用户名: 密码: 验证码:
洛仑兹平面电机的结构动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洛仑兹平面电机是由三个洛仑兹直线电机(Y1、X和Y2)组合而成的新型永磁平面电机,可实现三自由度平面定位运动。任何来自于外部激励或自身内部的微小振动,都会对系统定位精度带来极大影响,所以应对洛仑兹平面电机结构动态特性及振动进行深入地研究。本文以洛仑兹平面电机为研究对象,以理论分析、数值计算和物理实验为研究方法,结合了结构动力学、弹性力学及电磁场等相关理论,辨识了洛仑兹平面电机法向电磁动力学参数,建立了系统结构振动的有限元模型,计算了洛仑兹平面电机的实特性值、频率响应和瞬态响应等结构动态特性,分析了定、动子间法向振动传递机理及影响因素。其主要内容和成果包括:
     采用等效面电流法推导了三维永磁体磁场及通电线圈产生的磁场,建立了空间位置、磁钢与线圈尺寸、面磁化电流密度与气隙磁场的函数关系式,并建立了洛仑兹平面电机的磁通链及驱动电路等数学模型;在水平运动方向上,对三个洛仑兹直线电机进行坐标转换及驱动力解耦,建立了电磁动力学模型,为系统运动控制建模打下基础;在法向振动方向上,建立了洛仑兹平面电机的定、动子振动方程,得到了定子挠度与法向电磁力、电流等的关系,分析了定、动子之间法向电磁力的传递过程,阐明了电流激励下定、动子间耦合振动传递机理。
     运用三维电磁场有限元数值计算和模态实验来辨识法向电磁刚度,运用模态分析法、能量守恒原理及模态实验来辨识法向电磁阻尼。根据洛仑兹平面电机实际的连接和约束关系,采用手动六面体网格剖分,加载等效的法向电磁弹簧,建立洛仑兹平面电机的系统结构动力学有限元模型。基于该结构有限元模型,编写结构系统动态计算程序,计算得到了洛仑兹平面电机的实特性值、频率响应和瞬态响应等结构动态特性。
     基于洛仑兹平面电机结构动态特性分析,进一步分析了激励电流、法向位移和运动速度等参数对系统动态特性及定、动子耦合振动传递的影响。其中,建立了载流线圈的拉格朗日方程和定子的耦合振动方程,理论分析了激励电流和法向位移对动力学特性的影响。运用有限元数值计算,得到了电流和法向位移与动子固有频率的关系。计算了在不同运动速度下,瞬态涡电流和瞬态电磁阻尼的大小。分析运动速度越大,形成的涡电流就越大,产生的电磁阻尼也就越大。这些研究结果为洛仑兹平面电机的结构优化及运动控制策略打下良好基础。
     搭建了洛仑兹平面电机原理样机和实验测试系统,进行了气隙磁场和推力常数测试,得到实际气隙磁场大小及分布,并与电磁有限元模型仿真结果进行对比,验证了三维磁场有限元模型的合理性和计算的正确性;运用LMS系统进行了动力学振动测试,得到了系统的固有频率、振型、频域响应、时域响应等结果,与结构动力学有限元模型计算结果进行对比,验证了法向电磁动力学参数辨识的正确性和系统结构有限元模型的合理性。
     本文研究揭示了洛仑兹平面电机定、动子耦合振动传递产生的机理,提出了法向电磁动力学参数辨识方法,阐明了电流和法向位移等参数对系统动态特性及耦合振动传递的影响程度,为超精密平面定位系统的设计、制造和优化提供了理论依据。
Lorentz planar motor is a novel permanent magnet planar driving system propelled by linear Lorentz force, which consists of three Lorentz linear motors (Y1、X and Y2). It can achieve 3 degree of freedom positioning, i.e. translation along the X and Y directions and rotation about Z axis, Rz. The positioning stage is drived directly by Lorentz planar motor. Some microvibrations from external or internal excitations will impact the positioning accuracy of the stage. Therefore, dynamic characteristic and normal vibration of Lorentz planar motor should be deeply researched. In the thesis, the Lorentz planar motor is our research object. Our research method is theoretical analysis, numerical simulation and physical experiment. Some theories of structure dynamics, flexible mechanism and electromagnetic field are adopted. The normal electromagnetic parameters are identified using 3D finite element method and modal testing. The 3D electromagnetic finite element model, structural dynamic model and normal vibration model of Lorentz planar motor are achieved by numerical computing and physical experiment. Researches are focusing on the dynamic characteristic analysis and normal vibration transmission of the Lorentz planar motor. Contents and results as follows,
     Firstly, the 3D magnetic field in the airgap generated by permanent magnets and coils is derived by using the equivalent surface current method. The relations of sizes and positions of magnets and coils, surface magnetization current density and magnetic field of airgap are obtained. Magnetic flux linkage equations and mathematical model of Lorentz planar motor are established. Based on calculation and analysis of Lorentz forces, an electromagnetic dynamic model, which is ready for motion control in X, Y and Rz directions, is established. The normal vibration transmission between the stator and mover is illustrated. Normal vibration models of the stator and mover are built separately, which is used for obtaining the relations among structure deflections, electromagnetic forces and currents.
     Secondly, the normal electromagnetic stiffness is identified using 3D finite element method and modal testing. The electromagnetic damping ratio is effectively identified by modal testings. According to the actual connections and constraints of Lorentz planar motor, structural dynamic finite element model of the planar motor system is established by adopting manually hexahedral mesh and loading equivalent normal electromagnetic springs. Based on structural finite element model, dynamic computation procedures are compiled and the structure dynamic characteristics are in-depth computed, including the normal frequencies, frequency response and transient response.
     Then, in order to reveal some important parameters influencing on dynamic characteristics of Lorentz planar motor, we focus on analyzing the excitation current, Z-displacement and velocity in motion directions, which is a solid foundation for the motion control strategy and stuctural optimization of the Lorentz planar motor.
     Finally, a testing system of Lorentz planar motor has been set up, and the magnetic field in airgap and motor's thrust constant by experiments are achieved. The distribution of airgap's magnetic field by experiments verifies that 3D magnetic field simulation results are in good agreement with experimental results. The normal frequencies, model shape, frequency domain response and time domain response are obtained by modal testings using LMS system. Modal testing results verify that dynamic parameter identifications are accurate and structural finite element model is reasonable.
     In this dissertation, the dynamic characteristics of Lorentz planar motor are revealed, and the phenomenon of vibration transmission between stator and mover is clarified, and the methods of parameter identification of electromagnetic dynamics are proposed. These simulation models and methods will provide theoretical guidelines for mechanical structure design, optimization and control strategies, as well as the conclusions have been effective used in the research on the ultra-precision positioning stage.
引文
[1]Lee CW, Kim SW. An Ultra-precision Stage for Alignment of Wafers in Advanced Microlithography. Precision Engineering,1997,21(2):113-122
    [2]Kaiji S. Trend of Precision Positioning Technology. ABCM Symposium Series in Mechatronics,2006,2:739-750
    [3]董吉洪,田兴志,李志来等.100nm步进扫描投影光刻机工件台、掩模台的发展.微纳科学与技术,2004,11(5):20-24
    [4]陈开盛.亚微米光刻与光掩模新技术现状与研发前景.半导体技术,2000,25(5):18-21
    [5]苏雪莲.新世纪光刻技术及光刻设备的发展趋势.微电子技术,2004,29(2):8-17
    [6]刘丹,程兆谷,高海军等.步进扫描投影光刻机工件台和掩模台的进展.激光与电子学进展,2003,40(5):14-20
    [7]Dejima S, Gao W, Shimizu H, et al. Precision positioning of a five degree-of-freedom planar motion stage, Mechatronics,2005,15(8):969-987
    [8]朱煜,尹文生,段广洪.光刻机超精密工件台研究.电子工业专用设备,2004,109(2):25-27
    [9]嵇钧生.X线光刻机中应用的精密定位工作台.航空精密制造技术,1998,34(3):10-12
    [10]杨金明,吴捷,张宙等.平面电动机的现状及发展.微特电机,2003,6:31-44
    [11]Pelta ER. Two-axis sawyer motor for motion systems. IEEE Control Systems Magazine., 1987,10:1-24
    [12]Sawyer BA. Magnetic positioning device. U.S. Patent:3457482,1969-07
    [13]Luo RC, Tzou JH. Investigation of a Linear 2-D Planar Motor based Rapid Tooling System. Proc. of the 2002 IEEE International Conference on Robotics and Automation, 2002, (2):1471-1476
    [14]Arthur EQ, Alfred AR. Robust and efficient motion planning for a planar Robot using hybrid. Proc. of the 2000 IEEE International Conf. on Robotics and Automation. San Francisco,2000,4021-4026
    [15]Shalom JI. Modeling of Sawyer planar sensor and motor dependence on planar yaw angle rotation. Proc. Of the IEEE Intel. Conf. on Robotics and Automation Albuquerque, New Mexico,1997,499-3504
    [16]Brennemann AE, Hollis RL. Magnetic and optical-fluorescence Position sensing for planar linear motors. Proc. of the 2000 IEEE International Conference on Robotics and Automation. San Francisco,2000,4021-4026
    [17]Pelta ER. Two-axis sawyer motor for motion systems. IEEE Control Systems Magazine, 1987,10:0-24
    [18]Ish-Shalom J. Composite magnetic structure for planar motors. IEEE Transactions on Magnetics,1995,31(6):4077-4079
    [19]Ish-Shalom J. Sawyer sensor for planar motion systems. IEEE International Conference. Robotics and Automation, San Diego,1994:2652-2658
    [20]杨金明,张宙,潘剑飞.开关磁阻式平面电动机及其控制.中国电机工程学报,2005,25(19):116-119
    [21]常国强,詹琼华,边敦新.开关磁阻电机驱动系统场路直接耦合的数学模型.中国电机工程学报,2001,21(3):70-73
    [22]Miller TJE. Switched reluctance motor and their control. Magne Physics Publishing and Clarendon Press, Oxford,1993
    [23]Gan WC, Cheung NC. Design of a linear switched reluctance motor for high precision applications. IEEE International Electric Machines and Drives Conference, Cambridge, 2001,701-704
    [24]Gan WC,Cheung NC. Short distance position control for linear switch reluctance motors:a plug-in robust compensator approach. The 36th IEEE Industry Applications Society Annual Meeting, Chicago,2001,2329-2337
    [25]Cheung NC, Pan J, Yang J. Two dimensional variable reluctuance planar motor. U.S. Patent, US6650079 B2,2004
    [26]Ohira Y, Yamamoto Y, Takeuchi K. Magnetic Circuit Analysis of X-Y Linear Induction Motor. Transactions of IEEE of Japan,1989,109-D:675-681
    [27]Fujii N, Kihara T. Surface induction motor for two dimensional drive. Transactions of IEEE of Japan, Part D,1998,118-D(2):221-228
    [28]Fujii N, Fujitake M. Two-Dimensional Drive Characteristics by Circular Shaped Motor. IEEE Transactions on Industry Applications,1999,35(4):167-173
    [29]Fujii N, Fujitake M, HaraK. Two-Dimensional Motion with Circular Core and Plural Divided a windings Supplied separately. IEEE Transactions on Magnetics,1999,35(5): 4010-4012
    [30]Ebihara C, Watada M. Study of a basic structure of surface actuator. IEEE Transactions on Magnetics,1989,25(5):3916-3918
    [31]曹家勇,朱煜,汪劲松等.永磁同步平面电动机三自由度运动控制器.中国电机工程学报,2006,26(17):143-147
    [32]Cho HS, Jung HK. Analysis and design of synchronous permanent-magnet planar motors. IEEE Transactions on Energy Conversion,2002,17(4):492-499
    [33]Cho HS, Im CH, Jung HK. Magnetic field analysis of 2-D permanent magnet array for planar motor. IEEE Transactions on Magnetics,2001,37(51):3762-3766
    [34]Hazelton AJ, San C. Planar electric motor with two sided magnet array. U.S. Patent 2002/0149270 A1,2002
    [35]Gao W, Dejima S, et al. A surface motor-driven planar motion stage integrated with an XYθZ surface encoder for precision positioning. Precision Engineering,2004,28(3): 329-337
    [36]Dejima S, Gao W, et al. Dynamic modeling, controller design and experimental validation of a planar motion stage for precision positioning. Precision Engineering, 2005,29(3):263-271
    [37]Molenaar A, Auer F, Van Beek HF. Application of Magnetic Bearing for Contactless Ultra High Precision Positioning. Proceedings of the Fifth International Symposium on Magnetic Bearings,1996,441-445
    [38]Kim WJ, Trumper DL. High-precision magnetic levitation stage for photolithography. Precision Engineering,1998,22(2):66-77
    [39]Fujii N, Okinaga K. X-Y Linear Synchronous Motor without Force Ripple and Coreloss for precision Two-Dimension Drive. IEEE Transactions on Magnetics,2002,38(5): 3273-3275
    [40]Vermal S, Kim W, Shakir H. Multi-Axis Maglev Nanopositioner for Precision Manufacturing and Manipulation Applications. IEEE Transactions on Industry Applications,2005,41(5):1159-1167
    [41]Ebihara C, Watada M. Study of a basic structure of surface actuator. IEEE Transactions on Magnetics,1989,25(5):3916-3918
    [42]Tsuchiya J, Kimura G. Mover Structure and Thrust Characteristic of Moving-Magnet-type Surface Motor. The 27th Annual Conf. of the IEEE Industrial Electronics Society,2001:1469-1474
    [43]Flores Filho AF, Susin AA, Silveira da MA, et al. Application of Neodymium-Iron-Boron Permanent Magnets on the Assembling of a Novel Planar Actuator. IEEE Transactions on Magnetics,1999,35(5):4034-4035
    [44]Asakawa T. Two dimensional position devices, U.S. Patent:4626749,1986
    [45]Hoffman B, Pollack S. Patent laminated in mutually perpendicular direction for use with linear motors and the like. U.S. patent:4835424,1989
    [46]Chitaya. Two-axis motor with high density magnetic. U.S. Patent:5777402,1998
    [47]Trumper DL. Magnetic arrays. U.S. Patent:5631618,1997-05
    [48]Cho HS, Im CH, Jung HK. Magnetic Field Analysis of 2-D Permanent Magnet Array for Planar Motor. IEEE Transactions on Magnetics,2001,37(5):3762-3766
    [49]曹家勇,朱煜,汪劲松等.平面电动机设计、控制与应用综述.电工技术学报,2005,4:1-7
    [50]田延岭,张大卫,闫兵.二自由度微定位平台的研制.光学精密工程,2006,14(1):94-99
    [51]Tanaka K. Planar motor device, stage unite, exposure apparatus its making method, and device and it's manufacturing method, U.S. Patent:6339266,2002
    [52]Tomita, Yoshiyuki. Surafce motor-driven precise positioning system, Precision Engineering,1994,16(3):184-191
    [53]Zmood RB, Qin LJ, Kirk JA, et al. A Magnetic Bearing System Design Methodology and its Application to a 50 Wh Open Core Composite Flywheel. Energy Conversion Engineering Conference, IECEC-97, Proceedings of the 32nd Intersociety,1997, (4): 2306-2311
    [54]Fang JR, Lin LZ, Yan LG, et al. A New Flywheel Energy Storage System Using Hybrid Superconducting Magnetic Bearings. IEEE Transactions on Applied Superconductivity, 2001,11(1):1657-1660
    [55]吴刚,刘昆.磁悬浮飞轮技术及其应用研究.宇航学报,2005,26(3):385-390
    [56]Fujii N, Fujitake M, Hara K. Two-dimensional Motion with Circular Core and Plural Divided a Windings Supplied Separately. IEEE Transactions on Magnetics,1999,35(5): 4010-4012
    [57]刘红忠,卢秉恒,丁玉成等.超高精度定位系统及线性补偿研究,西安交通大学学报,2003,37:277-281
    [58]雷源忠,雒建斌,丁汉等.先进电子制造中的重要学科问题.中国科学基金,2002,16(4):204-209
    [59]阎兵,田延岭,张大卫等.基于有限元分析的纳米级微进给平台设计,天津职业技术师范学院学报,2003,13(1):1-4
    [60]杨金明,吴捷,张宙等.平面电动机的现状和发展.特微电机,2003,6:31-34
    [61]Senturia AD, Aluru N, White J. Simulating the Behavior of MEMS Device, Computatinal Method and Needs, IEEE Computational Science and Engineering,1997, 4(1):30-43
    [62]李旭宇,钟掘.基于多学科设计的复杂机电系统并行设计方法研究.机械与电子,2002,(6):29-31
    [63]Suchtelen van J. Product Properties:a New Application of Composite Materials. Philips Research Reports,1972,27:28-37
    [64]Boomgased van de J, Terrell DR, Born RA, et al. An In-situ Grown Eutectic Magnetoelectric Composite Material:Part Ⅰ, Composition and Unidirectional Solidification. Materials Science,1974,9:1705-1709
    [65]Lee PCY. A Variational Principle for the Equations of Piezoelectromagnetism in Elastic Dielectric Crystals. Applied Physics,1991,6:7470-7473
    [66]He JH. Variational Theory for Linear Magneto-electro-elastic. Non. Science. Num-er Simulation,2001,2:309-316
    [67]Qing GH, Qu JJ and Liu YH. Modified H-R Mixed Variationai Principle far Magnetoelectro-elastic Bodies and State-vector equation. Applied Mathematics and Mechanics,2005,26:722-728
    [68]Lee PCY, Yang JS and Yu JD. Stress Sensitivity of Electromagnetic Resonances in Circular Dielectric Disks. Applied Physics,1996,79:1224-1232
    [69]Wang X and Shen YP, The General Solution of Three Dimensional Problems in Magneto-electro-elastic Media. Engineering Science,2002,40:1069-1080
    [70]Chen WQ, Lee KY and Ding HJ. General Solution for Transversely Isotropic Magneto-electro-thermo-elasticity and the Potential Theory Method. Engineering Science,2004, 42:1361-1379
    [71]Zhou YH, Miya K. A theoretical prediction of natural frequency of a ferromagnetic plate with low susceptibility in in-plane magnetic field. Journal of Applied Mechanics-transactions of the ASME,1998,65(1):121-126
    [72]Zheng XJ, Zhou YH. Magnetoelastic bending and stability of current-carrying coil structures. ActaMechanica Sinica (English Edition),1997,13(3):253-263
    [73]Zheng XJ, Zhou YH, Lee SJ. Instability of superconducting partial torus with two pin supports. Engineering Mechanics,1999,125(2):174-179
    [74]Ishibashi F, Kamimoto K, Hayashi T, et al. Natural frequency of stator core of small induction motor. Proceedings of the Power Electronics Applied,2003,150(2):210-214
    [75]Ishibashi F, Katsumi K, Noda S, et al. Small Induction Motor Noise Calculation. IEEE Transactions on Energy Conversion,2003,18(3):357-361
    [76]Mohammed OA, Liu S, Ganu SC. Computation of Transient Magneto-mechanical Problems in Eleetrical Machines. SoutheastCon 2002 Proeeedings IEEE,2002,187-191
    [77]Tsukerman IA, Konrad AI, Meunier G, et al. Coupled Field-circuit problems:Trends and accomplishments. IEEE Transactions on Magnetics,1993,29(2):1701-1704
    [78]Toth J, Bird MD. Convergence studies of D-Shaped Coil/Bobbin Interactions in a sweeper magnet system. IEEE Transactions on Applied Superconductivity,2003,13(2): 1400-1403
    [79]Jang GH, Park SJ, Lee SH. Electromechanical Analysisof a HDB Spindle motor consdersing electromagnetics. IEEE Transactions on Magnetics,2005,41(5):1608-1611
    [80]Moallem M. Transformation Method in the coupled FE Magnetothermal field analysis. IEEE Transactions on Magnetics,1998,34(5):3126-3129
    [81]Hamadou HS, David AL, Behzad F. Generalized Material Models for coupled Magnetic analysis. IEEE Transactions on Magnetics,2000,36(4):1250-1253
    [82]Nerg J and Partanen J. Numerical solution of 2D and 3D induction heating problems with non-linear material properties taken into account. IEEE Transactions on Magnetics, 2000,36(5):3119-3121
    [83]廖道训,熊有伦,杨叔子.现代机电系统(设备)耦合动力学的研究现状和展望.中国机械工996,7(2):44-46
    [84]钟掘,陈先霖.复杂机电系统耦合与解耦设计-现代设计理论的探讨.中国机械工程,1999,10(9):1051-1054
    [85]邱家俊.电机的机电耦联与磁固耦合非线性振动研究.中国电机工程学报,2002,22(5):109-115
    [86]王艾伦,钟掘.复杂机电耦合系统的全局建模和仿真方法研究.机械工程学报,2003,39(4):1-5
    [87]贺尚红,段吉安,钟掘.机电系统通用建模矩阵法.中南工业大学学报,2002,33(5):518-521
    [88]Kim WJ. High-Precision Planar Magnetic Levitation:[PhD Thesis]. MIT,1997
    [89]Hazelton AJ. Planar electric motor with two sided magnet array. U.S. Patent: 2002/0149270,2002
    [90]Gilles PA, Delamare J, Cugat O, et al. Design of a permanent magnet planar synchronous micro-motor. Conference Record-IAS Annual Meeting,2000,1:223-227
    [91]Zheng MS, Cai BC, Zhao XL. Three-dimension magnetic field analysis of micromotor by fast fourier transform. IEEE Transactions on Magnetics,1999,35(5):3587-3685
    [92]Nienhaus M, Ehrfeld W, Michel F, et al. Design and relization of a penny-shaped micromotor. Proceedings of SPIE-The International Society for Optical Engineering, 1999,3680(11):592-600
    [93]Toshiro I, Toshifumi S, Wataru W. Total solution in 157nm lithography for below 65nm node semiconductor devices. Microelectronic Engineering,2004,73-74:11-15
    [94]Dejule R. Next-generation lithography:the accomplishments and the challenges. Solid State Technology,1999,6:57-68
    [95]Chen XD, Lei J. The Dynamic Modeling and Dynamics Response Analysis of Ultra-precision Drive Machine. the 3rd annual IEEE international conference on Nano/Micro Engineered and Molecular systems(NEMS),2008,828-833
    [96]Chen XD, Lei J. Magnetic Field and Forces Analysis of Precision Linear Motor with Air-bearings. International conference on Advanced Design and Manufacture,2008, 53-62
    [97]曹卫,穆海华,周云飞.超精密平面电机控制技术.机床与液压,2007,35(5):62-64
    [98]穆海华,周云飞,周艳红.洛仑兹电机运动控制耦合机理分析及动力学建模.中国机械工程学报,29(15):95-100
    [99]吴一辉,王立鼎,马建旭等.新型微变位致动器的发展及应用.光学精密工程,1996,4(2):7-13
    [100]Chen CL, Jang MJ, Lin KC. Modeling and high-precision control of a ball-screw-driven stage. PrecisionEngineering,2004,28:483-495
    [101]Jang MJ, Lin KC and Chen CL. Modeling and Positioning Control of a Ball Screw Driven Stage. Proceedmgs of the 2004 IEEE International Conference on Networking, Sensing & Control.2004,21-23
    [102]Shinno H, Hashizume H, Yoshioka H, et al. X-Y-θ nano-positioning table system for a mother machine. CIRP Annals-Manufacturing Technology,2004,53(1):337-40
    [103]Slocum A, Basaran M, Cortesi R, et al. Linear motion carriage with aerostatic bearings preloaded by inclined iron core linear electric motor. Precision Engineering,2003,27(4): 382-94
    [104]Lu C, Eastham TR, Dawson GE. Transient and dynamic performance of a linear induction motor. Conference Record-IAS Annual Meeting,1993,1:266-273
    [105]Chu CL, Fan SH. A novel long-travel piezoelectric-driven linear nanopositioning stage. Precision Engineering,2006,30:85-95
    [106]Liu YT, Higuchi T, Funga RF. A novel precision positioning table utilizing impact force of spring-mounted piezoelectric actuator-part Ⅰ experimental design and results. Precision Engineering.2003,27:14-21
    [107]Shen JC, Jywe WY, Chiang HK, et al. Precision tracking control of a piezoelectric-actuated system, Precision Engineering,2008,32(2):71-78
    [108]Nakamura T and Yoshimoto S. Static tilt characteristics of aerostatic rectangular double-pad thrust bearings with compound restrictors. Tribology international,1996, 29(2):145-152
    [109]Yoshimoto S, Tamura J, Nakamura T, Dynamic tilt characteristics of aerostatic rectangular double-pad thrust bearings with compound restrictors. Tribology International,1999,32(12):731-738
    [110]Luong TS, Potze W, Post JB, et al. Numerical and experimental analysis of aerostatic thrust bearings with porous restrictors. Tribology International,2004,37(10):825-832
    [111]Nikhil B and Simon MB. Design and test of a Pareto optimal flat pad aerostatic bearing. Tribology International,2008,41(3):181-188
    [112]朱煜.超精密气浮运动工作台关键技术研究.清华大学:[博士后研究报告],2003
    [113]Youden DH. Hydrostatic bearing technology for precision engineering.14th Annual ASPE Meeting,1999, Monterey, CA,1999
    [114]Boffey DA, Waddell M and Deardent JK. A theoretical and experimental study into the steady state performance characteristics of industrial air lubricated thrust bearings. Tribology International,1985
    [115]李圣怡,戴一帆,彭小强.超精密加工机床及其新技术发展.国防科技大学:学报,2000,22(2):95-100
    [116]张从鹏,刘强.直线电机气浮精密定位平台设计与控制.北京航空航天大学学报,2008,34(2):224-228
    [117]Hazelton AJ, Eaton JK. Cooling system for a linear or planar motor. US:6114781,2000
    [118]Tanaka K. Planar motor device, stage unite, exposure apparatus its making method, and device and it's manufacturing method, U.S. Patent:6339266,2002
    [119]李鸿,周云飞.100nm步进扫描光刻机硅片台掩模台运动结构设计.微电子技术,2003,31(4):1-4
    [120]臧群.磁力泵的能耗研究及磁涡流场的模拟计算.江苏大学:[硕士论文],2006
    [121]Hameyer K, Mertens R, Pahner U. New technique to enhance the accuracy of 2-D/3-D field quantities and forces obtained by standard finite-element solutions. IEE Proceedings:Science Measurement and Technology,1998,145(2):67-75
    [122]Andriollo M, Martinelli G, Morini A. FEM calculation of the LSM propulsion force in EMS-MAGLEV trains. IEEE Transactions on Magnetics,1996,32(5):5064-5066
    [123]Liu CT, Chuang K. On the design of a disc-type surface-mounted permanent magnet motor for electric scooter application. IEEE industry applications conference,2002,1(1): 377-383
    [124]刘瑞芳,胡敏强,严登俊.永磁电机中永磁体数学模型的分析.微电机,2001,34(1):7-10
    [125]吴万春,李缉熙.电磁场理论.北京:电子工业出版社,1985
    [126]叶云岳.直线电机原理与应用.北京:机械工业出版社,2000
    [127]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析.北京:电子工业出版社,2005
    [128]王勖成,邵敏编著.有限单元法基本原理与数值方法,北京:清华大学出版社,1988
    [129]师汉民,谌刚,吴雅.机械振动系统.武汉:华中理工大学出版社,1990
    [130]Takagi T and Tani J. Numerical Evaluation of Natural Frequency Change of a Ferromagnetic Plate due to Magnetic Stiffness Effect. IEEE Transactions on Magnetics, 1996,72(3):1054-1057
    [131]James GH, Carne TG. The natural excitation technique for modal parameter extraction from ambient operating structure. The International Journal of Analytical and Experimental Modal Analysis,1995,10(4):260-277
    [132]沈钺,王世琥,虞烈等.推力主动磁轴承的动特性参数辨识.摩擦学学报,2002,22(4):290-294
    [133]吴国庆,周井玲,汪希平等.电磁轴承系统的位移刚度和电流刚度特性研究.机械强度,2009,31(5):727-73
    [134]James GH and Carne TG. The natural excitation technique for modal parameter extraction from ambient operating structure. The International Journal of Analytical and Experimental Modal Analysis,1995,10(4):260-277
    [135]Mizuno T, Takasaki M, Kishita D, et al. Vibration Isolation System Combining Zero-Power Magnetic Suspension with Springs. Control Engineering Practice,2006, 15(2):187-196
    [136]傅志方,华宏星.模态分析理论与应用.上海:上海交通大学出版社,2000
    [137]胡敏强,黄学良.电机运行性能数值计算方法及其应用,南京:东南大学出版社,2003
    [138]隋允康,杜家政,彭细荣.MSC.Nastran有限元动力分析与优化设计实用教程,北京:科学出版社,2004
    [139]Xu W, Koss LL. Frequecy response functions for structural intensity, part I:theory. Journal of Sound and Vibration,1995,185(2):299-334
    [140]谢传锋.动力学.北京:高等教育出版社,2004
    [141]王云英,佘守宪,刘金昌.耦合线圈的互感、等效自感与磁能.天津理工学院学报,2002,18(1):44-48
    [142]Chari, Silvester. Finite Elements in Electrical and Magnetic Field Problems.北京:科学出版社,1985
    [143]周克定.工程电磁场专论.武汉:华中工学院出版社,1986
    [144]Bire O, Preis K, Richter KR. On the Use of the Magnetic Vector Potential in Finite Element Analysis of 3D Eddy Current. IEEE Transactions on Magnetics,1989,25(4): 3145-3159
    [145]Preis K, Biro O, Ticar I. Gauged Current Vector Potential and Reentrant Corners in the FEM Analysis of 3D Eddy Currents. IEEE Transactions on Magnetics,2000,36(4): 840-843
    [146]樊明武,颜威利.电磁场积分方程法.北京:机械工业出版社,2009
    [147]Ratnajeevan S, Hoole H. Flux Density and Energy Perturbations Adaptive Finite Element Mesh Generation. IEEE Transactions on Magnetics,1988,24(1):322-325
    [148]Fujii N, Okinaga K. X-Y Linear Synchronous Motor without Force Ripple and Coreloss for precision Two-Dimension Drive. IEEE Transactions on Magnetics,2002,38(5): 3273-3275
    [149]李德葆等著.实验模态分析及其应用.北京:科学出版社,2001
    [150]曹树谦,张文德等.振动结构模态分析:理论、实验与应用.天津:天津大学出版社,2001
    [151]杨建东,裴先登.音圈电机力常数高精度测试技术研究.电子计算机外部设备,1993,17(5):46-48
    [152]尹功勋.直线式音圈电机BL测试仪的研制.电子计算机外部设备,1991(5):69-71
    [153]杨建生,谢生长.基于单片机的音圈电机力(矩)常数测试仪的设计.特微电机,1994(3):12-15
    [154]朱煜,赵乐军.信号与系统分析.北京:机械工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700