用户名: 密码: 验证码:
从含钒钢渣中提取V_2O_5的新工艺与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究为教育部高等学校博士学科点专项科研基金“从高钙含钒钢渣中清洁提钒的试验与机理研究”项目(批准号:200806740008)资助课题,旨在解决含钒钢渣目前仍难以高效提钒的技术难题,同时对提钒过程机理进行分析,为含钒钢渣的综合利用提供有力的理论依据。
     含钒钢渣产生于钒钛磁铁矿的炼钢过程,是重要的、很有利用价值的冶金二次资源,可作为提取V205的重要原料,但由于其钙、铁含量高,钒含量低,钒赋存状态复杂、弥散分布于多种矿物相中,使得其中的钒难以高效提取利用。现有提钒工艺虽多,但很难适应含钒钢渣的资源特性,且存在成本高、污染重、回收率低等诸多问题;而一些新兴技术如选择性析出、微生物浸出、矿浆电解等,虽然对含钒钢渣提钒效果较好,但工艺尚不成熟,实际生产中仍需采用传统钠化焙烧工艺。为此,针对含钒钢渣的特点,本论文开发了一种含钒钢渣选冶联合提钒的新工艺。该工艺主要包括选矿预处理过程、选择性分段浸出过程、酸浸液的净化与富集过程,并对每一过程进行了系统深入的研究。
     论文首先进行了含钒钢渣的工艺矿物学研究,查明了钢渣中钒、铁、钙等主要成分的赋存状态、嵌布粒度、相关性、分布特点,同时探讨了工艺矿物学特征对钒提取的影响规律,为选矿预处理及后续湿法提钒提供科学基础。
     在工艺矿物学研究的基础上,课题首次提出了选矿预处理新技术,分析了预处理后钢渣的成分组成,并研究了选矿预处理对后续浸出的影响规律。通过弱磁选预处理,尽管除铁率不高,但可在一定程度上减少铁在浸出液中的累积,降低酸浸液中铁与钒分离的难度,而且弱磁选精矿中铁品位达72.87%,有利于资源的综合利用。重选预处理可抛除部分耗酸杂质,避免这些杂质对浸出的危害,更有利于后续浸出和节省酸耗。相对于原料直接酸浸,选矿预处理后再酸浸,浸出率提升了11%;同时,预处理后钒有所富集,为后续湿法提钒创造了有利条件。
     钢渣中的钒大部分以+4价的酸溶钒形式存在,基于此,课题采用选矿预处理后不焙烧直接酸浸的技术提钒。关于钒浸出,目前仍以焙烧后水浸或酸浸的研究居多,而对不经焙烧直接酸浸提钒的研究较少,也未有实质性进展。为此,课题着重对不焙烧直接酸浸提钒工艺进行研究,以期在前人的研究基础上能有所突破。
     计算了含钒钢渣硫酸浸出体系中可能发生的化学反应,绘制了V-H20系的Eh-pH图。热力学研究表明,钢渣中主要矿物的浸出反应是很容易进行的,并且浸出比较完全。CaO、FeO、Al2O3和MgO的酸溶反应的ΔGrθ很小,平衡常数很大,说明它们容易与硫酸发生化学反应。由于这些组分含量很大,势必造成大量的硫酸与之发生反应而被消耗,只有少量硫酸与钒化合物反应。
     在理论分析的基础上,系统考查了酸耗、搅拌强度、反应温度、反应时间等因素对浸出的影响,确定了浸出时的最佳工艺参数。并综合运用热力学、动力学、结构化学等的原理及X-射线衍射仪、光学显微镜和扫描电镜等现代测试手段,对浸出反应宏观动力学、相关元素浸出行为、含钒矿物物相变化进行了探讨,建立了钢渣浸出提钒的理论基础。
     在这些基础上,提出了钢渣“选择性分段浸出”新方法。Ⅰ段预浸除杂、Ⅱ段浸出钒,.分别得到不含钒的杂质溶液“铁液”和杂质相对较少的“钒液”,很大程度上实现了钒与铁等杂质的选择性浸出分离。并对其进行了理论分析与研究,阐明了选择性浸出提钒的相关机理。
     含钒酸浸液的净化与富集,是一项重要的研究课题。目前研究最多的是离子交换法和溶剂萃取法,一般来说萃取法更适用于从酸性溶液中回收钒。针对酸浸液含钒浓度低、杂质含量高的特点,课题对传统溶剂萃取法进行了改进和创新,即在溶剂萃取过程中,除了萃取和反萃取这两个工序外,新增加了一道负载有机相的洗涤工序,并研发出一种新型高效的洗涤剂活性Na2SO4溶液。
     系统研究了萃取、洗涤、反萃的工艺条件,获得了最佳的工艺参数。在最佳条件下,钒的四级逆流萃取率达98.86%,洗涤损失率仅1.16%,单级反萃率高达99.27%;经萃取-洗涤-反萃后,不仅钒由3.5g·L-1富集到20.37g·L-1,而且大多数杂质被除去。反萃水相中Fe浓度为0.15g·L-1,钒、铁质量浓度比为135.8,很好地实,现了钒与铁的分离。
     钢渣的反萃液在酸浸和萃取等工序中引入了较多的SO42-、CO32-、Na+,对这种反萃液能否采用铵盐沉钒来获得高质量的精钒产品,目前未见详细报道。为此,详细研究了各因素对酸性铵盐沉钒的影响规律、探讨其内在原因,并获得了高质量的精钒产品,质量达到国家标准;从酸浸液到精钒的回收率高达95.92%。
     最后,针对提钒废水的特点,从环境及资源保护的角度,课题采用黄铁矾法处理萃余液与洗涤废液,结果表明:在pH1.2、反应温度93℃、沉淀时间3h下,废液的除铁率达97%,除铬率达96%。黄铁矾法沉淀物处理后可获得Fe203品位为72.01%的氧化铁红副产品。处理后的废水返回浸出使用,对浸出无不良影响,并可节省5%的酸耗。
     本课题开发的提钒新工艺较传统工艺的指标大幅提高,通过选矿预处理、选择性分段浸出、萃取-洗涤-反萃等单一技术工艺的集成,新工艺钒总回收率高达80.02%,与传统工艺从含钒固废中提钒时总回收率不足70%相比,提钒指标大幅度提升;相对传统钠化焙烧工艺而言,新工艺取消了焙烧工序,既大幅度提高浸出指标,又节省了大量的设备投资、排放污染物少,具有广阔的发展潜力;而且新工艺使用的原料是含钒钢渣,而非转炉提钒生产的钒渣,属于废弃物的综合利用,对冶金二次资源的有效利用和钒资源的充分利用具有重要意义,这为提钒新工艺的发展前景奠定了基础。
The dissertation research is one branch of the project named "The Mechanism and Experimental Study on Clean Extracting Vanadium from Vanadium bearing Steel Slag(No.200806740008)", which is supported by the Specialized Research Foundation for the Doctoral Program of Higher Education of China. This paper aims at solving technically difficult problem that vanadium can not be effectively reclaimed from vanadium bearing steel slag at present, and providing strong theoretical base for comprehensive utilization of the vanadium bearing steel slag by analysis of process mechanism of extracting vanadium.
     As one of the important and valuable metallurgical secondary resources, vanadium bearing steel slag produced in steelmaking process of V-Ti magnetite, can be used as the key raw materials for extracting V2O5. However, it is still very difficult to reclaim vanadium from vanadium bearing steel slag due to its high calciμm, high iron, low content and complex occurrence of vanadium dispersed in a variety of mineral phase. Many technologies exist for vannadium extraction, but they can hardly fit resource characteristics of vanadium steel slag, and there are still many problems with those technologies, including high cost, serious pollution,low recovery and so on; At the same time, some new technologies such as selective precipitation, bacterial leaching and slurry electrolysis are not yet complete and practical while better results can be obtained in experimental study of extracting vanadium with those new technologies. Actually, conventional salt roasting process is the only process used commercially. Thus, according to the characteristics of vanadium-bearing steel slag, a new technology for extracting vanadium from V-bearing steel slag through combined process of beneficiation and metallurgy has been developed in this paper. and systematically and further study on the whole process consisting of pretreatment by beneficiation, selective stage leaching, purification and enrichment of acid-leaching solution was carried out.
     Firstly, the detailed process mineralogy for a certain vanadium bearing steel slag were studied. The occurrence forms, dissemination granularity, distributed characteristics of V, Ca and Fe in slag and the correlations among them were identified, the influence rules of process mineralogy characteristic on extracting vanadium were also discussed. The results can be used as the scientific reference for the pretreatment by beneficiation and the followed hydrometallurgical vanadium extraction procedure.
     Based on the studies of the process mineralogy, a novel technique of pretreatment by beneficiation was puted forward for the first time. The mineral components of slag after pretreatment was analyzed and the effect of pretreatment on followed leaching was investigated. Results indicate that an iron concentrate with grade of 72.08% can be obtained by magnetic separation method, which not only helps to recover the iron from slag, but also reduces the accumulation of iron ions in leaching solution and cuts down the difficulty of Fe-V separation; Part of acids consumption impurities can be removed by pretreatment of gravity dressing. In this case, the acids consumption would be saved and the adverse effects of impurity on downstream leaching can be minimized. Hence, V-leaching rate increases greatly. Compared with direct acid leaching without pretreatment, V-leaching rate after pretreatment was high above 11%. After pretreatment, the grade of vandium in the gravity concentrate was increased which was favorable for the followed hydrometallurgical vanadium extraction procedure.
     Most of vanadium in slag is exist in the form of V(IV) which is soluble in acid solution. In the view of this point, the technique of direct acid leaching after pretreatment by beneficiation without roasting is suitable for extracting vanadium. At present, most of researches about leaching of vanadium still focus on water leaching or acid leaching after roasting rather than direct acid leaching without roasting, and no substantive progress on direct acid leaching has been made now. In view of the problems that exist in current work, technique of direct acid leaching without roasting was emphatically researched in order to made a breakthrough on the basis of previous studies.
     The chemical reactions that may occur in the system of sulfuric acid leaching of slag were calculated, and the potential-pH diagram of V-H2O system was plotted. Thermodynamic study shows that the leaching reactions of main mineral of slag would be thermodynamically easy and completed. Low△Grθand high equilibrium constant of acid dissolution reactions of CaO,FeO,Al2O3 and MgO indicate that these oxides can react with sulfuric acid easily. So, much of sulfuric acid would be consumed due to the high content of these oxides in steel slag, and only a small amount of sulfuric acid react with vanadium compounds.
     Based on theoretical analysis, the effects of sulfuric acid dosage, stirring strength, reaction temperature and reaction time on the leaching were systematically investigated. Macrokinetics reaction, leaching behavior of related elements and mineral phase transformation were deeply discussed synthetically by these theories of kinetics, thermodynamics, structure chemistry and so on, and modern microscopic measuring and testing technology such as X-ray diffraction, optical microscope, and scanning electron microscope and so on, which established the theoretical foundation for acid leaching of vanadium from steel slag.
     Based on above work, a new method of selective stage leaching was developed. With two stages acid leaching, impurity element was leached in the first stage and vanadium in the second stage, "solution of iron" without vanadium in it and "solution of vanadium" with relatively few impurities were obtained respectively. So, a better selective leaching seperation between vanadium and iron was achieved significantly. Theoretical analysis and study about selective stage leaching were also carried out so as to clarify relevant mechanism of selective leaching of vanadium.
     Purification and enrichment of acid leaching solution containing vanadium is an important research topic. And ion exchange and solvent extraction are the most widely studied topic in all researches. In general, solvent extraction is more suitable for recovery of vanadium from acidic solution. In view of low vanadium content, high impurity content in acid leaching solution, traditional solvent extraction method was improved by adding washing procedure of loaded organic phase besides extraction and stripping procedure, and a new high efficient washing reagent "active Na2SO4 solution" has been developed in this paper.
     The extraction, washing and stripping were systematically researched and the optimum conditions were obtained. Under these conditions, four stages countercurrent extraction rate reached 98.86%, washing loss rate only 1.16%, singlestage stripping rate reached 99.27%. By extraction-washing-stripping, not only the vanadium enriched from 3.5g-L-1 to 20.37g-L-1, but also most of the impurities were removed. Fe concentration was olny 0.15g·L-1 and concentration ratio of V/Fe in stripping solution reached 135.8, so that effective separation between vanadium and iron was betterly achieved.
     A greater amount of SO42-, CO32- and Na+ was introduced into stripping solution during acid leaching and extraction processes. And there is still no detailed report whether the high quality product could be obtained from this kind of stripping solution at present. So, the effect of various factors on precipitation of vanadium by acidic ammonium salt was studied and the underlying causes was discussed. After Purification and enrichment via a series of procedures, high quality refine V2O5 product whose purity and quality met national standards was obtained, and the recovery of V2O5 was up to 95.92% from acid leaching solution to refine V2O5.
     Finally, jarosite process was adopted to treat raffinate and washing waste water according to the characteristics of waste water. Results show that with the pH value of 1.2 at 93℃for 3h, the iron removal rate reached 97%, while the chromium removal rate was 96%. A byproduct of high pure red ferric oxide with 72.01% Fe2O3 can be obtained from ammonium jarosite residue.And recycling of waste water through treatment into leaching process would not bring any bad effect to leaching and could save 5% acid consumption.
     Overall, a new technology of vanadium extraction was developed by integration of single technology of beneficiation pretreatment, selective step leaching and extraction-washing-stripping and so on in the paper. Compared with total vanadium recovery of less than 70% when extracting vanadium from V-bearing solid waste using traditional process, the extracting vanadium index of new technology with total vanadium recovery of 80% is greatly improved. And the new technology would have broad development potential due to the cancellation of the roasting process, which not only increased leaching index, but also saved a lot of equipment investment and decreased the discharge of pollutants. On the other hand, raw materials used in new technology is vanadium bearing steel slag rather than vanadium slag produced in V-Recovering process with the converter. Thus, new technology is the one of waste utilization technologies, and it has significances to the effective utilization of metallurgical secondary resources and full utilization of vanadium resources. This lays the foundation for the development of new technology.
引文
[1]国土资源部信息中心.世界矿产资源年评2006-2007[M].北京:地质出版社,2008.
    [2]田茂明,唐大均,张奇,等.含钒钢渣提钒工艺及其主要技术[J].重庆科技学院学报(自然科学版),2009,11(2):59-61.
    [3]段炼,田庆华,郭学益.我国钒资源的生产及应用研究进展[J].湖南有色金属,2006(12):17-23.
    [4]Moskalyk R R, Alfantazi A M. Processing of vanadium:a review[J].Minerals Engineering, 2003,16(9):793-805.
    [5]黄道鑫.提钒炼钢[M].北京:冶金工业出版社,2002.
    [6]陈家镛.湿法冶金手册[M].北京:冶金工业出版社,2005.
    [7]《有色金属提取冶金手册》编辑委员会.有色金属提取冶金手册(稀有高熔点金属下)[M].北京:冶金工业出版社,2002.
    [8]徐传才.铁合金冶炼工艺学[M].北京:冶金工业出版社,2008.
    [9]Salazar K, Marcia K, Nutt M. Mineral Commodity Summaries 2010[M].United State Government Printing Office,Washington, January 2010.
    [10]Desiree E,Polyak.2008 Minerals Yearbook:Vanadium[M].United State Government Printing Office,Washington, December 2009.
    [11]Mohanty J K, Khaoash S, Singh S K, et al. Characterization and utilization of vanadium bearing titaniferous magnetite of Boula-Nausahi igneous complex,Orissa,India[J]. Scandinavian journal of metallurgy,1999,28(6):254-259.
    [12]廖世明,柏谈论.国外钒冶金[M].北京:冶金工业出版社,1985.
    [13]Zhou Jia-cong. Development of China vanadium industry[A].//A Selection of Papers Presented at the Vanitec International Symposium Held in Guilin, China 6th Nov 2000[C]. Westerham, Kent, England:VANITEC,2000:7-14.
    [14]刘世友.钒的应用与展望[J].稀有金属与硬质合金,2000(141):58-61.
    [15]舒型武.石煤提钒工艺及废物治理综述[J].钢铁技术,2007(1):47-50.
    [16]陈庆根.石煤钒矿提钒工艺技术的研究进展[J].矿产综合利用,2009,(2):30-34.
    [17]Tracey Alan S, Gail Ruth Willsky, Esther Takeuchi. Vanadium:Chemistry,Biochemistry, Pharmacology and Practical Applications[M].Boca Raton:CRC Press,2007.
    [18]Puvvada G V K, Sridhar R, Lakshmanan V I. Recovery of vanadium from fly ash and spent catalysts [A].//In Processing and Applications, Proceedings of the International Symposium on Vanadium, Conference of Metallurgists[C].Montreal, Canada, August,2002:171-181.
    [19]Monakhov L N, Khromov S V, Chernousov P I. Flow of vanadium bearing-materials in industry[J].Metallurgist,2004,48(7):381-385.
    [20]戈文荪,杨素波,王建,张大德,张玉东.攀钢转炉提钒工艺的开发与优化[J].钢铁钒钛,1999,20(4):24-29.
    [21]戈文荪,张玉东,黎建.攀钢转炉提钒工艺的技术变革与展望[J].钢铁钒钛,2001,22(3):11-14.
    [22]王勇,刘芳,王承宽.铁水提钒与含钒钢种的生产[J].四川冶金,2005,27(5):54-57.
    [23]程亮.五氧化二钒生产工艺的进展[J].甘肃冶金,2007,29(4):52-53.
    [24]何东升.石煤型钒矿焙烧-浸出过程的理论研究[D].长沙:中南大学,2009.
    [25]Wilkomirsky I A E, Luraschi A, Reghezza A. Vanadium extraction process from basic steel refining slags[J]. Extraction metallurgy'85. The Institution of Mining and Metallurgy, London,1985:531-549.
    [26]肖文丁.广西上林石煤的矿物学和湿法提钒研究[J].有色金属,2007,59(3):32-34.
    [27]潘勇,于吉顺,吴红丹.石煤提钒工艺评价[J].矿冶快报,2007(4):10-13.
    [28]钱强.石煤钒矿提取五氧化二钒的技术现状[J].中国资源综合利用,2008,26(3):13-14.
    [29]Zhou Xiang-yang, Li Chang-lin,Li Jie.Leaching of vanadium from carbonaceous shale[J]. Hydrometallurgy,2009,99(1/2):97-99.
    [30]漆明鉴.从石煤中提钒现状及前景[J].湿法冶金,1999(4):1-10.
    [31]Wang Ming-yu, Xiang Xiao-yan,Zhang Li-ping,Xiao Lian-sheng. Effect of vanadium occurrence state on the choice of extracting vanadium technology from stone coal[J]. Rare Metals,2008,27(2):112-115.
    [32]Wang Ming-yu, Xiao Lian-sheng, Li Qing-gang, Wang Xue-wen, Xiang Xiao-yan. Leaching of vanadium from stone coal with sulfuric acid[J].Rare Metals,2009,28(1):1-4.
    [33]Tokuyama H, Nii S, Kawaizumi F, Takahashi K. Process development for recovery of vanadium and nickel from heavy oil fly ash by leaching and ion exchange[J].Separation Science and Technology,2003,(6):35-39.
    [34]Saji John K,Saji J,Reddy M L P,Ramamohan T R,Rao T P.Solvent extraction of titanium(IV) from acidic chloride liquor by Cyanex 923[J].Hydrometallurgy,1999,51(1):9-11.
    [35]Rakib M, Durand G.Study of complex formation of vanadium(V) with sulphate ions using a solvent extraction method[J].Hydrometallurgy,1994,43(3):355-358.
    [36]Alguacil F J,Caravaca C,Martinez S, Cobo A.The phosphine oxides Cyanex 923 and Cyanex 925 as extractants for gold(Ⅰ) cyanide aqueous solutions[J]. Hydrometallurgy,1994, 36(3):369-372.
    [37]Taylor R R, Shuey S A, Vidal E E, Gomez J C. Extractive metallurgy of vanadium-containing titaniferous magnetite ores:a review[J]. Minerals&Metallurgical Processing, 2006,23(2):80-86.
    [38]Jayadas S, Reddy M L.Solvent extraction separation of vanadium from multivalent metal chloride solutions using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester[J]. Journal of Chemical Technology&Biotechnology,2002,77(10):1149-1156.
    [39]李存兄,魏昶,李旻延,樊刚,邓志敢.石煤氧压酸浸提钒工艺优化[J].中国有色金属学报,2008,18(1):s84-s87.
    [40]He D, Feng Q, Zhang G. Study on leaching vanadium from roasted residue of stone coal[J].Minerals & Metallurgical Processing,2008,25(4):180-183.
    [41]Ao Shan,Tang Shou-lian. Iron precipitation from acid leaching process of fly ash [A].//Proceedings of XXIV International Mineral Processing Congress[C].Beijing:Science Press,2008:140-142.
    [42]Guibal E, Guzman J, Navarro R.Vanadium extraction form fly ash-preliminary study of leaching,solvent extraction,and sorption on chitosan separation[J]. Science and Technology,2003(12/13):740-742.
    [43]Das B, Prakash S, Reddy P S R, Misra VN. An overview of utilization of slag and sludge from steel industries. Resources Conservation & Recycling,2007,50(1):40-57.
    [44]Guo Y F, Lv Y N, Huang D, Jiang T, You G. Vanadium extraction from vanadium titanium-rich material by oxidation roasting-acid leaching[A].//Proceedings of XXIV International Mineral Processing Congress[C]. Beijing:Science Press,2008:540-542.
    [45]Diego Juan Garcia,Luis Javier Jozano Blanco,Maria Dolores Mulero Vivancos.Leaching of vanadium from sulphuric acid manufacture spent catalysts[J].Revista de Metalurgia,2001: 18-23.
    [46]Li Zeng,Chu Yong-cheng.A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts Part I:Metallurgical processes[J]. Hydrometallurgy,2009,98(1/2):57-59.
    [47]徐全斌,刘建明,张群燕.国际钒市场评述及前景展望[J].世界有色金属,1999(9):32-34.
    [48]马晓丹.全球经济危机下国内钒市分析及预测[EB/OL].[2010-6-6].http://www.chinaccm. com/J0/J003/J00301/news/20081110/104243.asp.
    [49]Ullmann, Fritz. Vanadium and vanadium compounds [A].//Ullmann's Encyclopedia of Industrial Chemistry 6th ed[C]. Weinheim, Federal republic of Germany,1998:367-385.
    [50]马晓丹.2009年钒市回顾与2010年展望[EB/OL].[2010-6-6].http://www.chinaccm.com/ UploadFile/C8/File/20101415191100768.pdf.
    [51]王忠,王军.国内五氧化二钒市场状况与分析[J].矿冶,2007,16(2):47-51.
    [52]Li Min-ting,Wei Chang,Fan Gang. Extraction of vanadium from black shale using pressure acid leaching[J]. Hydrometallurgy,2009,98(3):308-313.
    [53]Li Xiao-gang,Huang Ke-long,Liu Su-qin,Chen Li-quan.Electrochemical behavior of diverse vanadium ions at modified graphite felt electrode in sulphuric solution[J]. J. Cent. South Univ. Technol,2007,14(1):51-56.
    [54]Gupta C K, Krishnamurthy N. Extractive Metallurgy of Vanadium[M].Netherlands:Elsevier Science Publishers,1992.
    [55]文喆.国内外钒资源与钒产品的市场前景分析[J].世界有色金属,2001(11):7-8.
    [56]Lan Yao-zhong, Liu Jin. Review of Vanadium Processing in China[J]. Engineering Sciences, 2005,3(3):58-62.
    [57]Smith R.Comeback in the outback-vanadium market[J].Materials World,2006,16(7):28.
    [58]叶国华,童雄,路璐.含钒钢渣资源特性及其提钒的研究进展[J].稀有金属,2010,34(5):769-774.
    [59]余亮,董元篪.含钒钢渣添加Si02后的钒富集相与钒富集行为[J].材料与冶金学报, 2007,6(2):94-99.
    [60]杨素波,罗泽中,文永才,何为,王建.含钒转炉钢渣中钒的提取与回收[J].钢铁,2005,40(4):72-75.
    [61]Selin R.Vanadium in ore-based iron and steelmaking [M].An LKAB Monograph by Roger Selin, Nov.2000.
    [62]Preblinger H.Vanadium in converter slag[J]. Steel Research International,2002,73(12): 522-524.
    [63]张鹏科.从含钒钢渣中富集钒的研究[D].武汉:武汉科技大学,2006.
    [64]Waligora J, Bulteel D, Degrugilliers P, Damidot D, Potdevin J L, Measson M. Chemical and mineralogical characterizations of LD converter steel slags:A multi-analytical techniques approach[J]. Materials Characterization,2010,61(1):39-48.
    [65]陈林竣.含钒钢渣的全分解和综合利用[J].马钢科研,1990(2):36-38.
    [66]Yu Liang, Li Liao-sha, Dong Yuan-chi.Vanadium in converter slag of Magang[A].//Global Symposium on Recycling, Waste Treatment and Clean Technology(REWAS'04)[C]. Madrid:ES,2004:26-28.
    [67]刘安华,李辽沙,余亮.含钒固废提钒工艺及比较[J].安徽工业大学学报,2003,20(4):126-131.
    [68]姬云波,童雄,叶国华.提钒技术的研究现状与进展[J].国外金属矿选矿,2007(5):10-14.
    [69]李光强,张鹏科,朱诚意,张力.用碳热还原法从含钒钢渣回收含钒生铁[J].四川冶金,2005,27(5):61-64.
    [70]Ressel R, Hchenhofer M, Antrekowitsch H. Processing of vanadiferous residues to ferrovanadium[A].//Proceedings of EPD Congress[C].San Francisco:2005:27-29.
    [71]Emami A H, Sheikh M, Abotalebi M R, Recovery of vanadium from LD converter slag using salt roasting process[J]. Journal of University College of Engineering Iran,2005(39): 813-820.
    [72]Peng Shao-fang,Zhang Zhao,Liu Shu-qing. A study on carbonate leaching of vanadium bearing slag treated by oxidizing roasting with calcium compound[J]. Hydrometallurgy,1998,48(3):261-267.
    [73]邹小勇,彭清静,欧阳玉祝,田仁国.高硅低钙钒矿的钙化焙烧过程[J].过程工程学报,2001,1(2):180-183.
    [74]Amiri M C.Recovery of vanadium as sodium vanadate from converter slag generated at Isfahan steel plant, Iran. Transinsten[J]. Min. Metall. (Sect.C:Mineral process. Extc. Metall.),1999:113-114.
    [75]Raja B V R. Vanadium market in the world[J].Metal world,2007(3):11-12.
    [76]He Dong-sheng, Feng Qi-ming, Zhang Guo-fan. An environmentally-friendly technology of vanadium extraction from stone coal[J].Minerals Engineering,2007,20(2):1184-1186.
    [77]Liu Ming-fei,Wang Yi-jun. Vanadium extraction from vanadium titanium-rich material by oxidation roasting-acid leaching[A].//Proceedings of XXIV International Mineral Processing Congress[C]. Beijing:Science Press,2008:367-369.
    [78]Macsik J, Jacobsson A. Leaching of V and Cr from LD-slag[J]. Waste Management 1996(16):699-709.
    [79]付自碧,彭毅,张林,张涛.钛白废酸浸出钢渣提钒试验研究[J].有色金属,2009,26(5):33-36.
    [80]杨静翎,金鑫.酸浸法提钒新工艺的研究[J].北京化工大学学报,2007,34(3):254-257.
    [81]Aarabi-Karasgani M, Rashchi F, Mostoufi N, Vahidi E. Leaching of vanadium from LD converter slag using sulfuric acid[J].Hydrometallurgy,2010,102(1-4):14-21.
    [82]Espiari S, Rashchi F, Sadrnezhad S K. Hydrometallurgical treatment of tailing with high zinc content[J].Hydrometallurgy,2006(82):54-62.
    [83]Li Hao-ran, Feng Ya-li, Liang Jiang-long, Luo Xiao-bing, Du Zhu-wei.Vanadium recovery from clay vanadium mineral using an acid leaching method[J].Rare Metals,2008, 27(2):116-118.
    [84]汪家鼎,陈家镛.溶剂萃取手册[M].北京:化学工业出版社,2001.
    [85]Wang Ming-yu, Xiang Xiao-yan, Zhang Li-ping,XIAO Lian-sheng. Solvent extraction of vanadium from sulfuric acid solution [J].Rare Metals,2009,28(3):209-212.
    [86]Jena B C, Dresler W, Reilly I G. Extraction of titanium,vanadium and iron from titanomagnetite deposits at Pipestone lake, Manitoba,Canada[J]. Minerals Engineering, 1995,8(1/2):159-168.
    [87]Navarro R, Guzman J, Saucedo I, Revilla J, Guibal E. Vanadium recovery from oil fly ash by leaching,precipitation and solvent extraction processes[J].Waste Management,2007(27): 425-428.
    [88]Dong Yuan-chi, Yu Liang, Li Liao-sha. A clean technique to recover vanadium from converter slag[J]. Steel Research,2005,76(10):733-735.
    [89]Yu Liang,Dong Yuan-chi.Concentrating of vanadium oxide in vanadium rich phase(s) by addition of SiO2 in converter slag[J]. Ironmaking & Steelmaking,2007,34(2):94-96.
    [90]邓志敢,魏昶,李旻延,李存兄,樊刚,葛怀文.石煤氧压酸浸液萃钒除铁工艺研究[J].稀有金属,2009,33(2):290-294.
    [91]冯其明,何东升,张国范,欧乐明,卢毅屏.石煤提钒过程中钒氧化和转化对钒浸出的影响[J].中国有色金属学报,2007,17(8):1348-1352.
    [92]Chaurand P, Rose J, Domas J, Bottero J Y. Speciation of Cr and V within BOF steel slag reused in road constructions[J].Journal of Geochemical Exploration,2006(88):10-14.
    [93]Hukkanen E, Walden H. The production of vanadium and steel from titanomagnetites[J]. International Journal of Mineral Processing,1985,15(1/2):89-102.
    [94]Waligora J, Bulteel D, Degrugilliers P, Damidot D, Potdevin J L, Measson M. Chemical and mineralogical characterizations of LD converter steel slags:a multi-analytical techniques approach[J]. Materials Characterization,2010,61(1):39-48.
    [95]Chaurand P, Rose J, Briois V, Olivi L, Hazemann J, Proux O, Domas J, Bottero J. Enviromental impacts of steel reused in road construction:a crystallographic and molecular (XANES) approach[J]. Hazardous Materials,2006(139):537-542.
    [96]朱桂林,孙树杉.钢渣的成分对钢渣粉活性的影响[J].冶金环境保护,2009(6):45-48.
    [97]邬斌.转炉钢渣资源化利用研究[D].长沙:中南大学,2009.
    [98]曾晶,李辽沙,苏世怀.转炉钢渣的弱磁选研究[J].中国资源综合利用,2006,24(9):33-36.
    [99]叶大伦,胡建华.实用无机热力学数据手册(第2版)[M].北京:冶金工业出版社,2002.
    [100]华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004.
    [101]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1998.
    [102]Momade F W Y, Momade Ze G. A study of the kinetics of reductive leaching of manganese oxide ore in aqueous methanol-sulphuric acid medium[J]. Hydrometallurgy,1999(54):25-39.
    [103]Sadmezhaad S K. Kinetic Processes in Materials Engineering and Metallurgy[M]. Amirkabir Publications Organization,Tehran, Iran,2004.
    [104]Abdel-Aal E A, Rashad M M. Kinetics study on the leaching of spent nickel oxide catalyst with sulfuric acid[J]. Hydrometallurgy,2004(74):189-194.
    [105]Voglauer B, Grausam A, Jorgl H P. Reaction-kinetics of the vanadium roast process using steel slag as a secondary raw material[J]. Minerals Engineering,2004,17(2):917-921
    [106]吕纪霞,张一敏,刘涛,黄晶.石煤提钒水浸渣酸浸液的除杂试验研究[J].金属矿山,2008(4):149-151.
    [107]张云,范必威,彭达平.从酸浸石煤的萃取液中沉淀多聚钒酸铵[J].稀有金属,2001,25(2):157-160.
    [108]马蕾,张一敏,刘涛,黄晶.提高酸性铵盐沉钒效果的研究[J].稀有金属,2009,23(6):936-939.
    [109]李大标.酸性铵盐沉钒条件试验研究[J].过程工程学报,2003,3(1):53-56.
    [110]张蕴华.五氧化二钒的生产工艺及其污染治理[J].广东化工,2006,33(4):77-79.
    [111]张文山,石朝军,梅光贵.湿法冶金(包括Zn,M n,C u,Ni,Co)除铁的几种主要方法[J].中国锰业,2006,26(2):40-42.
    [112]邓志明,周正华.湿法炼锌浸出沉铁探讨[J].湖南有色金属,2002,18(1):23-25.
    [113]王长秋,马生风,鲁安怀.黄钾铁矾类矿物沉淀去除Cr(Ⅵ)的初步研究[J].矿物岩石地球化学通报,2006,25(4):335-338.
    [114]王长秋,马生风,鲁安怀,周建工.黄钾铁矾的形成条件研究及其环境意义[J].岩石矿物学杂志,2005,24(6):607-611.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700