用户名: 密码: 验证码:
芳烃型连续重整集总反应动力学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以生产高辛烷值清洁汽油和苯、甲苯、二甲苯等芳烃为主要目的的催化重整过程是石油加工中的重要过程。由于该过程还同时副产相当数量的氢气,因此在原油劣质化趋势加剧,加氢过程发展迅速的今天,重整氢气成了炼厂加氢过程的重要廉价氢源,催化重整过程在炼厂中的地位就愈显重要。本论文以我国某石化公司的催化重整装置为背景,以该装置的工业实测数据为基础,研究建立该催化重整装置的反应动力学模型,为催化重整装置的操作优化提供指导。
     本论文不仅对国内外催化重整工艺、催化剂及反应动力学模型研究的发展及现状进行了较全面的文献调查,而且对本研究的对象—某催化重整装置进行了较深入的实地调查研究。结果表明,该催化重整装置采用的是1971年由美国UOP公司开发的第一代连续重整技术,其原料主要为加氢裂化重石脑油,用于生产苯、甲苯、二甲苯等基本有机原料,同时副产氢气,是一个典型的芳烃型连续重整装置。通过对催化重整反应特征的研究,反应复杂性的分析及各种反应动力学模型特点的比较,确定本研究以建立集总反应动力学模型较为合适。
     于是,按照集总分族原则—将动力学特征相似的进行归并,同时考虑到工业实测数据来源的条件,用户对优化预测功能的要求,模型参数估计的可行性及所建集总模型的先进性等,确定将整个催化重整反应物料划分为二十七个集总组分,然后并根据催化重整反应机理建立了二十七个集总组分的反应网络,在反应机理的基础上,通过对重整反应作的一些基本假定,如:所有反应均按拟一级均相反应处理;氢气对反应的影响用氢压表示;把移动床径向反应器的每一环轴截面微元看作为一理想的活塞流反应器等,同时考虑了催化剂积炭失活的影响等因素,最后可列出芳烃型连续重整二十七集总反应动力学模型,各反应的幂函数型反应速率方程。
     基于所建的芳烃型连续重整二十七集总反应动力学模型共有163个模型参数,一次同时估计不仅难度很大,而且所估参数的可靠性也差。本研究采用了分步确定的方法,即将整个二十七集总反应网络分成三个子网络,通过分步求取三个子网络模型参数的方法,最终完成整个反应网络的全部模型参数。与此同时,本研究在比较了几种多参数估计方法后,最后通过连用具有较好数值稳定性及快速收敛性的局部极小优化算法(BFGS算法)和全局优化算法(模拟退火算法)的方法,最终成功的完成了163个模型参数的估计工作。
     参数估计所需的全部数据均来自于国内某石化厂芳烃型连续重整装置的工业实测数据,对每一步得到的模型参数,都分别采用与参数估计不同时段或不同操作条件下的工业实测数据进行验证,以考察所估参数的可靠性和模型的外推性,结果表明:所建的芳烃型连续重整二十七集总反应动力学模型不仅能对芳烃组成进行较为准确而详细的预测,而且还能预测裂化产物的组成及氢气、积炭量等,其预测精度可以满足工业要求。
     接着,本论文还进一步运用所建的二十七集总反应动力学模型,对移动床重整径向反应器内的产物分布,反应器温度分布及催化剂床层积炭分布进行了模拟计算。在对所建的二十七集总反应动力学模型多方面成功考察验证的基础上,最后本研究应用二十七集总反应动力学模型,对该芳烃型连续重整装置的工业操作条件(温度、空速、氢烃比和催化剂停留时间等七个变量)对产物分布的影响进行了分析讨论,对该装置的主要目的产物芳烃的产率进行了优化计算,结果表明:在优化的操作条件下,芳烃产率可提高0.98%,二甲苯产率可提高1.34%,氢气产率也略有增加。
     本论文具有明确的研究对象和目标,数据全部来源于对象装置的工业实测数据,针对性强,实用意义大。研究结果不仅对该石化厂芳烃型连续重整装置具有直接指导意义,而且对其它芳烃型连续重整装置具有重要借鉴作用。
Catalytic reforming who aims for producing high octane value and clean gasoline, benzene, methylbenzene and dimethylbenzene is an important process in petroleum processing. Due to considerable by-product of hydrogen, especially in the nowadays where crude oil has deteriorated and hydrogenation has progressed rapidly, the position of catalytic reforming in refining factory has become more important. From the background of one specific catalytic reforming unit in China and on the basis of the actual industrial data, a lumped kinetic model for catalytic reforming is studied and built up in order to guide the practical operation and optimization of reforming catalytic unit.
     An entire literature review of domestic and overseas situation and progress of technologies, catalysts and lumped kinetic models of catalytic reforming was made. What's more, a deep field trip and study to the specific catalytic reforming unit as the object of this research was taken. The study shows, this catalytic reforming unit is a classical aromatic type catalytic naphtha reforming unit whose feedstock is heavy naphtha from hydrocracking with aims for producing basic organic raw materials such as benzene, methylbenzene and dimethylbenzene. This unit adopted the first generation technology of catalytic reforming developed by UOP corp. in 1971. Through the research of the characteristics of catalytic reforming reactions and analysis of reaction complexity and comparison of various kinetic models, the lumped kinetic modeling is appropriate for this research purpose.
     Consequently, classified the countless reactions by the principle of dividing lumps-the similarity of reaction characteristics. Given the sources of the actual industrial data and customer's requirements of model's functions of optimization and prediction, divided the reaction feedstock and products to 27 lumps. Then built up the reaction network between these 27 lumps based on the mechanism of catalytic reforming reaction and simplified the reaction network by some assumptions:
     1. all reactions were considered as one order homogeneous phase reaction;
     2. the impact of hydrogen on reaction was expressed by hydrogen pressure;
     3. Every infinitesimal of axial cross section along moving bed was considered as one ideal plug flow reactor;
     Considering the impact of catalysts inactivation caused by coke deposition, etc. at last listed the equations of 27 lumps of lumped kinetic modeling of aromatic type catalytic naphtha reforming-the reaction rate equation of power function type.
     On account of 163 parameters in the 27 lumps of lumped kinetic modeling of aromatic type catalytic naphtha reforming, evaluating them all one time was difficulty, and the credit of the evaluated parameters were low. So a method of fractional steps was applied which split up the 27 lumps model to three sub-models then evaluated the parameters of these three sub-models and at last estimated all the parameters of the whole 27 lumps model. At the mean while, after the comparison of several multi parameters estimation method, a combination of local minimizing optimization method (BFGS) which has numerical stability and rapid convergence and global minimizing optimization method (simulated annealing) was applied to accomplish the estimation of 163 model parameters.
     All the data requested by the parameters estimation came from one specific catalytic reforming unit in China. For verifying the parameters obtained by every step, used the data under different periods or operation conditions to verify the model's reliability and extrapolation. The results show that 27 lumped kinetic modeling of aromatic type catalytic naphtha reforming is able to predict the products precisely, and can predict the details of products such as the compositions of products, hydrogen, coke formation, etc.
     Additionally, the distribution of products, the profile of reaction temperature and coke formation along the catalyst bed was simulated by the 27 lumped kinetic modeling of aromatic type catalytic naphtha reforming. Based on the success of validity of 27 lumped kinetic modeling of aromatic type catalytic naphtha reforming, in the final discussed the impact of industrial operation conditions (temperature, space velocity, ratio of hydrogen and hydrocarbon, residence time of catalyst, etc.) on the distribution of products. Then optimized the yield of the primary object-aromatic. The result shows:under the optimized operation conditions, the yield of aromatic increases by 0.98% and the yield of dimethylbenzene increases by 1.34% with the yield of hydrogen increasing a little.
     This research has certain research object whose all data came from the specific industrial unit. And this research is objective, practical and significant. The research result has significance of directly guiding the specific catalytic reforming unit, and other aromatic type catalytic reforming units could find inspiration from this research.
引文
[1]徐承恩.催化重整工艺与工程[M].北京:中国石化出版社,2006.
    [2]David Nakamura. Refiners add 2.7 million b/d of crude refining capacity in 2005[J]. Oil & Gas Journal,2005,103(47):60-64.
    [3]李成栋.催化重整操作指南[M].北京:中国石化出版社,2001.
    [4]马伯文.清洁燃料生产技术[M].北京:中国石化出版社,2001.
    [5]M Khorram, et al. US refiners need more hydrogen to satisfy future gasoline and diesel specifications[J]. Oil & Gas Journal,2002,100(25):42-47.
    [6]世界石油大会中国国家委员会.第十六届世界石油大会论文集(上册)[M].北京:中国石化出版社,2002.
    [7]D Gaffetetal,等.2010年炼油厂的加工方案[J].当代石油石化,2001,9(1):41-44.
    [8]高步良.高辛烷值汽油组分生产技术[M].北京:中国石化出版社,2005.
    [9]舒朝霞,等.2004石油石化市场年度分析报告[M].北京:中国石化咨询公司,2005.
    [10]’舒朝霞,等.2002石油石化市场年度分析报告[M].北京:中国石化咨询公司,2003.
    [11]赵仁殿.芳烃工学[M].北京:化学工业出版社,2001.
    [12]蒋士成.中国聚酯产业链发展现状和前景分析[J].石油化工技术经济,2004,6:.1-5.
    [13]蒋士成.2010年中国聚酯产业链发展展望和建设[J].当代石油石化,2005,13(5):1-11.
    [14]胡德铭.催化重整工艺进展[J].当代石油石化,2002,10(9):17-19.
    [15]Quann R J, Jaffe S B. Building useful models of complex reaction systems in petroleum refining[J]. Chem Eng Sci,1996,51(10):1615-1635.
    [16]周鲁,刘钟海.复杂反应动力学基础[M].成都:成都科技大学出版社,1994.
    [17]朱炳辰,翁惠新,朱子彬.催化反应工程[M].北京:中国石化出版社,2000.
    [18]Wei J, Kuo J C W. A lumping analysis in monomolecular reaction systems[J]. Ind Eng Chem Fundam,1969,8(1):124-133.
    [19]Smith R B. Kinetic analysis of naphtha reforming with platinum catalyst[J]. Chem Eng Prog,1959.55(6):76-88.
    [20]Jaffe S B. Kinetics of heat release in petroleum hydrogenation[J]. Ind Eng Chem Proc Des Dev,1974,13:34-39.
    [21]Krane H G, Gron A B, et al. Reactions in catalytic reforming of naphthas [M]. Fifth World Petroleum Congress,1959.
    [22]Kmark W S. A Kinetic Simulation Model of the Powerforming Process [J]. AIChE National Meeting, Houston,1972,3:72.
    [23]Jenkins J H, Stephens T W. Kinetics of catalytic reforming [J]. Hydrocarbon processing,1980(11):163-167.
    [24]Wolff A, Kramarz. Kinetic models of catalytic reforming[J]. Chemistry and Technology of fuels and oils,1979,15(12):870-877.
    [25]Froment G F. The kinetics of complex catalytic reaction[J]. Chem Eng Sci,1987, 42(5):1073-1087.
    [26]Ramage M P, Graziazi K R. Development of Mobils' Kinetic Reforming Model[J]. Chem. Eng. Sci.,1980,35:41-48.
    [27]Tarkar. Modeling and optimization of a catalytic naphtha reformer[D]. USA:Texas Tech university,1996.
    [28]Jorge A J, Eduardo V M. Kinetic Modeling of Naphtha Catalytic Reforming Reactions[J]. Energy & Fuels,2000,14(5):1032-1037.
    [29]Jorge A J, Eduardo V M, et al. Modeling and Simulation of Four Catalytic Reactors in Series for Naphtha Reforming[J]. Energy & Fuels,2001,15(4):887-893.
    [30]翁惠新,孙绍庄,江洪波.催化重整集总动力学模型(1)[J].化工学报,1994,45(4):407-412.
    [31]翁惠新,孙绍庄,江洪波.催化重整集总动力学模型(2)[J].化工学报,1994,45(5):531-537.
    [32]翁惠新,孙绍庄,江洪波.催化重整集总动力学模型(3)[J].化工学报,1994,45(5):538-544.
    [33]欧阳福生,翁惠新,等.催化重整集总反应动力学的研究[J].化学反应工程与工艺,1994,10(2):139-145.
    [34]孙绍庄,翁惠新,等.催化重整集总反应动力学模型研究[J].石油学报,1993,9(3):27-34.
    [35]孙绍庄,翁惠新,等,催化重整集总反应动力学模型研究(Ⅰ)六碳反应网络的动力学研究[J].化学反应工程与工艺,1992,8(1):10-17.
    [36]孙绍庄,翁惠新,等.催化重整集总反应动力学模型研究(Ⅱ)七碳反应网络的动力学研究[J].化学反应工程与工艺,1992,8(1):18-23.
    [37]孙绍庄,翁惠新,等.催化重整集总反应动力学模型研究(Ⅲ)八碳反应网络的动力学研究[J].化学反应工程与工艺,1992,9(3):254-259.
    [38]丁福臣,周志军,杨桂忠.十七集总催化重整反应动力学模型研究(Ⅰ)模型的建立[J].石油化工高等学校学报,2002,15(1):15-17.
    [39]丁福臣,周志军,杨桂忠,等.十七集总催化重整反应动力学模型研究(Ⅱ)工业装置模拟[J].石油化工高等学校学报,2002,15(2):22-25
    [40]胡永有,苏宏业,等.工业重整装置建模与仿真[J].高校化学工程学报,2003,17(4):418-424.
    [41]侯卫峰,苏宏业,等.催化重整集总动力学模型的建立及其在线应用[J].化工学报,2005,57(7):1605-1611.
    [42]解新安,彭士浩,刘太极.催化重整反应动力学模型的建立及其工业应用(1)[J].炼油设计,1995,25(6):49-51.
    [43]解新安,彭士浩,刘太极.催化重整反应动力学模型的建立及其工业应用(2)[J].炼油设计,1996,26(1):44-47.
    [44]解新安,彭士浩,刘太极.催化重整反应动力学模型的建立及其工业应用(3)[J].炼油设计,1996,26(2):44-47.
    [45]Liguras D K, Allen D T. Structural Models for Catalytic Cracking.1.Model Compound Reactions[J]. Ind. Eng. Chem. Res.,1989,28(6):665-673.
    [46]Liguras D K, Allen D T. Structural Models for Catalytic Cracking.2.Model Compound Reactions of Simulated Oil Mixtures[J]. Ind. Eng. Chem. Res.,1989, 28(6):674-683.
    [47]Astarita G, Sandler S I. Kinetic and Thermodynamic Lumping of Multicomponent Mixtures[J]. Amsterdam Elsevier,1991.
    [48]Baltannas M A, et al. Fundamental Kinetic Modeling of Hydroisomerization and Hydrocracking on Nobel-Loaded Faujastes.l.Rate Parmeters for Hydroisomerization[J]. Ind. Eng. Chem. Res.,1989,28(7):899-910.
    [49]Baltannas M A, Froment G F. Computer Generation of Reation Networks and Calculation of Product Distributions in the Hydroisomerization and Hydrocracking of Paraffins on Pt-Containing Bifunctional Catalysts[J]. Computers & Chemical Engineering,1985,9(1):71-81.
    [50]Feng W, Vynckier E, Froment G F. Single-Event Kinetics of Catalytic Cracking[J]. Ind. Eng. Chem. Res.,1993,32(12):2997-3005.
    [51]Dewachtere N V, Santaella F, Froment G F. Application of Single-Event Model in the Simulation of an Industrial Riser Reactor for Catalytic Cracking of Vacuum Gas Oil[J]. Chem. Eng. Sci.,1999,54:3653-3660.
    [52]Quann R J, Jaffe S B. Structure-Oriented Lumping:Describing the Chemistry of Compelx Hydrocarbon Mixtures[J]. Ind. Eng. Chem. Res.,1992,31(11):2483-2497.
    [53]Quann R J, Jaffe S B. Building Useful Models of Complex Reaction Systems in Petroleum Refining[J]. Chem. Eng. Sci.,1996,51:1651-1635.
    [54]Christensen G, et al. Future Directions in Modeling the FCC Process:An Emphasis on Product Quality[J]. Chem. Eng. Sci.,1999,54:2753-2764.
    [55]徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985.
    [56]Neurock M, et al. Monte Carlo Simulation of Complex Reaction Systems:Molecular Structure and Reactivity in Modeling Heavy Oils. Chem. Eng. Sci.,1990,45(8): 2083-2088.
    [57]Mills G A, Heinz Heinemann, Milliken T H, et al. Houdriforming reaction catalytic mechanism[J]. Industrial and Engineering Chemistry,1953,45(1):134-137.
    [58]Sinfelt J H, Rohrer J C. Reactivities of some C6-C8 paraffins over Pt-Al2O3[J]. Journal of chemical and engineering data,1963,8(1):109-111.
    [59]Silvestri A J, Naro P A, Smith R L. Direct evidence for dual-functional cyclization of paraffins over platinum reforming catalysts [J]. Journal of catalysis,1969,14(4): 386-388.
    [60]Parera J M, Beltramini J N, Querini C A, et al. The role of Re and S in the Pt-Re-S/Al2O3 catalyst[J]. Journal of catalysis,1986,99(1):39-52.
    [61]Parera J M. Reply to "On the possible reaction scheme of aromatization in catalytic reforming"[J]. Journal of catalysis,1987,105(2):543.
    [62]Dennis E Sparks, Ram Srinivasam, Burtron H Davis. Paraffin dehydrocyclization. Part 8.Conversion of n-octane with mono and bifunctional Pt-Al2O3 catalysts at 100 psig[J]. Journal of molecular catalysis,1994,88(3):325-342.
    [63]Ram Srinivasam, Burtron H Davis. Paraffin dehydrocyclization. Part 9. Conversion of n-octane with Pt-Sn catalysts at atmospheric pressure[J]. Journal of molecular catalysis,1994,88(3):343-358.
    [64]Dennis E Sparks, Ram Srinivasam, Burtron H Davis. Paraffin Dehydrocyclization. Part 10. Conversion of n-octane with Supported Pt-Sn Catalysts at 100 psig[J].1994, 88(3):359-376.
    [65]Govind Menon P, Zoltan Paal. Some Aspects of the Mechanism of Catalytic Reforming Reactions[J]. Ind. Eng. Chem. Res.,1997,36(8):3282-3291.
    [66]Verderone R J, Pieck C L, Sad MR, et al. Influence of Chlorine Content on the Behaviour of Pt-Re/Al2O3 Catalyst for Naphtha Reforming[J]. Applied catalysis, 1986,21(2):239-250.
    [67]H D Burtron. Alkane Dehydrocyclization Mechanism[J]. Catalysis Today,1999, 53(3-5):443-516.
    [68]Sinfelt J H, Rohrer J C. Reactivities of some C6-C8 Paraffins over Pt-Al2O3[J]. Journal of Chemical and Engineering Data,1963,8(1):109-111.
    [69]Van Trimpont P A, Marin G B, Froment G F. Reforming of C7 Hydrocarbons on a Sulfided Commercial Pt/Al2O3 Catalyst[J]. Ind. Eng. Chem. Res.,1988,27(1): 51-57.
    [70]Marin G B, G. F. Froment. Reforming of C6-hydrocarbons on a Pt-Al2O3 catalyst[J]. Chemical Engineering Science,1982,37(5):759-773.
    [71]Liu K, Fung S C, Ho T C, et al. Heptane reforming over Pt-Re/Al2O3:reaction network, kinetics and apparent selective catalyst deactivation [J]. Journal of catalysis, 2002,206(2):188-201.
    [72]Liu K, Fung S C, Ho T C, et al. Kinetics of catalytic coking in heptane reforming over Pt-Re/Al2O3 [J]. Ind. Eng. Chem. Fundam.,1997,36(8):3264-3274.
    [73]Nancy Martin, Margarita Viniegra, Rene Zarate, et al. Coke characterization for an industrial Pt-Sn/y-Al2O3 reforming catalyst[J]. Catalysis Today,2005,107-108: 719-725.
    [74]Broyden C G. The Convergence of a Class of Double-rank Minimization Algorithms[J]. Journal of the Institute of Mathematics and Its Applications,1970,6: 76-90.
    [75]Fletcher R. A New Approach to Variable Metric Algorithms[J]. Computer Journal, 1970,13:317-322.
    [76]Goldfarb D. A Family of Variable Metric Updates Derived by Variational Means[J]. Mathematics of Computation,1970,24:23-26.
    [77]Shanno David F. Conditioning of quasi-Newton methods for function minimization[J]. Math. Comput,1970,24:647-656.
    [78]Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by Simulated Annealing[J]. Science, new series,220(4598):671-680.
    [79]康立山,谢云.非数值并行计算-模拟退火算法[M].北京:科学出版社,1998.
    [80]Ingber L. Very fast simulated annealing [J]. Math Comput. Modeling,1989,12: 967-973.
    [81]Arts E, Korst J. Simulated annealing and boltzmann machine[M]. New York:Wiley & Sons,1989.
    [82]陈华根,吴健生,王家林,等.模拟算法机理研究[J].同济大学学报(自然科学版),2004,32(6):802-805.
    [83]Treanor C E. A method for the numerical integration of coupled first-order differential equations with greatly different time constants [J]. Math. Comp.,1966,20:39-45.
    [84]魏朗,余强.现代最优化设计与规划方法[M].北京:人民交通出版社,2005,68-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700