陈上有,夏禾,战家旺,顾戌华.变速移动荷载作用下简支梁的动力响应分析[J].中国铁道科学,2007,28(6):41-46.
    [20]张楠,夏禾.铁路桥梁在高速列车作用下的动力响应分析[J].工程力学,2005,22(3):144-151.
    [21]夏禾,张楠,高日,等.铁路桥梁与高速列车的动力试验研究[J].工程力学,2007,24(9):166-172.
    [22]张楠,夏禾,郭薇薇,夏超逸.京沪高速铁路南京大胜关长江大桥风-车-桥耦合振动分析[J].中国铁道科学,2009,30(1):41-48.
    [23]顾戌华,夏禾,郭薇薇,陈上有.直线电机轨道交通系统车桥耦合动力分析[J].工程力学,2009,26(2):203-209.
    [24]毛利军,雷晓燕.车辆-轨道耦合系统随机振动分析[J].华东交通大学学报,2001,18(2):6-13.
    [25]雷晓燕,毛利军.线路随机不平顺对车辆-轨道耦合系统动力响应分析[J].中国铁道与科学,2001,22(6):38-43.
    [26]翟婉明.高速列车-轨道-桥梁动态相互作用原理及模型[J].土木工程学报,2005,1992,38(11):132-137.
    [27]文武松,李小珍.芜湖长江大桥裕溪河桥车桥耦合振动分析[J].中国铁道 科学,2005,26(5):6-11.
    [28]李小珍,张黎明,张洁.公路桥梁与车辆耦合振动研究现状与发展趋势[J].工程力学,2008,25(3):230-240.
    [29]张志超,张亚辉,林家浩.车桥耦合系统非平稳随机振动分析的虚拟激励-精细积分法[J].工程力学,2008,25(11)197-204.
    [30]Zhang Y. H., Li Q. S. Lin J. H. and Williams F. W. Random vibration analysis of long-span structures subjected to spatially varying ground motions [J]. Soil Dynamics and Earthquake Engineering,2009,29 (4):620-629.
    [31]项海帆.大跨高耸柔性结构的风致振动[J].振动与冲击,1997,16(4):1-6.
    [32]孙景亚.大跨度屋盖结构风振动力响应分析[D].重庆大学硕士学位论文,2007.
    [33]潘峰.大跨度屋盖结构随机风致振动响应精细化研究[D].浙江大学博士学位论文,2008.
    [34]汪大绥,姚利民,花更生,等.东方艺术中心钢结构屋架的抗震设计研究[J].建筑结构学报,2006,27(3):105-112.
    [35]李永梅,郑志英,张毅刚.新型索承网壳结构非线性地震反应特性和参数分析[J].地震工程与工程振动,2006,26(6):93-100.
    [36]李星.大跨度屋盖管桁架结构在地震作用下的振动控制[D].西南交通大学硕士学位论文,2006.
    [37]Feldmann M., Heinemeyer C., Kuhn B. and Sedlacek G. Prediction of the dynamic behaviour of bridges and roof of the railway main station Berlin [J]. ZEV Rail Glasers Annalen,2006,130 (8):314-326.
    [38]陈实,徐国彬,高日.列车振动对铁路沿线结构物影响的动力分析[J].北方交通大学学报,1998,22(4):57-60.
    [39]郭聪.钢桥节点焊接局部疲劳寿命分析[D].大连理工大学硕士学位论文,2007.
    [40]管德清.焊接钢结构疲劳强度与寿命预测理论的研究[D].湖南大学博士学位论文,2003.
    [41]Yung J. and Lawrence F. V. Analytical and graphical aids for the fatigue design weldments [J]. Fatigue Fracture and Engineering Material and Structures,1985, 8 (3):223-241.
    42] Wang G. and Barkey M. E. Fatigue cracking and its influence on dynamic response characteristics of spot welded specimens [J]. Society for Experimental Mechanics,2004,44 (5):512-521.
    [43]Matteo P., Michael I. F., John E. M. and Arthur W. L. Finite element models of spot welds in structural dynamics:review and updating [J]. Computers and Structures,2005,83 (4):648-661.
    [44]Tsang K. Y., Quesnay D. L. and Bates P. J. Fatigue properties of vibration-welded nylon 6 and nylon 66 reinforced with glass fibers [J]. Composites,2008,39 (3):396-404.
    [45]沈祖炎,赵金城,童乐为.钢结构焊接方管节点疲劳性能研究[J].土木工程学报,1993,26(4):40-46.
    [46]靳慧,周奇才,张其林.焊接结构系统的疲劳可靠性分析[J].同济大学学报(自然科学版),2005,33(11):1428-1432.
    [47]靳慧,李菁,张其林,王洪军.铸钢节点环形对接焊缝的疲劳计算[J].同济大学学报(自然科学版),2009,37(1):20-25.
    [48]周太全.桥梁构件局部热点应力分析及其疲劳损伤累积过程模拟[D].东南大学博士学位论文,2003.
    [49]Mahmoud M.A. Quantitative prediction of growth patterns of surface fatigue cracks in tension analysis [J]. Engineering Fracture Mechanics,1988,30: 735-46.
    [50]Mahmoud M.A. Growth patterns of surface fatigue cracks under cyclic bending: a quantitative analysis [J]. Engineering Fracture Mechanics,1989,31:357-369.
    [51]Newman J. R. An empirical stress intensity factor equation for the surface crack [J]. Engineering Fracture Mechanics 1981,15 (1-2):185-192.
    [52]Ibsp J.B. and Agerskov H. An analytical model for fatigue life prediction based on fracture mechanics and crack closure [J]. Journal of Constructional Steel Research,1996,37 (3):.229-261.
    [53]Lee M.M.K. and Bowness D. Fatigue life prediction of offshore tubular joints using fracture mechanics [J]. Fatigue Fracture Engineering and Material Structures 1998,25 (5):1025-1032.
    [54]陈惟珍,Albrecht G. and Koesteas D钢桥焊接构件疲劳寿命预测[J].同济大学学报2001,29(1):45-49.
    [55]宋志刚.基于烦恼率模型的工程结构振动舒适度设计新理论.浙江大学,博士学位论文,2003.
    [56]Parsons K. C. and. Griffin M. J. Whole-body vibration perception thresholds, Journal of Sound and Vibration,1988,121 (2):237-258.
    [57]Griffin M. J. Handbook of Human Vibration. Academic Press, New York,1990.
    [58]Ahn S. J. and Griffin M. J. Effects of frequency, magnitude, damping, and direction on the discomfort of vertical whole-body mechanical shocks. Journal of Sound and Vibration,2008,311 (1-2):485-497.
    [59]Morioka M. and Griffin M. J. Absolute thresholds for the perception of fore-and-aft, lateral, and vertical vibration at the hand, the seat, and the foot. Journal of Sound and Vibration,2008,314 (1-2):357-370.
    [60]Zamyslowska S. E., Szymczak W. and Kowalska M. S. Vibration perception thresholds assessed by two different methods in healthy subjects. Journal of Low Frequency Noise, Vibration and Active control,2003,22 (2):71-81.
    [61]Uchikune M. Study of the effects of whole-body vibration in the low frequency range. Journal of Low Frequency Noise, Vibration and Active control,2004,23 (2):132-138.
    [62]Maeda S., Mansfield N. J. and Shibata N. Evaluation of subjective response to whole-body vibration exposure:Effect of frequency content. International Journal of Industrial Ergonomics,2008,38 (5-6):509-515.
    [63]宋志刚,金伟良.人对振动主观反应的模糊随机评价模型.应用基础与工程科学学报,2002,10(3):287-294.
    [64]宋志刚,金伟良.工程结构振动舒适度的抗力模型.浙江大学学报(工学版),2004,38(8):966-970.
    [65]宋志刚,金伟良.行走作用下梁板结构振动舒适度的烦恼率分析.振动工程学报,2005,18(3):288-292.
    [66]唐传茵,张天侠,宋桂秋.基于烦恼率模型的振动舒适度评价方法.东北大学学报(自然科学版),2006,27(7):802-805.
    [67]丁洁民,尹志刚.地铁引起建筑物振动舒适度分析.振动与冲击,2008,27(9):96-100.
    [68]黄健,王庆阳,娄宇.基于国内外不同标准的人行天桥舒适度设计研究.建筑结构,2008,38(8):106-110.
    [69]何浩祥,闫维明,张爱林,王卓.竖向环境振动下人与结构相互作用及舒适度研究.振动工程学报,2005,21(5):446-450.
    [70]何浩祥,闫维明,张爱林.人行激励下梁板结构与人体耦合作用研究.振动与冲击,2008,27(10):130-135.
    [71]Fleming D. B. and Griffin M. J, A study of the subjective equivalence of noise and whole-body vibration. Journal of Sound and Vibration,1975,42 (4): 453-461.
    [72]Howarth H. V. C. and Griffin M. J. Subjective response to combined noise and vibration:summation and interaction effects. Journal of Sound and Vibration, 1990,143 (3):443-454.
    [73]Henrietta V. C., Howarth H. V. C. and Griffin M. J. The annoyance caused by simultaneous noise and vibration from railways. Journal of the Acoustical Society of America,1991,89 (5):2317-2323.
    [74]Pauslen R. and Kastka J. Effects of combined noise and vibration on annoyance. Journal of Sound and Vibration,1995,181 (2):295-314.
    [75]Ljungberg J. K. Combined exposures of noise and whole-body vibration and the effects on psychological responses, a review. Journal of Low Frequency Noise, Vibration and Active control,2008,27 (4):267-279.
    [76]张茂雨,薛松涛,陈熔,唐和生.变频单TMD对框架结构的减振效果分析[J].力学季刊,2007,28(2):346-351.
    [77]张文学,苏木标,陈树礼MTMD参数对结构振动控制影响研究[J].石家庄铁道学院学报,2004,17(3):10-14.
    [78]Mauro D., Donatello C. and Felice C. P. Shaking-table tests on reinforced concrete frames with different isolation systems [J]. Earthquake Engineering and Structural Dynamics,2007,36 (5):573-596.
    [79]Shane C. and Biswajit B. Tuned liquid column dampers in offshore wind turbines for structural control [J]. Engineering Structures,2009,31(3):358-368.
    [80]盛平,王轶,张楠,甄伟.大型站桥合一客站建筑的舒适度研究[J].建筑结构,2009,39(12):43-45.
    [81]徐自国,马明,肖从珍.杭州湾跨海大桥观光塔舒适度分析及TMD振动控制研究[J].特种结构,2008,25(2):48-52.
    [82]史娣.武汉站桥建合建结构桥梁设计的关键技术研究[J].桥梁建设,2008, (6):34-36.
    [83]霍学晋.车桥耦合振动影响因素研究及随机振动分析[D].天津大学硕士学位论文,2007.
    [84]Yau J. D, Yang Y. B and Kuo S. R. Impact response of high speed rail bridges and riding comfort of rail cars [J]. Engineering Structures,1999,21 (21): 836-844.
    [85]Yang Y. B and Yau J. D. Vehicle-bridge interaction element for dynamic analysis [J]. Journal of Structural Engineering, ASCE,1997,123 (11):1512-1518.
    [86]Yang Y. B, Yau J. D and Hsu L. C. Vibration of simple beams due to trains moving at high speeds [J]. Engineering Structures,1997,19 (11):936-944.
    [87]沈锐利.高速铁路简支梁桥竖向振动响应研究[J].中国铁道科学,1996,17(3):24-34.
    [88]夏禾,张楠,高日,等.铁路桥梁与高速列车的动力试验研究[J].工程力学,2007,24(9):166-172.
    [89]张楠,夏禾.铁路桥梁在高速列车作用下的动力响应分析[J].工程力学,2005,22(3):144-151.
    [90]蒋通,马超勇,张昕.弹性支承条件下车-桥体系的振动分析[J].力学季刊,2004,25(2):256-263.
    [91]Fryba L. A rough assessment of railway bridges for high speed trains [J]. Engineering Structures,2001,23 (5):548-556.
    [92]铁建设[2005]140号文.新建时速200 km-250 km客运专线铁路设计暂行规定[S].北京:中国铁道出版社,2005.
    [93]张弥,夏禾,冯爱军.轻轨列车和高架桥梁系统的动力响应分析[J].北方交通大学学报,1994,18(1):1-8.
    [94]胡小勇;张光辉;谢伟平.高速列车作用下简支梁的动力响应分析[J].武汉理工大学学报,2010,32(7):125-128.
    [95]刘祥.列车荷载作用下武汉站上部钢结构的疲劳分析[D].武汉理工大学硕士学位论文,2010.
    [96]赵鹏飞,潘国华,汤荣伟,等.武汉火车站复杂大型钢结构体系研究[J].建筑结构,2009,39(1):1-4.
    [97]杜义欣,汤荣伟口赵鹏飞,等.武汉火车站复杂结构及其支撑结构的屈曲分析研究[J].建筑结构,2009,39(1):5-7.
    [98]汤荣伟,赵鹏飞,李跃林,等.武汉火车站空间多平面圆钢管相贯节点承载力计算[J].建筑结构,2009,39(1):8-10.
    [99]马宏睿,赵鹏飞,汤荣伟,等.武汉火车站雨棚结构施工模拟计算分析[J].建筑结构,2009,39(1):31-33.
    [100]Parsons K. C. and. Griffin M. J. Whole-body vibration perception thresholds, Journal of Sound and Vibration,1988,121 (2):237-258.
    [101]Griffin M. J. Handbook of Human Vibration. Academic Press, New York,1990.
    [102]Ahn S. J. and Griffin M. J. Effects of frequency, magnitude, damping, and direction on the discomfort of vertical whole-body mechanical shocks. Journal of Sound and Vibration,2008,311 (1-2):485-497.
    [103]Morioka M. and Griffin M. J. Absolute thresholds for the perception of fore-and-aft, lateral, and vertical vibration at the hand, the seat, and the foot. Journal of Sound and Vibration,2008,314 (1-2):357-370.
    [104]Griffin M.J. Handbook of Human Vibration [M]. London:Academic Press, 1994.
    [105]宋志刚.基于烦恼率模型的工程结构振动舒适度设计新理论[D].浙江大学博士学位论文,2003.
    [106]颜峰,钱基宏,赵鹏飞,等.武汉火车站高速列车对建筑结构的振动影响研究[J].建筑结构,2009,39(1):25-27.
    [107]阳升,钱基宏,赵鹏飞,等.武汉火车站大跨度楼面结构振动舒适度研究[J].建筑结构,2009,39(1):28-30.
    [108]International Standard 10137:Bases for design of structures—Serviceability of buildings and walkways against vibration [S].2007.
    [109]张昕.高价轨道交通引起环境振动实测和理论分析研究[D].同济大学博士学位论文,2002.
    [110]贺才春,傅伟.焊接的疲劳应力分析[J].焊接,2004,(5):10-13.
    [111]张开林.基于热点应力法的转向架构架疲劳寿命工程评定方法[J].机车电传动,2006,(5):8-10.
    [112]靳慧,张其林,王洪军.铸钢节点的构件疲劳强度验算方法[J].钢结构,2008,23(10):17-21.
    [113]靳慧,李菁,张其林,王洪军.铸钢节点环形对接焊缝的疲劳计算[J].同济大学学报,2009,37(1):20-24.
    [114]Hong Tae Kang, Yung-Li Lee, Xichen Jackson Sun. Effects of residual stress and heat treatment on fatigue strength of weldments[J]. Materials Science and Engineering,2008,497(1-2):37-43.
    [115]G. Savaidis, M. Vormwald. Hot-spot stress evaluation of fatigue in welded structural connections supported by finite element analysis [J]. International Journal of Fatigue,2000, (22):85-91.
    [116]过玉卿,龙靖宇.改进雨流计数法及其统计处理程序[J].武汉钢铁学院学报,1987,(1):22-28.
    [117]董乐义,罗俊,程礼.雨流计数法及其在程序中的具体实现[J].计算机技术与应用,2004,24(3)38-40.
    [118]周俊,童小燕.雨流计数的快速实现方法[J].科学技术与工程,2008,8(13):3544-3547.
    [119]徐灏.疲劳强度[M].北京:高等教育出版社,1988.
    [120]Doerk O, Fricke W and Weissenbom C. omparison of different calculation method for structural stresses at welded joints [J]. International Journal of Fatigue,2003,25 (5):3592369.
    [121]杨和振,李华军.深海钢悬链立管时域疲劳寿命预估研究[J].振动与冲击,2010,29(3):22-25.
    [122]XIII-1458-92 XV-797-92, IIW Commissions XIII and XV Recommendations concerning stress determination for fatigue analysis of welded components IIW Doc [S].
    [123]周张义,李芾,安琪,等.钢结构焊缝疲劳强度分析技术的最新进展[J].中国铁道科学,2009,30(4):70-76.
    [124]Hobbacher, A.F. The new IIW recommendations for fatigue assessment of welded joints and components-A comprehensive code recently updated [J]. International Journal of Fatigue,2009,31 (1):50-58.
    [125]王国波.桥建合一大跨度钢结构振动效应研究[R].武汉理工大学博士后研究文,2009.
    [126]Niemi E. Stress determination for fatigue analysis of welded components [M]. Cambridge:Abington Publish2ing,1995.
    [127]靳慧,李菁,张其林,王洪军.铸钢节点环形对接焊缝的疲劳计算[J].同济大学学报(自然科学版),2009,37(1):20-24.
    [128]DNV (Det Norske Veritas). Recommended Practice DNV-RP-203. Fatigue Design of Offshore Steel Structures [S],2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700