用户名: 密码: 验证码:
永磁球形电动机动力学解耦控制及通电策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对一种新型永磁球形电动机,本文讨论了其主要结构特征,并对该电动机进行了动力学建模,分析了其模型误差及产生原因。根据动力学模型中存在大量非线性耦合项的特点,本文提出了一种基于模糊控制器的动力学解耦控制算法;随后,为消除动力学模型中的不确定性,进一步改善解耦控制效果,又提出了一种基于神经网络辨识器和ANFIS的动力学解耦控制算法。这两种控制算法均采用计算力矩法的结构,能消除各欧拉角轴向之间的非线性交叉耦合,提高系统的动态和静态性能。仿真分析验证了提出算法的正确性。
     本文提出了一种基于球面规划的定子绕组通电策略。首先,用有限元法得到了永磁球形电动机的静态转矩模型。然后,将定子球面上定子绕组覆盖区域进行球面规划,划分为四类子区域,用解析法对所有子区域进行描述,并根据相似三角形原理对各个定子绕组进行标号。最后,根据转子的位置,用特定的法则确定需要通电的定子绕组,并调用静态转矩模型,求解得到通电电流大小。采用该通电策略后,永磁球形电动机能在不同控制算法下实现复杂的轨迹跟踪运行。仿真分析验证了该通电策略的合理性。
     对于永磁球形电动机逆运动学问题来说,解析求解较为复杂。针对此问题,本文提出了一种基于神经网络的逆运动学求解方法,用神经网络来逼近该电动机的逆运动学模型;根据神经网络采用L-M优化算法时的样本学习效果,确定了此神经网络的最优结构。随后,本文又提出了一种基于改进蚁群算法的逆运动学求解方法,验证了该算法的优越性,并对其参数设置进行了研究。
     本文搭建了基于DSP TMS320F2812的永磁球形电动机双闭环自转调速实验平台,并对硬件电路的各主要部分进行了讨论。通过对永磁球形电动机的转子位置和母线电流的检测,实现了其双闭环调速控制。从调速效果可以看出,永磁球形电动机能够实现较快的启动和平稳的运行。
One kind of Permanent Magnet Spherical Motor (PMSM) is proposed in this paper, and the mechanical structure of each part is discussed first. Dynamical modeling of PMSM is made, and model errors, including structured uncertainties and unstructured uncertainties, are analyzed. According to the fact that there exist lots of inter-axis nonlinear couplings in its dynamic model, dynamic decoupling algorithms based on fuzzy controllers is proposed. In order to eliminate the effects of inter-axis couplings in the dynamic model, the dynamic decoupling algorithm with neural network identifier and ANFIS is proposed then. The two proposed algorithms, in which Computed Torque Method (CTM) structure is employed, can eliminate the couplings and improve the static and dynamic performances of the control system. Simulations verify the effectiveness of the proposed algorithms.
     A spherical planning based electrifying strategy of PMSM is proposed. First, the Finite Elements Method (FEM) is employed to obtain the static torque model of PMSM. Then the region with stator coils shaded on Stator Spherical Surface is spherically planned and divided into four classes of sub-regions, which can be analytically expressed. All stator coils are labeled according to similar triangle principle. Finally, static torque model is employed and linear equations are solved to obtain the electrifying stator coils and the electrifying currents. PMSM can realize complex trajectory tracking operations under different algorithms with the proposed electrifying strategy applied. The simulations are made, and the effectiveness of the proposed electrifying strategy is verified.
     With regards to the inverse kinematics problem of PMSM, analytically solving methods are complicated relatively. Solving methods of inverse kinematics based on feed forward neural network and that based on Advanced Ant Colony Algorithm (AACA) is proposed separately. Through the study of training data, neural network can approach the inverse model. According to the learn effects of training data with L-M algorithm applied, the optimum structure of the neural network for the inverse kinematics problem is determined. The AACA is then proposed to solve the inverse kinematics problem. the advantages of AACA are verified, and the parameters’configurations of AACA are discussed according to the solving effects.
     According to the mechanical structure of PMSM, each main part of hardware circuit are discussed, and the hardware experiment platform based on TMS320F2812 DSP is built. Through the detection of rotor’s position and bus current, the hardware platform can realize two closed-loops speed regulations with rapid start and stable operation.
引文
[1]МиляхА.Н.,ОсновыТерииЗлектродинамическихСистемсТремяСтепенямиСвободыДвижения, 1956.
    [2] Williams F., Laithwaite E., Eastham J.. Development of design of spherical induction motors [J]. The Institution of Electrical Enginees, 1959, 11: 471-484.
    [3] Williams F., Laithwaite E., Eastham J. F., et al. Brushless Variable-Speed Induction Motors [J]. IEEE Proceedings, 1956: 102-118.
    [4] Laithwaite E.. Design of Spherical Motors [J]. Electrical Times, 1960, 9: 921-925.
    [5]反町诚宏,球面モヘタ,日本专利,昭60-139159.
    [6] Purczyński J.. Calculation of power losses and driving torque in spherical symmetry induction motor [J]. Archiv fur Elektrotechnic, 1986: 69-76.
    [7] Kok-Meng Lee, Zhiyong Wei, Jeffry Joni. Parametric Study on Pole Geometry and Thermal Effects of a VRSM [C]. IEEE International Conference on Robotics, Automation and Mechatronics, 2004: 548-553.
    [8] George J. Vachtsevanos, Kent Davey, Kok-Meng Lee. Development of a novel intelligent robotic manipulator [J]. Contorl Systems Magazine, 1987: 9-15.
    [9] Kok-Meng Lee, Chi-Kong Kwan. Design Concept Development of a Spherical Stepper for Robotic Applications [J]. IEEE Transactions on Robotics and Automation, 1991, 7(1): 175-180.
    [10] Kok-Meng Lee, Raye A. Sosseh. Effects of Fixture Dynamics on Back-Stepping Control of A VR Spherical Motor [C]. 7th International Conference on Control, Automation, Robotics and Vision, 2002: 384-389.
    [11] Kok-Meng Lee, Hungsun Son, Jeffry Joni. Concept Development and Design of A Spherical Wheel Motor (SWM) [C]. IEEE International Conference on Robotics and Automation, 2005: 3652-3657.
    [12] Kok-Meng Lee, Hungsun Son. Torque Model for Design and Control of A Spherical Wheel Motor [C]. 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2005: 335-340.
    [13] Hungsun Son, Kok-Meng Lee. Distributed Multipole Models for Design and Control of PM Actuators and Sensors [J]. IEEE/ASME Transactions of Mechatronics, 2008, 13(2): 228-238.
    [14] Hungsun Son, Kok-Meng Lee. Distributed Multi-Pole Model for Motion Simulation of PM-based Spherical Motors [C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2007: 1-6.
    [15] Kok-Meng Lee. Orientation Sensing System and Method for A Spherical Body. U. S. Patent 5319577, April 25, 1995.
    [16] Kok-Meng Lee, Debao Zhou. A Real-Time Optical Sensor for Simultaneous Measurement of Three-DOF Motions [J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(3): 499-507.
    [17] Liang Yan, I-Ming Chen, Chee Kian Lim, et al. Experimental Investigation on the Magnetic Field of A Permanent Magnet Spherical Actuator [C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2005: 347-352.
    [18] Liang Yan, I-Ming Chen, Chee Kian Lim, et al. Torque Modeling of Spherical Actuators with Double-Layer Poles [C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006: 5447-5452.
    [19] Chee Kian Lim, Liang Yan, I-Ming Chen, et al. Mechanical Design & Numerical Electromagnetic Analysis of a DC Spherical Actuator [C]. IEEE International Conference on Robotics, Automation and Mechatronics, 2004: 536-541.
    [20] Liang Yan, I-Ming Chen, Guilin Yang, et al. Analytical and experimental investigation on the magnetic field and torque of a permanent magnet spherical actuator [J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(4): 409-419.
    [21] Liang Yan, I-Ming Chen, Chee Kian Lim, et al. Design and analysis of a permanent magnet spherical actuator [C]. IEEE/RSI International Conference on Intelligent Robots and System, 2005: 2607-2612.
    [22] Klemens Kahlen, Ingo Vo?, Rik W. De Doncker. Torque Control of A Spherical Machine with Variable Pole Pitch [J]. IEEE Transactions on Power Electronics, 2004, 19(6): 1628-1634.
    [23] Klemens Kahlen, Rik W. De Doncker. Current Regulators for Multi-Phase Permanent Magnet Spherical Machines [C]. IEEE Industry Applications Conference, 2000, 3: 2011-2016.
    [24] Klemens Kahlen, Ingo Vo?, Rik W. De Doncker. Control of multi-dimensional drives with variablepole pitch [C]. 37th Industrial Application Conference, 2002, 4: 2366-2370.
    [25]阮江军,黄声华.球形电动机磁场和电磁转矩计算[J].武汉水利电力大学学报, 1998, 31(6): 43-46.
    [26] Wan Shanming, Huang Shenghua, Fu Guangjie. The Adaptive Control of Three-Degrees-of-Freedom Spherical Motor [C]. IEEE International Conference on Electric Machines and Drives, 1997: MB2/11.1-MB2/11.3.
    [27]黄声华,陶醒世,林金铭.三维电动机的电磁模型[J].电工技术学报, 1994, 4: 17-20.
    [28]黄声华,陶醒世,林金铭.三维电动机力学模型及解耦控制[J].电工技术学报, 1996, 11(1): 12-16.
    [29]黄声华,陶醒世.三维电动机的矢量控制[J].电工技术学报, 1995, 4: 20-24.
    [30]黄声华.三维电动机及其控制系统[M].华中理工大学出版社(现华中科技大学出版社), 1998.
    [31]黄声华,陶醒世.三自由度电动机自适应控制[J].电工技术学报, 1998, 2(1): 10-12.
    [32]万山明,黄声华.空间坐标系中的三维电动机[J].中国电机工程学报, 1998, 18(5): 305-309.
    [33]黄声华,万山明.三维电动机的能量回馈控制[J].电力电子技术, 1998, 32(1): 37-39.
    [34]阮江军,黄声华.球形电动机磁场和电磁转矩计算[J].武汉水利电力大学学报, 1998, 31(6): 43-46.
    [35] Gregory S. Chirikjian, David Stein. Kinematic Design and Commutation of a Spherical Stepper Motor [J]. IEEE/ASME Transactions on Mechatronics, 1999, 4(4): 342-353.
    [36] David Stein, Edward R. Scheinerman and Gregory S. Chirikjian. Mathematical Models of Binary Spherical-Motion Encoders [J]. vol. 8, no. 2, June, 2003: 234-244.
    [37] David Stein, Gregory S Chirikjian. Experiments in the Commutation and Motor Planning of a Spherical Stepper Motor [C]. 2000 ASME Design Engineering Technical Conferences and Computers Information in Engineering Conference, 2000, 9: 1-7.
    [38]吴立建,王群京,杜世俊等.磁场积分法在永磁步进球形电动机场分析中的应用[J].中国电机工程学报, 2004, 24(9): 192-197.
    [39]王群京,陈丽霞,吴立建等.基于加权无向图的永磁球形步进电机运动控制[J].中国电机工程学报, 2005, 25(9): 130-134.
    [40]王群京,陈丽霞,李争等.基于光电传感器编码的永磁球形步进电机运动控制[J].中国电机工程学报, 2005, 25(13): 113-117.
    [41] Qunjing Wang, Zheng Li, Lixia Chen, et al. The Motion Control Algorithm and Orientation Detection Methodology of a Spherical Stepper Motor [C]. IEEE International Conference on Information Acquisition, 2005: 65-71.
    [42]王群京,李争.一种永磁球形步进电动机的运动分析与仿真[J].系统仿真学报, 2005, 17(9): 2260-2264.
    [43]王群京,雍爱霞,张胜虎.永磁球形步进电机转子位置检测的全局优化[J].中国电机工程学报, 2007, 27(33): 11-16.
    [44]雍爱霞,金华蓉,王群京.基于状态空间的球形电动机转子智能位置检测[J].微电机, 2007, 40(10): 13-17.
    [45] Qunjing Wang, Qun Xia. Switching Control Algorithm for the Permanent Magnet Spherical Stepper Motor [J]. Transactions of China Electrotechnical Society, 2008, 23(2): 11-18.
    [46]王群京,夏鲲,李争.一种永磁多维球形步进电机稳定位置计算[J].合肥工业大学学报, 2006, 29(12): 1592-1596.
    [47]王群京,夏鲲,孔凡让.永磁球形步进电机三维运动电流控制仿真分析[J].中国科学技术大学学报, 2007, 37(1): 39-45.
    [48] Chang-Hyun Cho, Dong-Woo Kang, Su-Yong Kim, et al. Using Mathematical Method of Torque Simulation for Reducing Calculation Time of Permanent Magnet Spherical Wheel Motor [C]. IEEE International Conference on Electrical Machines and Systems, 2008: 3112-3115.
    [49] Dong-Woo Kang, Won-Ho Kim, Sung-Chul Go, et al. Method of Current Compensation for Reducing Error of Holding Torque of Permanent-Magnet Spherical Wheel Motor [J]. IEEE Transactions on Magnetics, 2009, 45(6): 2819-2822.
    [50] Changliang Xia, Hongfeng Li, Tingna Shi, 3-D Magnetic Field and Torque Analysis of a Novel Halbach Array Permanent-Magnet Spherical Motor [J]. IEEE Transactions on Magnetics, 2008, 44(8): 2016-2020.
    [51] Hongfeng Li, Changliang Xia, Tingna Shi. Spherical Harmonic Analysis of a Novel Halbach Array PM Spherical Motor [C]. IEEE International Conference on Robotics and Biomimetics, 2007: 2085-2089.
    [52] Hongfeng Li, Changliang Xia, Peng Song, et al. Magnetic Field Analysis of A Halbach Array PM Spherical Motor [C]. IEEE International Conference on Automation and Logistics, 2007: 2019-2023.
    [53]夏长亮,李洪凤,宋鹏.基于Halbach阵列的永磁球形电动机磁场研究[J].电工技术学报, 2007, 22(7): 126-130.
    [54] Changliang Xia, Peng Song, Hongfeng Li, et al. Research on torque calculation method of permanent-magnet spherical motor based on the finite-element method [J]. IEEE Transactions on Magnetics, 2009, 45(4): 2015-2022.
    [55]宋鹏,夏长亮,李洪凤等.永磁球形电动机转矩特性的数值计算与分析[J].天津大学学报, 2009, 42(7): 608-613.
    [56] Peng Song, Changliang Xia, Tingna Shi. Torque Characteristic Investigation of a Permanent Magnet Spherical Motor [C]. IEEE international Conference on Robotics and Biomimetics, 2007: 2101-2105.
    [57] Chen Guo, Changliang Xia. A dynamic decoupling control algorithm for Halbach array permanent magnet spherical motor based on computed torque method [C]. IEEE International Conference on Robotics and Biomimetics, 2007: 2090-2094.
    [58] Changliang Xia, Chen Guo, Tingna Shi. A new algorithm for dynamic decoupling control of HPMSM using fuzzy controllers [C]. IEEE International Conference on Industrial Electronics and Automation, 2008: 1031-1035.
    [59] Xia Changliang, Guo Chen, Shi Tingna. A Neural Network Identifier and Fuzzy Controller Based Algorithm for Dynamic Decoupling Control of Permanent Magnet Spherical Motor [J]. IEEE Transactions on Industrial Electronics.(已录用)
    [60] Bin Li, Changliang Xia, Hongfeng Li, et al. Study on the position identification of a Halbach array permanent magnet spherical motor [C]. IEEE International Conference on Robotics and Biomimetics, 2007: 2080-2084.
    [61]蔡自兴.机器人学[M].北京:清华大学出版社, 2000.
    [62]宋伟刚.机器人学—运动学、动力学与控制[M].北京:科学出版社, 2007.
    [63]赵锡芳.机器人动力学[M].上海:上海交通大学出版社, 1992.
    [64]郑建荣. ADAMS—虚拟样机技术入门与提高[M].北京:机械工业出版社, 2002.
    [65]陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社, 2005.
    [66]陈军. MSC. ADAMS技术与工程分析实例[M].北京:水利水电出版社, 2008.
    [67]申铁龙.机器人鲁棒控制基础[M].北京:清华大学出版社, 2000.
    [68]熊有伦.机器人学[M].北京:机械工业出版社, 1993.
    [69]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社, 2004.
    [70] Khalilw, Kleinfinger J. F., Gautier M. Reducing the computational burden of the dynamic model of robots [C]. IEEE International Conference on Robotics and Automation, 1986: 525-531.
    [71] G. J. Liu, A. A. Goldenberg. Experiments on Robust Control of Robot Manipulators [C]. IEEE International Conference on Robotics and Automation, 1992: 1935-1940.
    [72] T. C. Hsia, Seul Jung. A Simple Alternative to Neural Network Control Scheme for Robot Manipulators [J]. IEEE Transactions on Industrial Electronics, 1995, 42(2): 414-416.
    [73] Daniela Vassileva, George Boiadjiev, Haruhisa Kawasaki, et al. Application of the Servo-control Method with Standard Corrections for Robot-manipulators Control [C]. International Conference on Mechatronics and Automation, 2007: 3238-3243.
    [74] Yeong-Hwa Chang, Chia-Wen Chang, Jin-Shiuh Taur, et al. Fuzzy Swing-Up and Fuzzy Sliding-Mode Balance Control for a Planetary-Gear-Type Inverted Pendulum [J]. IEEE Transactions on Industrial Electronics, 2009, 56(9): 3751-3761.
    [75] Liping Guo, John Y. Hung, R. M. Nelms. Evaluation of DSP-Based PID and Fuzzy Controllers for DC-DC Converters [J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 2237-2248.
    [76] E. Eroglu, G. Cansever, I. B. Kucukdemiral, et al. PD, PID and Fuzzy Logic Control of Three Link Planar Arm [C]. the forth International Workshop on Robot Motion and Control, 2004: 191-196.
    [77] V. Santibanez, Rafael Kelly, M. A. Llama. Fuzzy PD+ Control for Robot Manipulators [C]. IEEE International Conference on Robotics and Automation, 2000(3): 2112-2117.
    [78] Hou Xuan, He Mingyi. Study of detection technique simulation of resolution radar based on BP neural network [C]. 3rd IEEE International Conference on Natural Computation, 2007, 1: 426-430.
    [79]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社, 2003.
    [80]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社, 1998.
    [81]飞思科技产品研发中心. MATLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社, 2003.
    [82]张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社, 1998.
    [83] Baris Yalcin, Kouhei Ohnishi. Infinite-Mode Neural Networks for Motion Control [J]. IEEE Transactions on Industrial Electronics, 2009, 56(8): 2933-2944.
    [84] Shady M. Gadoue, Damian Giaouris, John W. Finch. Sensorless Control of Induction Motor Drives at Very Low and Zero Speeds Using Neural Network Flux Observers [J]. IEEE Transactions on Industrial Electronics, 2009, 56(8): 3029-3039.
    [85] Wen Jin, Zhao Jiali, Luo Siwei, et al. The improvements of BP neural network learning algorithm [C]. IEEE International Conference on Signal Processing, 2000, 3: 1647-1649.
    [86] Shen Zhihe, Liu Feng. Applying improved BP neural network in underwater target recognition [C]. IEEE International Joint Conference on Neural Network, 2006: 2588-2592.
    [87] Pan Hao, Jing-Ling Yuan, Luo Zhang. Probing modification of BP neural network learning-rate [C]. IEEE International Conference on Machine Learning and Cybernetics, 2002, 1: 307-309.
    [88] Wen Ding, Deliang Liang. Modeling of a 6/4 Switching Reluctance Motor Using Adaptive Neural Fuzzy Inference System [J]. IEEE Transactions on Magnetics, 2008, 44(7): 1796-1804.
    [89] Zhuo Wang, Yanhui Wang, Limin Jia, et al. Study on High-Speed Train Braking Control Simulation Based on ANFIS [J]. Journal of the China Railway Society, 2005, 27(3): 113-117.
    [90]沈鹏,李小华,陈雪波.基于ANFIS的水净化过程控制仿真[J].控制学报, 2006, 13: 8-11.
    [91]叶吉祥,路秋静,唐贤瑛.基于ANFIS的微波炉温度控制[J].计算机工程与设计, 2004, 25(11): 2119-2121.
    [92]李志海,王耀南,陈正龙.基于模糊神经网络的纯电动车动力系统控制研究[J].交通与计算机, 2008, 1(26): 44-48.
    [93]王洪斌,宋佐时,王洪瑞.基于模糊神经网络的机器人逆运动学问题[M].系统仿真学报, 2002, 14(7): 852-855.
    [94]钟飞,钟毓宁. Mamdani与Sugeno型模糊推理的应用研究[M].湖北工业大学学报, 2005, 20(2): 28-30.
    [95]李华,张斌.基于Takagi-Sugeno型神经模糊控制系统仿真研究[J].兰州铁道学院学报(自然科学版), 2002, 21(1): 10-12.
    [96] Alexander Stotsky. Adaptive Estimation of the Engine Friction Torque [C]. 44th IEEE Conference on Decision and Control, and the European Control Conference, 2005: 6710-6715.
    [97] Dong-Hee Lee, Jin-Woo Ahn. Dual Speed Control Scheme of Servo Drive System for A Nonlinear Friction Compensation [J]. IEEE Transactions on Power Electronics, 2008, 23(2): 959-965.
    [98] Jae-Sung Lee, Dae-kyong Kim, Soo-whang Baek, et al. Newly Structured Doubled Excited Two-Degree-of-Freedom Motor for Security Camera [J]. IEEE Transactions on Magnetics, 2008, 44(11): 4041-4044.
    [99]刘国强,赵凌志,蒋继娅. Ansoft工程电磁场有限元分析[J].北京:电子工业出版社, 2005.
    [100]张干宗.线性规划[M].武汉:武汉大学出版社, 2004.
    [101]林齐华,王良珍.球面图法与空间角度计算[M].上海:科学技术出版社, 1992.
    [102]李鲲鹏,胡虔生,黄允凯.计及绕组电感的永磁无刷直流电动机电路模型及其分析[J].中国电机工程学报, 2004, 24(1): 76-80.
    [103]周雪松,何杰,张春朋等.基于TMS320F28335 DSP的三电平逆变器[J].电力电子技术, 2009, 43(4): 21-23.
    [104]宫鑫,宋稳力.基于TMS320F28335的三相PWM整流器设计与实现[J].机械与电子, 2008, 3: 75-77.
    [105] Yu Cai, Seungjune Jeon, Ken Mai, et al. Highly Parallel FPGA Emulation for LDPC Error Floor Characterization in Perpendicular Magnetic Recording Channel [J]. IEEE Transactions on Magnetics, 2009, 45(10): 3761-3764.
    [106] Sathyan A, Milivojevic N, Young-Joo Lee, et al. An FPGA-Based Novel Digital PWM Control Scheme for BLDC Motor Drives [J]. IEEE Transactions on Industrial Electronics, 2009, 56(8): 3040-3049.
    [107] Lin Zou, Zhenghua Ma. The Application of Levenberg-Marquartb Algorithm in EEG Inverse Problem [J]. Chinese Journal of Biomedical Engineering (English Edition), 2005, 14(1): 32-40.
    [108]王则胜,施朝健.基于改进的神经网络的船舶碰撞危险度的模型[J].中国航海, 2007, 1: 65-67.
    [109] Marco Dorigo, Luca Maria Gambardella. Ant Colony System: a Cooperative Learning Approach to the Traveling Salesman Problem [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
    [110]翟海保,程浩忠,吕干云等.基于模式记忆并行蚁群算法的输电网规划[J].中国电机工程学报, 2005, 5, 25(9): 17-22.
    [111]赵庆杞,黎明,张化光.基于蚁群算法的灵敏负荷调度[J].中国电机工程学报, 2006, 12, 26(25): 15-21.
    [112]余玲,刘康,李开世.蚁群算法的连续空间算法研究[J].机械设计与研究, 2006, 4, 22(2): 6-9.
    [113]苏奎峰. TMS320F2812原理与开发[M].北京:电子工业出版社, 2006.
    [114]张卫宁. TMS320C28x系列DSP的CPU与外设: TMS320F2812DSP数据手册[M].北京:清华大学出版社, 2005年.
    [115]张斌,费树岷,王冬晓.基于DSP2812的永磁同步电机控制系统设计[J].工业控制计算机, 2009, 22(9): 61-63.
    [116]李陆雨,刘俊杰,方明.基于TMS320F2812的机器人控制系统[J].湖北工业大学学报, 2009, 24(2): 34-36.
    [117]林志琦,杨东鑫,路永健.基于DSP2812的自由空间激光通信快速定位跟踪系统[J].兵工自动化, 2007, 26(2): 27-28.
    [118]沈娜,王炅,王晓峰.基于DSP的磁流变智能控制器的实现[J].电子测量技术, 2007, 30(12): 126-129.
    [119]程远楚,刘沙,黄克峰.基于DSP2812的静止无功补偿控制器[J].自动化仪表, 2008, 29(12): 58-61.
    [120]刘在祥,汪小平.基于DSP2812嵌入式开发平台的以太网通讯的实现[J].安徽工业大学学报, 2007, 24(4): 412-415.
    [121]南京艾驰电子科技有限公司. AH3134高灵敏度单极霍尔开关电路[中文技术资料].
    [122] IXYS. HiPerFETTM Power MOSFETs[英文技术资料], 2000.
    [123]杨承上. IGBT的过电压保护及其缓冲电路的研究[J].工会博览, 2009: 78.
    [124]王鹏程,郑建勇.高频条件下对IGBT逆变器缓冲电路的改进[J].电工电气, 2009, 10: 4-8.
    [125] International Rectifier. IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF. Data Sheet No. PD60147 rev.U [英文技术资料].
    [126]张明,章国宝. IR2110驱动电路的优化设计[J].电子设计工程, 2009, 17(12): 66-68.
    [127]方彦军,伍周. IR2110在机器人驱动系统中的应用[J].微电机, 2009, 42(2): 57-61.
    [128]郝建强,张建. IR2110在电机驱动中的应用[J].微电机, 2008, 6: 51-52.
    [129] Avago Technologies. High CMR, High Speed TTL Compatible Optocouplers[英文技术资料]. 2008.
    [130]邵晖,舒嵘.光电隔离器6N137的特性和应用[J].电子技术, 1996, 2: 38-39.
    [131]北京森社电子有限公司.宇波模块: LA-50P[中文技术资料], 2008.
    [132]彭良玉,罗光明,黄满池.基于MAX274的八阶连续时间带通滤波器的设计[J].电气电子教学学报, 2009, 31(2): 57-59.
    [133] Maxim Integrated Products. 4th- and 8th-order Continuous-Time Active Filters(Technical Data in English), 1996.
    [134]于春香. MAX274有源滤波器的设计应用[J].集成电路通讯, 2007, 25(2): 12-15.
    [135] B. Bona, M. Indri. Friction compensation and robustness issues in force/position controlled manipulators [J]. IEE Proceedings of Control Theory Applications, 1995, 142(6): 569-574.
    [136] Tsuneo Yoshikawa, Kensuke Harada, Atsushi Matsumoto. Hybrid Position Force Control of Flexible-Macro-Rigid-Micro Manipulator System [J]. IEEE Transactions on Robotics and Automations, 1996, 12(4): 633-640.
    [137] Satoshi Komada, Noriyoshi Machii, Takamasa Hori. Control of Redundant Manipulators Considering Order of Disturbance Observer [J]. IEEE Transactions on Industrial Electronics, 2000, 47(2): 413-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700