用户名: 密码: 验证码:
低温等离子体催化氧化甲烷合成甲醇的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界性石油资源的日益短缺,开发以天然气或甲烷水合物(可燃冰)为原料替代石油资源,并原位转化为有机含氧化合物成为重要的研究课题。低温等离子体技术可在温和反应条件下实现甲烷的活化,若将其与催化技术相结合,有望形成一种既具强活化能力、又具高选择性的等离子体-催化协同活化新技术。本文主要开展了等离子体-催化协同作用于甲烷/空气选择性氧化合成甲醇的应用基础研究。
     首先,利用介质阻挡放电等离子体实现常温常压条件下甲烷直接转化合成甲醇。考察了电源输入功率、放电频率、放电间隙、气体停留时间、气体组分对甲烷转化率及甲醇产率的影响,并对参数进行优化;同时,考察了放电体系添加惰性气体Ar或N2对反应的影响,研究表明惰性气体的加入有利于提高放电强度和放电效率,获得更高的甲烷转化率及甲醇产率;通过等离子体发射光谱原位诊断证实甲烷选择性氧化合成甲醇主要通过自由基反应得以实现。
     其次,将催化剂引入等离子体反应体系,构建后置式及内置式等离子体-催化反应体系。针对后置式体系筛选出单组分催化剂Fe2O3/CP,当催化温度仅为150℃时,甲醇选择性达到10.66%,较单纯等离子体提高了35.1%。当添加助剂CuO构成复合催化剂,在相同催化温度下可将甲醇选择性提高至11.33%;对于内置式反应体系,放电区域填充Fe2O3-CuO/γ-Al2O3催化剂既有助于增强电场强度,又可造成催化剂表面局部反应分子和活性自由基的富集,提高反应效率。研究表明,催化剂在后置式体系中具有更好的抗积碳性能以及反应稳定性。通过对不同体系各类瞬时基团物质及稳态物质的分析探索了甲醇合成的主要途径。
     最后,研究了两种Ar等离子体预处理方法对Fe2O3-CuO/γ-Al2O3催化剂性能的影响,对比发现催化剂焙烧前等离子体改性能有效提高活性组分的分散性,加强金属氧化物与载体间的相互作用,显著提高催化剂的抗积碳性能。
With the lack of petroleum resources in the world, the development of natural gas and methane hydrate (flammable ice) utilization as the feedstock, instead of crude oil, for the in-situ production of oxygenates has been extensively studied. Cold plasma offers a unique way to excite stable methane molecule under mild conditions. High conversion and selectivity are expected to be obtained by exploiting the inherent synergetic potential of plasma through combination with heterogeneous catalysts. In our study, methane-air partial oxidation to methanol (MPOM) was investigated using plasma-catalysis hybrid system.
     Firstly, MPOM through a dielectric barrier discharge (DBD) plasma reaction was performed at ambient temperature and atmospheric pressure. The effects of input power, discharge frequency, discharge gap distance, residence time, and CH4/air ratio on CH4 conversion and CH3OH yield were studied, and those parameters were optimized. Moreover, the discharge intensity and the reaction efficiency were greatly enhanced with the addition of inert gases such as argon and nitrogen. It was found from optical emission spectrometry that free radical reactions were of importance for initiating methanol synthesis.
     Secondly, combination of heterogeneous catalysts with non-thermal plasma was operated in two configurations:post-plasma catalysis (PPC) or in-plasma catalysis (IPC). In the former case, Fe2O3-based catalyst showed the best catalytic activity and high stability in the reaction. The CH3OH selectivity of 10.66%was obtained over Fe2O3/CP at the rather low catalyst temperature (150℃), which was 35.1% higher than that of non-catalytic system. Addition of the CuO promoter to Fe2O3/CP facilitated selective methane oxidation. At the same catalyst temperature, the CH3OH selectivity achieved with the Fe2O3-CuO/CP catalyst was at 11.33%. For the IPC configuration, the average electric field in a packed-bed reactor would be enhanced compared with the non-packed plasma reactor. Furthermore, the reaction efficiency over the Fe2O3-CuO/γ-Al2O3 catalyst was improved due to the enrichment of reactants and radicals on the catalyst surface. However, the alumina based catalyst exhibited superior anti-deactivation ability and reaction stability in the PPC process compared to the IPC process. In addition, the main pathways to methanol synthesis in the different processes were investigated based on the behavior of both short-and long-lived species.
     Finally, the Fe203-Cu0/y-Al203 catalyst was modified by Ar plasma treatment using two methods. Modification of catalyst before calcination was preferred because it could improve the dispersion of active species and enhance the metal-support interaction, which led to high catalytic activity and excellent resistance to carbon formation.
引文
[1]S. Takeya, T. Uchidal, J. Nagao, R. Ohmura, W. Shimada, Y. Kamata, T. Ebinuma, H. Narita. Particle size effect of CH4 hydrate for self-preservation. Chem. Eng. Sci. 2005,60(5):1383-1387.
    [2]T. M. Guo, B. H. Wu, Y. H. Zhu, S. S. Fan, G. J. Chen. A review on the gas hydrate research in China. J. Petrol. Sci. Eng.2004,41 (1-3):11-20.
    [3]I. Chatti, A. Delahaye, L. Fournaison, J. Petitet. Benefits and drawbacks of clathrate hydrates:a review of their areas of interest. Energy Convers. Manage.2005, 46(9-10):1333-1343.
    [4]A. Holmen. Direct conversion of methane to fuels and chemicals. Catal. Today 2009,142 (1-2):2-8.
    [5]王野.甲烷选择氧化和氧化官能团化的研究进展.石油化工.2005,34(3):205-212.
    [6]H. D. Gesser, N. R. Hunter, C. B. Prakash. The direct conversion of methane to methanol by controled oxidation. Chem. Rev.1985,85 (4):235-244.
    [7]K. Aokia, M. Ohmaea, T. Nanbaa, K. Takeishia, N. Azumaa, A. Uenoa, H. Ohfuneb, H. Hayashib, Y. Udagawa. Direct conversion of methane into methanol over MoO3/SiO2 catalyst in an excess amount of water vapor. Catal. Today 1998,45 (1-4): 29-33.
    [8]T. Takemoto, D. He, Y. Teng, A. Nakayama, K. Tabata, E. Suzuki. Enhancement of methanol selectivity in the products of direct selective oxidation of methane in CH4-O2-NO with Cu-ZnO/Al2O3. J. Catal.2001,198 (1):109-115.
    [9]X. Zhang, D. H. He, Q. J. Zhang, B. Q. Xu, Q. M. Zhu. Comparative studies on direct conversion of methane to methanol/formaldehyde over La-Co-O and ZrO2 supported molybdenum oxide catalysts. Topics in Catal.2005,32 (3-4):215-222.
    [10]Y. V. Geletii, A. E. Shilov. Catalytic oxidation alkanes by molecular oxidation.Oxidation of methane in the presence of platinum salts and heteropoly acids. Kinet. Catal.1983,24(2):486-489.
    [11]陈立宇,杨伯伦,张秀成.甲烷直接液相转化合成甲醇的研究进展,石油化 工2002,31(11):938-941.
    [12]R. A. Periana, D. J. Taube, E. R. Evitt, D. G. Loffler, P. R. Wentrcek, G. Voss, T. Masuda. A mercury-catalyzed high yield system for the oxidation of methane to methanol. Science 1993,259 (5093):340-343.
    [13]R. A. Periana, D. J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii. Platinum catalysts for high-yield oxidation of methane to a methanol derivative. Science 1998, 280 (5363):560-564.
    [14]M. Ahlquist, R. J. Nielsen, R. A. Periana, W. A. Goddard. Product protection, the key to developing high performance methane selective oxidation catalysts. J. Am. Chem. Soc.2009,131 (47):17110-17115.
    [15]L. C. Kao, A. C. Huston, A. Sen. Low-temperature, palladium-catalyzed, solution-phase oxidation of methane to a methanol derivative. J. Am. Chem. Soc.1991, 113 (2):700-701.
    [16]M. Muehlhofer, T. Strassner, W. A. Herrmann. New catalyst systems for the catalytic conversion of methane into methanol. Angew. Chem. Int. Ed. Engl.2002,41 (10):1745-1747.
    [17]G. V. Nizova, G Suss-Fink, G. B. Shul'pin. Catalytic oxidation of methane to methyl hydroperoxide and other oxygenates under mild conditions. Chem. Commun. 1997, (4):397-398.
    [18]G. B. Shul'pin, G. V. Nizova, Y. N. Kozlov, L. G. Cuervo, G. Suss-Fink. Hydrogen peroxide oxygenation of alkanes including methane and ethane catalyzed by iron complexes in acetonitrile. Adv. Synth. Catal. 2004,346 (2-3):317-332.
    [19]K. Yoshizawa. Two-step concerted mechanism for methane hydroxylation on the diiron active site of soluble methane monooxygenase. J. Inorg. Biochem.2000,78 (1): 23-34.
    [20]华月明,胡望明.甲烷直接氧化制甲醇研究新进展.化工进展 2001,20(9):26-29.
    [21]C. E. Tinberg, S. J. Lippard. Oxidation reactions performed by soluble methane monooxygenase hydroxylase intermediates Hperoxo and Q proceed by distinct mechanisms. Biochemistry 2010,49(36):7902-7912.
    [22]B. J. Wallar, J. D. Lipscornb. Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem. Rev.1996,96 (7):2625-2657.
    [23]王保伟,宋华,许根慧.甲烷直接转化合成甲醇研究进展.现代化工2005,25(增刊):40-43.
    [24]Y. Hu, Y. Nagai, D. Rahmawaty, C. Wei, M. Anpo. Characteristics of the photocatalytic oxidation of methane into methanol on V-Containing MCM-41 catalysts. Catal. Lett.2008,124 (1-2):80-84.
    [25]C. E. Taylor, R P. Noceti. New developments in the photocatalytic conversion of methane to methanol. Catal. Today 2000,55(3):259-267.
    [26]赵化侨.等离子体化学与工艺.合肥:中国科学技术大学出版社,1993.
    [27]G. B. Zhao, S. John, J. J. Zhang, L. Wang, S. Muknahallipatna, J. C. Hamann, J. F. Ackerman, M. D. Argyle, O. A. Plumb, Methane conversion in pulsed corona discharge reactors. Chem. Eng. J.2006,125 (2):67-79.
    [28]M. Jasinski, M. Dors, J. Mizeraczyk. Application of atmospheric pressure microwave plasma source for production of hydrogen via methane reforming. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 2009, 54(2):179-183.
    [29]徐学基,储定昌;气体放电物理,上海:复旦大学出版社,1996.
    [30]A. Bogaerts, E. Neyts, R. Gijbels, J. v. d. Mullen. Gas discharge plasmas and their applications. Spectrochimica Acta Part B 2002,57 (4):609-658.
    [31]贺亚峰,刘微粒,高瑞玲,李树锋,何寿杰,冉俊霞,董丽芳.Ar/air介质阻挡放电丝的时空相关特性.河北大学学报(自然科学版)2006,26(5):473-475.
    [32]J. Guikema, N. Miller, J. Niehof, M. Klein, M. Walhout. Spontaneous pattern formation in an effectively one-dimensional dielectric-barrier discharge system. Phys. Rev. Lett.2000,85 (18):3817-3820.
    [33]王育.等离子体二甲醚转化研究[博士学位论文].天津:天津大学.2006.
    [34]B. Eliasson, U. Kogelschatz. Modeling and applications of silent discharge plasmas. IEEE. Tran. Plasma Sci.1991,19 (2):309-323.
    [35]U. Kogelschatz. Dielectric-barrier discharges:Their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process.2003,23 (1):1-46.
    [36]L. M. Zhou, B. Xue, U. Kogelschatz, B. Eliasson. Nonequilibrium plasma reforming of greenhouse gases to synthesis gas. Energy & Fuels 1998,12 (6): 1191-1199.
    [37]C. J. Liu, B. Xue, B. Eliasson. Methane conversion to higher hydrocarbons in the presence of carbon dioxide using dielectric-barrier discharge plasmas. Plamsa Chem. Plasma Process.2001,21 (3):301-310.
    [38]D. W. Larkin, T. A. Caldwell, L. L. Lobban, R. G. Mallinson. Oxygen pathways and carbon dioxide utilization in methane partial oxidation in ambient temperature electric discharges. Energy Fuels 1998,12 (4):740-744.
    [39]D. W. Larkin, L. L. Lobban, R. G. Mallinson. Production of organic oxygenates in the partial oxidation of methane in a silent electric discharge reactor. Ind. Eng. Chem. Res.2001,40(7):1594-1601.
    [40]K. Okazaki, T. Kishida, K. Ogawa, T. Nozaki. Direct conversion from methane to methanol for high efficiency energy system with exergy regeneration. Energy Convers. Manage.2002,43 (9-12):1459-1468.
    [41]李阳,许根慧,刘昌俊,艾宝都.等离子体技术在催化反应中的应用.化学工业与工程 2002,19(1):65-70.
    [42]D. E. Rapakoulias, S. Cavadias, D. Mataras. Heterogeneous catalysis in interaetion of plasma excited species with surfaces. High Temp. Chem. Proeesses 1993, (2):231-246.
    [43]Q. Wang, B. H. Yan, Y. Jin, Y. Cheng. Dry Reforming of methane in a dielectric barrier discharge reactor with Ni/Al2O3 catalyst:Interaction of catalyst and plasma. Energy & Fuels 2009,23 (8):4196-4201.
    [44]张月萍,刘昌俊,许根慧.甲烷等离子体化学利用及其对新世纪能源、环境和化工的影响.化工进展 2001,(3):51-56.
    [45]J. C. Polanyi. Concepts in Reaction Dynamics. Acc. Chem. Res.1972,5 (5): 161-168. G..D. Purvis, M. J. Redmon, G. J. Wolken. Vibrational excitation from heterogeneous catalysis. J. Phys. Chem.1979,83(8):1027-1033.
    [46]F. Holzer, F. D. Kopinke, U. Roland. Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants. Plasma Chem. Plasma Process.2005,25 (6):595-610.
    [47]G. Horvath, N. J. Mason, L. Polachova, M. Zahoran, L. Moravsky, S. Matejcik. Packed Bed DBD Discharge Experiments in Admixtures of N2 and CH4. Plasma Chem. Plasma Process.2010,30 (5):565-577.
    [48]U. Roland, F. Holzer, F. D. Kopinke. Improved oxidation of air pollutants in a non-thermal plasma. Catal. Today 2002,73 (3-4):315-323.
    [49]H. K. Song, J. W. Choi, S. H. Yue, H. Lee, B. K. Na. Synthesis gas production via dielectric barrier discharge over Ni/y-Al2O3 catalyst. Catal. Today 2004,89 (1-2): 27-33.
    [50]S. S. Kim, H. Lee, J. W. Choi, B. K. Na, H. K. Song. Methane conversion to higher hydrocarbons in a dielectric-barrier discharge reactor with Pt/γ-A;2O3 catalyst. Catal. Commun.2007,8 (9):1438-1442.
    [51]J. Sentek, K. Krawczyk, M. Mlotek, M. Kalczewska, T. Kroker, T. Kolb, A. Schenk, K. H. Gericke, K. Schmidt-Szalowski. Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges. Appl. Catal. B-Environ.2010,94 (1-2):19-26.
    [52]T. Oda, K. Yamaji, T. Takahashi. Decomposition of dilute trichloroethylene by nonthermal plasma processing-gas flow rate, catalyst, and ozone effect. IEEE T. Ind. Appl.2004,40 (2):430-436.
    [53]B. W. Wang, G. H. Xu. Effect of catalysis on methane conversion to C2 hydrocarbons in EFEP reaction. J. Fuel Chem. Technol.2002,30 (2):97-102.
    [54]B. W. Wang, G. H. Xu. Catalysis conversion methane into C2 hydrocarbons via electric field enhanced plasma. Chinese Chemical Letter 2003,14(12):1236-1238.
    [55]K. Takaki, K. Urashima, J.S. Chang. Ferro-electric pellet shape effect on C2F6 removal by a packed-bed-type non-thermal plasma reactor. IEEE Trans. Plasma Sci. 2004,32 (4):2175-2182.
    [56]A. Ohsawa. R. Morrow, A. B. Murphy. An investigation of a DC dielectric barrier discharge using a disc of glass beads. J. Phys. D:Appl. Phys.2000,33 (12): 1487-1493.
    [57]刘跃旭,王少波,原培胜,赵瀛.催化型低温等离子体反应器净化废气研究进展.化工进展 2009,28(12):2232-2236.
    [58]A. Ogata, K. Saito, H. H. Kim, M. Sugasawa, H. Aritani, H. Einaga. Performance of an ozone decomposition catalyst in hybrid plasma reactors for volatile organic compound removal. Plasma Chem Plasma Process.2010,30 (1):33-42.
    [59]H. K. Jeong, S. C. Kim, C. Han, H. Lee, H. K. Song, B. K. Na. Conversion of methane to higher hydrocarbons in pulsed DC barrier discharge at atmospherie pressure. Korean J. Chem. Eng.2001,18 (2):196-201.
    [60]B. Eliasson, C. J. Liu, U. Kogelschatz. Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric barrier discharges with zolites. Ind. Eng.Chem. Res.2000,39 (5):1221-1227.
    [61]P. D. Costa, R. Marques, S. D. Costa. Plasma catalytic oxidation of methane on alumina-supported noble metal catalysts. Appl. Catal. B-Environ.2008,84 (1-2): 214-222.
    [62]H. L. Chen, H. M. Lee, S. H. Chen, M. B. Chang, S. J. Yu, S. N. Li. Removal of volatile organic compounds by single-stageand two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications. Environ. Sci. Technol.2009,43 (7):2216-2227.
    [63]M. Magureanu, N. B. Mandache, P. Eloy, E. M. Gaigneaux, V. I. Parvulescu. Plasma-assisted catalysis for volatile organic compounds abatement. Environ. Sci. Technol.2005,61 (1-2):12-20.
    [64]张开.高分子界面科学.北京:中国石化出版社,1997.
    [65]王坤.大气压下的介质阻挡放电对聚乙烯表面改性[硕士学位论文].大连:大连理工大学.2006.
    [66]F. Massines, G. Gouda, N. Gherardi, M. Duran, E. Croquesel. The role of dielectric harrier discharge atmosphere and physics on polypropylene surface treatment. Plasmas and Polymers 2001,6(1-2):35-49.
    [67]G. Borcia, C. A. Anderson, N. M. D. Brown. The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge Part Ⅰ. Appl. Surf. Sci.2004,221(1-4):203-214.
    [68]G. Borcia, C. A. Anderson, N. M. D. Brown. The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge Part Ⅱ. Appl. Surf. Sci.2004,225(1-4):186-197.]
    [69]S. Yuan, G. Szakalas-Gratzl, N. P. Ziats, D. W. Jacobsen, K. Kottke-Marchant, R. E. Marchant. Immobilization of high-affinity heparin oligosaccharides to radio frequency plasma-modified polyethylene. J. Biomed. Mater. Res.1993, 27(6):811-819.
    [70]K. Tanaka, M. Kogoma, Y. Ogawa. Fluorinated polymer coatings on PLGA microcapsules for drug delivery system using atmospheric pressure glow plasma. Thin Solid Films 2006,506(8):159-162.
    [71]曹传宝,吕强,朱鹤孙.聚氨酯共混改性及SO2等离子体处理研究.材料科学与工艺 2003,11(3):308-310.
    [72]N. Dumitrascu, C. Borcia. Adhesion properties of polyamide-6 fibres treated by dielectric barrier discharge. Surf. Coatings Technol 2006,201 (3-4):1117-1123.
    [73]X. L. Tang, Z. F. Ren, X. L. Chen, G Qiu. Dyeing Behavior of Atmospheric Dielectric Barrier Discharge Ar-O2 Plasma Treated Poly(ethylene erephthalate) Fabric. Pulsed Power Plasma Science 2007,2 (4):829.
    [74]胡建杭,方志,章程,赵龙章.介质阻挡放电材料表面改性研究进展.材料导报 2007,21(9):71-76.
    [75]刘勇.材料表面处理高频高压低温等离子体放电电源技术的研究[博士学位论文].杭州:浙江大学.2006.
    [76]C. Borcia, G. Borcia, Dumitrascu N. Relating plasma surface modification to polymer characteristics. Appl. Phys. A:Mater. Sci. Process.2008,90 (3):507-515.
    [77]N. Danish, M. Garg, R. Rane, P. Jhala, S. Nema. Surface modification of angora rabbit fibers using dielectric barrier discharge. Appl. Surf. Sci.2007,253 (16): 6915-6921.
    [78]C. J. Liu, K. L. Yu, Y. P. Zhang, X. L. Zhu, F. He, B. Eliasson. Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion. Appl. Catal. B-Environ.2004,47 (2):95-100.
    [79]徐慧远,储伟,慈志敏.辉光放电等离子体对合成甲醇用铜基催化剂的改性作用.物理化学学报 2007,23(7):1062-1046.
    [80]J. G. Wang, C. J. Liu, Y. P. Zhang, X. L. Zhu, J. Zou, K. L. Yu, B. Eliasson. Partial oxidation of methane to syngas over plasma treated Ni-Fe/La2O3 catalyst. Chem. Lett.2002,31 (10):1068-1069.
    [81]K.Sugiyama. Catalytic ability of plasma heat-treated metal oxides on vapor-phase Beckmann rearrangement. Surf. Coatings Technol.1999,112 (1):76-79.
    [82]J. J. Zou, C. J. Liu, K. L. Yu, D. G. Cheng, Y. P. Zhang, F. He, H. Y. Du, L. Cui. Highly efficient Pt/TiO2 photocatalyst prepared by plasma-enhanced impregnation method. Chem. Phys. Lett.2004,400 (4-6):520-523.
    [83]J. J. Zou, C. Chen, C. J. Liu, Y. P. Zhang, Y. Han, L. Cui. Pt nanoparticles on TiO2 with novel metal-semiconductor interface as highly efficient photocatalyst. Mater. Lett.2005,59 (27):3437-3440.
    [84]P. Shi, C. J. Chang. Characterization of silica supported nickel catalyst for methanation with improved activity by room temperature plasma treatment. Catal. Lett.2009,133 (1-2):112-118.
    [85]S. Y. Shang, G. H. Liu, X. Y. Chai, X. M. Tao, X. Li, M. G. Bai, W. Chu, X. Y. Dai, Y. X. Zhao, Y. X. Yin. Research on Ni/y-Al2O3 catalyst for CO2 reforming of CH4 prepared by atmospheric pressure glow discharge plasma jet. Catal. Today 2009,148 (3-4):268-274.
    [86]R. M. Sellers. Spectrophotometric determination of hydrogen peroxide using potassium titanium (IV) oxalate. Analyst.1980,105 (8),950-954.
    [87]G. Bershaeff, R.W. Langing. Spectrophotometric determination of ozone in air with indigo disulphonate. Analyst.1984,109(9):1165-1169.
    [88]G. B. Zhao, S. John, J. J. Zhang, L. Wang, S. Muknahallipatna, J. C. Hamann, J. F. Ackerman, M. D. Argyle, O. A. Plumb. Methane conversion in pulsed corona discharge reactors. Chem. Eng. J.2006,125 (2):67-79.
    [89]L. M. Zhou, B. Xue, U. Kogelschatz, B. Eliasson, Partial Oxidation of Methane to Methanol with oxygen or air in a nonequilibrium discharge plasma, Plasma Chem. Plasma P.1998,18 (3):375-392.
    [90]Y. Yang, Direct Non-oxidative mathane conversion by Non-thermal plasma:
    Experimental study. Plasma Chem. Plasma P.2003,23 (2):283-296.
    [91]王良.常压介质阻挡放电材料表面处理装置的优化[硕士学位论文].上海:东华大学.2006.
    [92]M. Okumoto, H. H. Kim, K. Takashima, S. Katsura, A. Mizuno. Reactivity of methane in nonthermal plasma in the presence of oxygen and inert gases at atmospheric pressure. IEEE T. Ind. Appl.2001,37 (6):1618-1624.
    [93]S. L. Yao, T. Takemoto, F. Ouyang, A. Nakayama, E. Suzuki,A. Mizuno, M. Okumoto. Selective oxidation of methane using a non-thermal pulsed plasma. Energy & Fuels 2000,14 (2):459-463.
    [94]Y. Sekine, K. Urasaki, S. Kado, M. Matsukata, E. Kikuch. Nonequilibrium pulsed discharge:A novel method for steam reforming of hydrocarbons or alcohols. Energy & Fuels 2004,18 (2):455-459.
    [95]徐学基.气体放电物理.上海:复旦大学出版社,1996.
    [96]Istadi, N. A. S. Amin. Co-generation of synthesis gas and C2+hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor:A review. Fuel. 2006,85 (5-6):577-592.
    [97]王保伟,杨宽辉,许根慧.甲烷介质阻挡放电等离子体转化的研究.石油化工.2007,36(11):1099-1103.
    [98]B. Eliasson, U. Kogelschatz, B. Z. Xue, L. M. Zhou. Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst. Ind. Eng. Chem. Res.1998, 37 (8):3350-3357.
    [99]F. M. Aghamir, N. S. Matin, A. H. Jalili, M. H. Esfarayeni, M. A. Khodagholi, R. Ahmadi, Conversion of methane to methanol in an ac dielectric barrier discharge. Plasma Sources Sci. T.2004,13 (4):707-711.
    [100]郭明星.等离子体条件下分子氧和丙烯进行气相氧化反应的研究[博士学位论文].大连:大连理工大学.2005.
    [101]Y. F. Wang, C. H. Tsai, W. Y. Chang, Y. M. Kuo. Methane steam reforming for producing hydrogen in an atmospheric-pressure microwave plasma reactor. Int. J. Hydrogen Energy 2010,35 (1):135-140.
    [102]I. Topala, M. Asandulesa, N. Dumitrascu, G. Popa, J. Durand. Application of dielectric barrier discharge for plasma polymerization processes. J. Optoelectron Adv. Mater.2008,10 (8):2028-2032.
    [103]代斌.等离子体催化二氧化碳经甲烷化制C_2烃反应的研究[博士学位论文].大连:大连理工大学.2002.
    [104]S. Kato, Y. Yamamoto, T. Hara. Quantum chemical analysis and visualization of plasma assisted direct mass conversions from methane into methanol. Energy Convers Manage.2001,42 (15-17):1853-1865.
    [105]孙琪,杨佳,石雷,牛金海,宋志民.介质阻挡放电和CuZSM-5结合体系中等离子体对C2H4的作用.化学学报2009,67(15):1779-1783.
    [106]W. Lin, B. Zhang, W. Hou, D. Li, H. Yang. Characteristics of emissive spectrum and the removal of nitric oxide in N2/O2/NO plasma with argon additive. J. Environ. Sci.2009,21 (6):790-794.
    [107]K. Hiraoka, K. Aoyama, K. Morise. A Study of Reaetion Mechanisms of methane in a radio-frequeney glow discharge plasma using radical and ion seavengers. Can. J. Chem.1985,63 (11):2899-2905.
    [108]高洪辉.绿色友好条件下甲烷强电离放电合成含氧化合物的研究.大连:大连海事大学.2007.
    [109]A.Oumgher, J. C. Legrand, A. M. Diamy, N. Turillon. Methane conversion by an air microwave plasma. Plasma Chem. Plasma Process.1995,15 (1):87-107.
    [110]S. Kado, K. Urasakib, Y. Sekineb, K. Fujimotoc, T. Nozakia, K. Okazaki. Reaction mechanism of methane activation using non-equilibrium pulsed discharge at room temperature. Fuel 2003,82 (18):2291-2297.
    [111]N. Muradov, F. Smith, G. Bokerman. Methane activation by nonthermal plasma generated carbon aerosols. J. Phys. Chem. C 2009,113 (22):9737-9747.
    [112]T. Nozaki, A. Hattori, K. Okazaki. Partial oxidation of methane using a microscale non-equilibrium plasma reactor. Catal. Today 2004,98 (4):607-616.
    [113]Y. Wang, C. J. Liu. Plasma methane conversion in the presence of dimethyl ether using dielectric-barrier discharge. Energy Fuels 2005,19 (3):877-881.
    [114]X. S. Li, A. M. Zhu, K. J. Wang. Y. Xu, Z. M. Song. Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques. Catal. Today 2004,98 (4):617-624.
    [115]任树强.介质阻挡放电等离子体转化甲烷的研究[硕士学位论文].天津:天津大学.2006.
    [116]Y. Liu, D. Sun, Effect of CeO2 doping on catalytic activity of Fe2O3/γ-Al2O3 catalyst for catalytic wet peroxide oxidation of azo dyes. J. Hazard. Mater.2007,143 (1-2):448-454.
    [117]A. M. Harling, V. Demidyuk, S. J. Fischer, J.C. Whitehead. Plasma-catalysis destruction of aromatics for environmental clean-up:Effect of temperature and configuration. Appl. Catal. B-Environ.2008,82 (3-4):180-189.
    [118]V. A. Sadykov, T. G. Kuznetsova, G. M. Alikina, Y. V. Frolova, A. I. Lukashevich, Y. V. Potapova, V. S. Muzykantov, V. A. Rogov, V. V. Kriventsov, D. I. Kochubei, E. M. Moroz, D. I. Zyuzin, V. I. Zaikovskii, V. N. Kolomiichuk, E. A. Paukshtis, E. B. Burgina, V. V. Zyryanov, N. F. Uvarov, S. Neophytides, E. Kemnitz. Ceria-based fluorite-like oxide solid solutions as catalysts of methane selective oxidation into syngas by the lattice oxygen:Synthesis, characterization and performance. Catal. Today 2004,93-95 (1):45-53.
    [119]A. Lekhal, B. J. Glasser, J. G. Khinast. Impact of drying on the catalyst profile in supported impregnation catalysts. Chem. Eng. Sci.2001,56 (15):4473-4487.
    [120]C. D. Wagner, W. M. Riggs, L.E. Davis, J. F. Moulder, G E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy. Perkin-ElmerCorporation, New York, CT,1979.
    [121]J. L. Cao, Y. Wang, X. L. Yu, S. R. Wang, S. H. Wu, Z. Y. Yuan. Mesoporous CuO-Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation. Appl. Catal. B-Environ.2008,79 (1):26-34.
    [122]T. V. Reshetenko, L. B. Avdeeva, V. A. Ushakov, E. M. Moroz, A. N. Shmakov, V. V. Kriventsov, D. I. Kochubey, Yu. T. Pavlyukhin, A. L. Chuvilin, Z. R. Ismagilov. Coprecipitated iron-containing catalysts (Fe-Al2O3, Fe-Co-Al2O3, Fe-Ni-Al2O3) for methane decomposition at moderate temperatures:Part Ⅱ. Evolution of the catalysts in reaction. Appl. Catal. A-Gen.2004.270 (1-2):87-99.
    [123]J. C. Ryu, D. H. Lee, K. S. Kang, C. S. Park, J. W. Kim, Y. H. Kim. Effect of additives on redox behavior of iron oxide for chemical hydrogen storage. J. Ind. Eng. Chem.2008,14 (2):252-260.
    [124]I. E. Wachs, D. J. Dwyer, E. Iglesia. Characterization of Fe, Fe-Cu and Fe-Ag Fiseher-Tropsch catalysts. Appl. Catal.1984,12 (2):201-217.
    [125]孙玉川.碱土金属对铁基催化剂F-T合成反应性能的影响[硕士学位论文].广州:暨南大学.2005.
    [126]J. L. Cao, Y. Wang, X. L. Yu, S. R. Wang, S. H. Wu, Z. Y. Yuan. Mesoporous CuO-Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation. Appl. Catal. B-Environ.2008,79 (1):26-34.
    [127]G. Avgouropoulos, T. Ioannides. Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method. Appl. Catal. A-Gen.2004, 244(1):155-167.
    [128]M. N. Makadsi, M. F. A. Alias, A. A. Essa, H. R. AI-Azawi. FT-IR and XPS analysis of a-Si1-xGex:H thin films. Renewable Energy 2003,28 (6):975-984.
    [129]W. Wang, H. B. Zhang, G. D. Lin, Z. T. Xiong. Study of Ag/Lao.6Sro.4Mn03 catalysts for complete oxidation of methanol and ethanol at low concentrations. Appl. Catal. B-Environ.2000,24 (3-4):219-232.
    [130]M. M. Natile, A. Glisenti. New NiO/Co3O4 and Fe2O3/Co3O4 nanocomposite catalysts:synthesis and characterization. Chem. Mater.2003,15 (13):2502-2510.
    [131]张昕,贺德华,张启俭,叶青,徐柏庆,朱起明.Mo/La-Co-O催化剂上甲烷选择氧化制甲醇反应.催化学报2003,24(4):305-311.
    [132]H. J. Wan, B. S. Wu, C. H. Zhang, B. T. Teng, Z. C. Tao, Y. Yang, Y. L. Zhu, H. W. Xiang, Y W. Li. Effect of Al2O3/SiO2 ratio on iron-based catalysts for Fischer-Tropsch synthesis. Fuel 2006,85 (10-11):1371-1377.
    [133]Y. Jin, A. K. Datye. Phase transformations in iron Fischer-Tropsch catalysts during temperature-programmed reduction. J. Catal. 2000,196 (1):8-17.
    [134]张煜华,熊海峰,李金林.铜对γ-Al203负载铁基费-托合成催化剂还原性能的影响.武汉大学学报(理学版)2004,50(4):419-423.
    [135]H. J. Wan, B. H. Wu, C. H. Zhang, H. W. Xiang, Y. W. Li. Promotional effects of Cu and K on precipitated iron-based catalysts for Fischer-Tropsch synthesis. J. Mol. Catal. A-Chem.2008,283 (1):33-42.
    [136]T. Sreethawong, P. Thakonpatthanakun, S. Chavadej. Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system. Int. J. Hydrogen Energy 2007,32 (8):1067-1079.
    [137]R. Marques, S. D. Costa, P. D. Costa. Plasma-assisted catalytic oxidation of methane on the influence of plasma energy deposition and feed composition. Appl. Catal. B-Environ.2008,82 (1-2):50-57.
    [138]A. Indarto, D. R. Yang, J. Palgunadi, J. W. Choi, H. Lee, H. K. Song. Partial oxidation of methane with Cu-Zn-Al catalyst in a dielectric barrier discharge. Chem. Eng. Process.2008,47 (5):780-786.
    [139]S. S. Bharadwaj, L. D. Schmidt. Catalytic partial oxidation of natural gas to syngas. Fuel Process. Technol.1995,421 (2):109-127.
    [140]C. H. Zhang, Y. Yang, B. T. Teng, T. Z. Li, H. Y. Zheng, H. W. Xiang, Y. W. Li. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper. J. Catal.2006,237 (2):405-415.
    [141]K. Pansanga, N. Lohitharn, A. C. Y. Chien, E. Lotero, J. Panpranot, P. Praserthdam, J. G. Goodwin Jr. Copper-modified alumina as a support for iron Fischer-Tropsch synthesis catalysts. Appl. Catal. A-Gen.2007,332 (1):130-137.
    [142]U. Roland, F. Holzer, F. D. Kopinke. Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds:Part 2. Ozone decomposition and deactivation of γ-Al2O3. Appl. Catal. B-Environ.2005,58 (3-4): 217-226.
    [143]Z. Fang, Y. C. Qiu, Y. Z. Sun, H. Wang, K. Edmund. Experimental study on discharge characteristics and ozone generation of dielectric barrier discharge in a cylinder-cylinder reactor and a wire-cylinder reactor. J. Electrostat.2008,66 (7-8): 421-426.
    [144]郭明星,郭洪臣,王样生,周军成,赵剑利,宫为民.脉冲电晕等离子体原位合成过氧化氢.2004,24(增刊1):161-163.
    [145]钟侃,聂勇,汪晶毅,关志成,贾志东,王黎明.填充石英球对DBD等离子体转化NO的影响.电工电能新技术2007,26(4):71-73.
    [146]H. L. Chen, H. M. Lee, S. H. Chen, Y. Chao, M. B. Chang. Review of plasma catalysis on hydrocarbon reforming for hydrogen production-Interaction, integration, and prospects. Appl. Catal. B-Environ.2008,85 (1-2):1-9.
    [147]J. V. Durme, J. Dewulf, C. Leys, H. Langenhove. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment:A review. Appl. Catal. B-Environ.2008,78 (3-4):324-333.
    [148]孙小亮,蔡忠林,胡真.低温等离子体催化治理气态污染物的研究进展.环劈科技2009,22(3):72-75.
    [149]D. B. O'Haraa, J. S. Clementsa, W. C. Finneya, R. H. Davisa. Aerosol particle charging by free electrons. J. Aerosol Science,1989,20 (3):313-330.
    [150]竹涛,何绪文,徐东耀,舒新前,李坚,金毓峑,梁文俊.吸附增效低温等离子体法去除甲苯废气的研究.环劈污染与防治2010,32(2):37-45.
    [151]代斌.等离子体-催化活化二氧化碳制低碳化合物的研究[硕士学位论文].大连:大连理工大学.2000.
    [152]M. Breysse, P. Afanasiev, C. Geantet, M. Vrinat. Overview of support effects in hydrotreating catalysts. Catal. Today 2003,86 (1-4):5-16.
    [153]F. Holzer, U. Roland, F.-D. Kopinke. Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds:Part 1. Accessibility of the intra-particle volume. Appl. Catal. B-Environ.2002,38 (3): 163-181.
    [154]S. Wang, G. Q. M. Lu. CO2 reforming of methane on Ni catalysts:Effects of the support phase and preparation technique. Appl. Catal. B-Environ.1998,16 (3): 269-277.
    [155]E. Ruckenstein, H. Y. Wang. Effect of Support on Partial Oxidation of Methane to Synthesis Gas over Supported Rhodium Catalysts. J. Catal.1999,187 (1): 151-159.
    [156]S. Futamura, A. Zhang, H. Einaga, H. Kabashima. Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants. Catal. Today 2002,72 (3-4):259-265.
    [157]H. L. Chen, H. M. Lee, S. H. Chen, M. B. Chang. Review of packed-bed plasma reactor for ozone generation and air pollution control. Ind. Eng. Chem. Res.2008,47 (7):2122-2130.
    [158]李穗玲,李白滔.甲烷二氧化碳催化重整制合成气的催化剂研究新进展.石油与天然气化工2008,37(4):285-290.
    [159]M. C. J. Bradford, M A. Vannice catalytic reforming of methane with carbon dioxide over nickel catalysts 1. Catalyst characterization and activity. Appl Catal. A: Gen.1996,142 (1):73-96.
    [160]N. Laosiripojana, S. Assabumrungrat. Catalytic dry reforming of methane over high surface area ceria. Appl Catal B:Environ.2005,60 (1-2):107-116.
    [161]S. A. Nair, T. Nozaki, K. Okazaki. Methane oxidative conversion pathways in a dielectric barrier discharge reactor-Investigation of gas phase mechanism. Chem. Eng. J.2007,132(1-3):85-95.
    [162]纪红兵,林维明.甲烷和二氧化碳催化重整制合成气的研究进展.广州化工1997,(1):8-12.
    [163]J. G. Wang, C. J. Liu, Y. P. Zhang, K. L. Yu, X. L. Zhu, F. He. Partial oxidation of methane to syngas over glow discharge plasma treated Ni-Fe/Al2O3 catalyst. Catal. Today 2004,89 (1-2):183-191.
    [164]祝新利.等离子体处理对甲烷转化催化剂的影响[博士学位论文].天津:天津大学.2007.
    [165]Y. R. Zhu, Z. H. Li, Y. H. Zhou, J. Lv, H. T. Wang. Plasma treatment of Ni and Pt catalysts for partial oxidation of methane. React. Kinet. Catal. Lett.2006,87 (1): 33-41.
    [166]C. Shi, B. W. L. Jang. Nonthermal RF plasma modifications on Pd/γ-Al2O3 for selective hydrogenation of acetylene in the presence of ethylene. Ind. Eng. Chem. Res. 2006,45 (17):5879-5884.
    [167]P. Shi, C. J. Liu. Characterization of silica supported nickel catalyst for methanation with improved activity by room temperature plasma treatment. Catal. Lett.2009,133 (1-2):112-118.
    [168]Y. X. Pan, C. J. Liu, P. Shi. Preparation and characterization of coke resistant Ni/SiO2 catalyst for carbon dioxide reforming of methane. J. Power Sources.2008, 176(1):46-53.
    [169]H. Y. Xu, W. Chu, L. M. Shi, H. Zhang, S. Y. Deng. Effect of glow discharge plasma on copper-cobalt-aluminum catalysts for higher alcohols synthesis J. Fuel Chem. Technol.2009,37 (2):212-216.
    [170]邹吉军.等离子体处理制备高效催化剂的基础研究[博士学位论文].天津:天津大学.2005.
    [171]Z. L. Zhang, X. E. Verykios. Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts. Catal. Today 1994,21 (2-3):589-595.
    [172]V. C. H. Kroll, H. M. Swaan, C. Mirodatos. Methane reforming reaction with carbon dioxide over Ni/SiO2 catalyst:1.Deactivation studies. J. Catal.1996,161 (1): 409-422.
    [173]程党国.等离子体法制备甲烷转化高效催化剂的表征[博士学位论文].天津:天津大学.2006.
    [174]X. L. Zhu, K. L. Yu, J. Li, Y. P. Zhang, Q. Xia, C. J. Liu. Thermogravimetric analysis of coke formation on plasma-treated Mo-Fe/HZSM-5 catalyst during nonoxidative aromatization of methane. React. Kinet. Catal. Lett.2006,87 (1):93-99.
    [175]X. L. Zhu, P. P. Huo, Y. P. Zhang, D. G. Cheng, C. J. Liu. Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane. Appl Catal B:Environ.2008,81(1-2):132-140.
    [176]J. M. Wei, E. Iglesia. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J. Catal.2004,224 (2):370-383.
    [177]葛欣,王益,张维光,沈俭一,袁启华.铁/多孔玻璃催化剂的原位穆斯堡尔谱研究.南京大学党报(自然科学版)1999,35(4):511-514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700