用户名: 密码: 验证码:
LF废渣硫赋存相及亚临界水浸出去硫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着LF精炼设备越来越广泛的应用,精炼废渣的堆弃量越来越大,由此带来的堆放占地和环境污染问题也越发凸显,因此采取有效的方式对其再利用显得非常迫切。LF精炼废渣中存在大量的与部分冶金原料成分相近的CaO、SiO_2、Al_2O_3和MgO等物质,因此将LF精炼废渣在冶金工业中进行资源化循环利用,是废渣循环利用最便捷经济的途径之一,目前已引起人们的关注。
     目前LF精炼废渣冶金循环利用的普遍方式是将废渣进行破碎或造球后直接返回冶金生产,由于不改变渣的化学组成,在循环过程中不可避免的存在渣中有害物质硫的循环富集的问题,易引起钢液质量的恶化。如何采取有效的再生方式去除废渣中的硫,是从本质上解决LF精炼废渣冶金资源化利用的关键和发展方向。
     研究LF精炼废渣冷却固化过程渣相组成及析出机理,废渣中含硫物相的组成、分布及特性,废渣再生处理去硫过程的物化机理以及再生过程废渣冶金特性的变化,可为LF精炼废渣再生循环利用提供物质特性基础,使废渣的再生去硫方式针对性的进行选取,提供废渣再生利用的有利条件并保证再生处理后废渣的冶金再利用效果,促进LF精炼废渣再生冶金循环利用技术的发展,提高精炼废渣的再生利用率,对解决大量堆存的LF精炼废渣带来的处理成本及环境污染问题有很好的理论和实际意义。
     本文首先通过微观检测和热力学分析手段对典型LF精炼废渣基本化学性质及渣相组成和析出机理进行了研究。LF精炼废渣的高碱度、低氧化性、高硫容量、适合的渣指数以及良好的熔化特性使得精炼废渣具有良好的在冶金工业中再循环利用的价值,但废渣硫含量远高于冶炼原材料对含硫量的要求。各物相析出顺序及分布与其熔点有关,硅酸钙类高熔点物相在凝固初期以块状物析出。铝酸钙类形成低熔点的基体相。LF精炼废渣中还存在大量的自由CaO。低碱度、高Al_2O_3含量和缓冷渣渣相种类更多、尺寸更大。利用相图及其简单三角形对应二元和三元碱度关系,可对LF精炼废渣渣相析出进行热力学分析,确定渣组成和温度对物相析出的影响以及预测析出物相的种类和数量及分布。
     LF精炼废渣中的硫以弥散状赋存于低熔点物相交界区域,废渣中的硫赋存相并不按照化学计量以单一组成的物相形式存在,Ca12Al14O32S是废渣中最主要的硫赋存形式,可在一个较大的硫含量浓度范围和冷却条件下析出。而废渣的碱度和成分变化时会有CaS和其它复杂硫赋存相存在。Ca_(12)Al_(14)O_(32)S是由CaS中硫离子置换12CaO·7Al_2O_3中的自由氧离子形成的。热力学计算表明,渣中a(CaS)仅为10-4的数量级,Ca_(12)Al_(14)O_(32)S就可析出成为精炼废渣主要的硫赋存相而稳定存在。
     LF精炼废渣的亚临界水浸出再生去硫可在物性优良的浸出剂和有利的动力学反应环境下进行,反应经过15 min已接近热力学平衡,去硫效果好,成本低。在373 K~473 K温度范围,化学反应为过程控制环节,温度>473 K时,传质过程的影响逐渐凸显,反应进入动力学控制范畴。LF精炼废渣的亚临界水浸出再生去硫过程没有氧化还原反应发生,废渣中的S2-的价态并没有发生变化,仍然是以S2-形式进入浸出液中的。在处理条件下,浸出温度为废渣亚临界水浸出再生去硫的主要热力学影响因素。废渣亚临界水浸出符合未反应核动力学模型,反应的表观活化能值很低,过程的限制性环节为水在渣粒中的内扩散环节。
     最后,通过对以LF再生渣为基料制备的精炼剂的冶金性能实验室热态模拟和理论计算以及现场应用表明,再生渣具有相当好的熔化特性,以再生渣为基料配制的精炼剂具有较高的光学碱度和硫容量,可达到很高的LS,脱硫速度快,反应前10 min的脱硫率已比较接近最终值,脱硫率达50%~70%。在现场应用中,无论低碳钢还是中碳钢,使用以LF再生渣为基料制备的精炼剂代替现场石灰渣系,其脱硫、脱氧、吸附夹杂能力以及合金收得率均得到明显提高。
One of the most commonly used and most efficient methods of improving the quality of steel was ladle treatment of the metal with synthetic slag. After refining, the output of waste slag has a sharp increase, which has brought about increasing issues such as environmental pollution and resource spent. The LF waste slag has the characteristics of metallurgical resources because of the chemical composition and can be returned to metallurgical industry as raw material. For these reasons, the reuse of LF waste slag has been paid more attention for a long time.
     Unfortunately, in spite of its potential, the reuse of LF waste slag was not satisfied and there are only a few waste slag were returned to steelmaking process. This was due to the fact that in the refining process the slag was used as a reservoir of hazardous elements such as sulfur and subsequently used as a source material in steelmaking, the hazardous elements would pollute the steel. So the task of desulfurization to regenerate slag was considerably important before reused.
     But now there is not suitable method to remove sulfur from the slag, in spite of the technical obstacles, the basic characteristics of LF waste slag were not determined. The crystallized path of minerals and the incorporation of sulfur in refining waste slag during the cooling and solidification, the physical chemistry mechanisms and the changing of metallurgical characteristics during the regeneration were the research bases for the reuse of the LF waste slag. These can proffer foundation theories for the slag’s regeneration and guide the desulfurization method’s adoption and improving the technologies of reusing the waste slag. So above research works have academic and practical significance to solve the problem of environmental pollution and resource spent caused by LF waste slag.
     In this subject, a study regarding the typical LF waste slags with micro- and thermodynamics analytical technologies were carried out. The study indicated that the LF waste slag has favorable reuse value in steelmaking process because of the high basicity, low oxidation, high sulfur capacity and good melting characteristic, but the sulfur must be removed before reuse. The crystallized path of minerals was related to their equilibrium temperature, with the temperature drop, Calcium silicate was separated out from the slag at first and Calcium aluminates formed matrix with low melting point, and there were a lot of f-CaO in the waste slag. The amount and dimension of mineral were increased in the low basicity and high Al_2O_3 content slag. The CaO- Al_2O_3-SiO_2 ternary phase diagram and the corresponding basicity value could be used to analyze the thermodynamics equilibrium of the crystallized process of minerals, and the analyze results was very accordant to the microscopic detect results.
     The sulfur in the slag was existed between the low melting point minerals in a state of dispersing, and the sulfur incorporation mineral separated out from the slag was not by a single phase which was according to the stoichiometry. Ca_(12)Al_(14)O_(32)S was the uppermost sulfur incorporation mineral and it could be separated out from the slag in a broad range of sulfur content and cooling speed. There were CaS and other complicated sulfur mineral separated out when the basicity and composition changed. Ca_(12)Al_(14)O_(32)S was formed by replacing O2- in 12CaO·7Al_2O_3 with S2- in CaS, and the thermodynamics calculation indicated that Ca12Al14O32S can be easily crystallized from the slag and existed stably if only the a(CaS) over 10-4.
     The regeneration desulfurization reaction of LF waste slag had been done by subcritical water leaching, the results indicated that the reaction was a kind of multiphase reaction between fluid and solid, and the reaction speed and ratio were large increased in advantaged dynamics conditions which offered by the subcritical water. The reaction’s resistances were come from mass transfer or interface reaction in different temperature. At the temperature of 373 K~473 K, the interface reaction was the control element, and the main resistance changed to mass transfer when the temperature was up to 473 K. There has not any oxidation-reduction reaction in the process and the S2- in the slag entered into the lixivium at the same state. The primary thermodynamics influencing factor of the regeneration desulfurization reaction was temperature and the Unreacted Nucleation dynamics model could be used to characterize the desulfurization reaction. The control element of dynamics process was internal diffusion because of the low apparent activation energy value.
     At last, the metallurgical capabilities of the refining agent prepared with regenerated slag was researched by laboratory experimentation, theoretical calculation and production application, and the research results indicated that the regenerated slag showed goodish melting capability and the refining agent prepared with regenerated slag had high optical basicity and sulfur capacity. In the laboratary experimentation, the desulfurization reaction speed was quickly andηs approached the equilibrium value at the first 10 minute which was 50%~70%. In the production application, using the refining agent prepared with regenerated slag to replace lime, the effect of desulfurization, deoxygenation, inclusion adsorption and alloy recovery were all increased obviously.
引文
[1]潘丽明.炼钢操作技术解疑[M].石家庄:河北科学技术出版社,1998.197~201
    [2]殷瑞钰.我国炼钢-连铸技术发展和2010年展望[C].中国金属学会.2008年全国炼钢-连铸生产技术会议,杭州,2008.2008年全国炼钢-连铸生产技术会议论文集.北京:中国金属学会,2008:1~5
    [3]徐曾启.炉外精炼[M] .北京:冶金工业出版社,1998.27~30
    [4]虞明全.国外炉外精炼方法概况[J].工业加热,1996,19(1):8~9
    [5] Yuasa G, Yajima T, Ukai A, etal. Refining practice and application of the ladle furnace(LF) process in Japan[J]. Trans ISIJ,1984,24(4):412~418
    [6]张鉴.炉外精炼理论与实践[M].北京:冶金工业出版社,1993.18~22
    [7]蒋国昌.纯净钢及二次精炼[M].上海:科技出版社,1996.153~167
    [8]林功文.钢包炉(LF)精炼用渣的功能和配制[J].特殊钢,2001,22(6):28~29
    [9] Dirk D, Peter T J, Bart B, etal. Air-Cooling of Metallurgical Slags Containing Multivalent Oxides[J]. Journal of the American Ceramic Society 2008, 91(10): 3342~3348
    [10]战东平.CaO-A12O3-CaF2-MgO-SiO2五元预熔渣系钢水深脱硫实验研究[J].炼钢,2002,18(6):33~36
    [11] Gilbert S, Mons G G, Turkdogan J T. Ladle refining of steel using an exothermic synthetic slag[J]. Steelmaking conference proceedings, 1988, 9(4): 29~30
    [12]温良英,陈登福,白晨光,等.钢包炉(LF)预熔精炼渣的研究[J].特殊钢,2003,(2):13~15
    [13] Boom R, Riaz S, Mills K C. A boost in research on slags: a doubling in publications from literature since 2003[C].ⅧInternational Conference on Molten Slags Fluxes and Salts. Santiago.Chile, 2009: 1~10
    [14] Jak E, Hayes P C. Phase equilibria determination in complex slag systems[C]. The South African Institute of Mining and Metallurgy. VII International Conference on Molten Slags Fluxes and Salts,Capw Town, South African, 2004: 85~103
    [15]高泽平.炼钢工艺学[M].北京:冶金工业出版社,2006.188~197
    [16]刘浏.炉外精炼工艺技术的发展[J].炼钢,2001,17(4):1~7
    [17] J. Geiseler. Use of steelworks slag in Europe[J]. Waste Management, 1996, 16(3):59~63
    [18]朱桂林,孙树彬.应加快钢铁渣资源化利用[J].中国钢铁业,2007,(1):23~27
    [19] Murphy J N, Meadowcroft T R, Barr P V. Enhancement of the cementitious properties of steelmaking slag, Canadian metall quartley, 1997, 36(5), 315~331
    [20]赵由才.实用环境工程手册-固体废物污染控制与资源化[M].北京:化学工业出版社,2002.15~18
    [21]李光强,朱诚意.钢铁冶金的环保与节能[M].(第二版).北京:冶金工业出版社,2010.97~105
    [22]韩孝永.浅谈钢渣的综合利用[J].再生资源研究,2007,(6):25~29
    [23] Dippenaar R. Industrial uses of slag (the use and re-use of iron and steelmaking slags)[J]. Ironmaking and Steelmaking, 2005, 32(1): 35~46
    [24] Mihok L, Demeter P, Baricova D, etal. Utilization of ironmaking and steelmaking slags[J]. Metalurgija, 2006, 45(3): 163~168
    [25] Schriefer J. Reaping the value from dust and slag[J]. Iron Age New Steel. 1997, 13(2): 24~28
    [26]屠宝洪,傅杰,李晶,等.LF炉精炼渣的回收利用的前景[C].1998年特种冶金和炉外精炼学术会议资料
    [27] Danilov E V. Modern Technology for Recycling Steelmaking Slags[J]. Metallurgist, 2003, 47(5): 232~234.
    [28] Dippenaar R. Industrial uses of slag (the use and re-use of iron and steelmaking slags)[J]. Ironmaking and Steelmaking, 2005, 32(1): 35~46
    [29] Geiseler J. Use of Steelworks Slag in Europe[J]. Waste Management, 1996, 16(1): 59 ~63
    [30] YANG Huangming, ZHANG Guangyei. Current Situation and Prospects for Comprehensive Utilization of Steel Slag[J]. Multipurpose Utilization of Mineral Resources, 1999, (3): 17~19
    [31]庞凯.综述钢铁企业钢铁渣的综合利用和发展方向[J].山西建筑,2009,35(32):164~166
    [32] Shi C. Characteristics and cementitious properties of ladle slag fines from steel Production[J]. Cement and Concrete Research, 2002, 32(3): 459~462
    [33] Setien J, Hernandez D, Gonzalez J J. Characterization of ladle furnace basic slag for use as a construction material[J]. Construction and Building Materials, 2009(23): 1788~1794
    [34] Branca T A, Colla V, Valentini R. A way to reduce environmental impact of ladle furnace slag[J]. Ironmaking and Steelmaking, 2009, 36(8): 597~601
    [35] Mihok L, Demeter P, Baricova D, etal. Utilization of ironmaking and steelmaking slags[J]. Metalurgija, 2006, 45(3): 163~168
    [36] Shi C, Hu S. Cementitious properties of ladle slag fines under autoclave curing conditions[J]. Cement Concrete Research, 2003, 33(11): 1851~1856
    [37] Angel R, Juan M M, Angel A, etal. Strength and workability of masonry mortars manufactured with ladle furnace slag[J]. Resources Conservation and Recycling, 2009, 53: 645~651
    [38] Maria S, Konsta G. Measuring, Monitoring and Modeling Concrete Properties[M]. Netherlands: Springer, 2006.411~417
    [39]任雪,李辽沙.LF炉精炼渣资源化特性[J].安徽工业大学学报,2009,29(4):338~344
    [40]周云,栾晓彦,董元篪,等.高铝LF精炼废渣提取氧化铝的实验研究[J].矿产综合利用,2008,(2):34~41
    [41] Posch W, Presslinger H, Hiebler H. Mineralogical evaluation of ladle slags at voestalpine Stahl GmbH[J]. Ironmaking and Steelmaking, 2002, 29(4): 308~312
    [42]何环宇,倪红卫,曾静.炉精炼废渣渣相组成及形成机理研究[J].武汉科技大学学报, 2008,31(5):515~518
    [43]赵俊学,李小明,郭家林,等.LF钢渣返回利用的脱硫研究[J].炼钢,2009,25(4):38~41
    [44]苏兴文,杨而华,崔九霄.冶金渣的循环利用――用LF炉精炼渣替代转炉助熔剂[C].中国金属学会学.第七届中国钢铁年会,北京,2009.第七届中国钢铁年会论文集.北京:冶金工业出版社,2009:650~653
    [45] Memoli F, Brioni O, Mapelli C, etal. Recycling of Ladle slag in the EAF: A way to improve environment conditions and reduce variable costs in the steel plants-The results of stefana SpA(Italy)[J]. Steel Times International, 2006, 30(3): 44~54
    [46] Cavallotti P. L, Mapelli C, Memoli F. Recycling of LF-white slag[M]. La Metallurgia Italiana, 2007.41-47
    [47] Kumar S, Roy T K, Mishra G, etal. LF slag as a row material in secondary steelmaking-a success story[J]. Tata Search, 2000: 23~26
    [48]丁广友,徐志荣,史翠薇,等.LF热态钢渣循环再利用技术的开发与应用[J].炼钢,2006,22(4):12~15
    [49]元伏勇,姬健营,吴海波.安钢LF热态钢渣循环再利用实践[J].河南冶金,200715(3):43~44,56
    [50]王念欣,唐立冬,赵志洪,等.精炼渣循环利用技术分析[J] .山东冶金,2007,29(4):55~56
    [51]解养国,吴耀光,胡玉畅,等.LF炉热态钢渣循环利用技术的应用[J].中国冶金,2008,18(7):32~34
    [52]陆鹏,覃胜苗.精炼后钢包顶渣重复使用冶金效果试验[J].柳钢科技,2009,(3):16~18
    [53]张峰,方德霞.LF热态精炼渣在转炉炼钢厂的循环应用试验[J].炼钢,2010,26(1):25~27
    [54] Bigeev V A, Petrov L V, Vdovin K N, etal. Increasing the Efficiency of Ladle Desulfurization of Steel by Regenerated Slags. Metallurg, 1987, 10:9
    [55] Pirter H, Miiller J. Nota tecnica-VIA-CON Desulf-A Pioneering for Hot-Metal Desulfurization[J]. Metallurgia Italiana, 2003, 95(4): 67~72
    [56]冶金行业技术市场管理委员会办公室.《世界金属导报》评出2004年世界炼钢技术重大新闻[N].冶金技术市场简报.2005-1-4
    [57]陈家祥.钢铁冶金学-炼钢部分[M].北京:冶金工业出版社,1990.146~154
    [58]张东力,毕衍涛,陈树国.LF泡沫精炼渣研究和发展现状[J].山东冶金,2004,26(3):44~46
    [59]侯贵华,李伟峰,郭伟,等.用扫描电镜的背散射电子像分析转炉钢渣中的矿物相[J].材料导报,2008,22(6):208~211
    [60] Osborn E F, Muan A. Phase Diagrams of Oxide Systems-Plate 1[M]. New York: Amer. Ceram. Soc. and the Edward Orton, 1960
    [61] Schuerman E, Kolm I. Mathematical Description of MgO Saturation in ComplexSteelmaking Slags inEquilibrium with Liquid Iron[J]. Steel Research, 1986, 57 (1): 7~12.
    [62] Sung-Mo Jung, Chang-Hee Rhee, Dong-Joon Min. Solubility of MgO in CaO-Based Slags[C].ⅧInternational Conference on Molten Slags Fluxes and Salts. Santiago.Chile, 2009: 133~142
    [63]任允夫.钢铁冶金岩相矿相学[M].北京:冶金工业出版社,1982.201
    [64]魏寿昆.冶金过程热力学[M].上海:上海科学技术出版社,1980.58-65
    [65]德国钢铁工程师协会.渣图集[M].王俭译.北京:冶金工业出版社,1989.102~105
    [66]张生芹.冶金渣系相图的研究现状[J].重庆科技学院学报(自然科学版),2010,12(1):101~104
    [67]黄希祜.钢铁冶金原理[M].(第3版).北京:冶金工业出版社.2002.148-156
    [68]刘文胜,赵虹,杨建国,等.三元相图在配煤结渣特性研究中的应用[J].热力发电,2009,38(10):5~10
    [69]古一,王志法,夏长清.CaO-Al2O3-SiO2体系相图在氧化物涂层设计中的应用[J].机械,2007,34(7):33~35
    [70]段仁官.CaO-Al2O3-SiO2系统玻璃晶化时首析晶相及TiO2的作用机理预测[J].硅酸盐学报,1997,25(3):305~311
    [71] Frank E, Huggin S, Deborah A, etal. Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams[J]. Fuel, 1981, 60(7): 577~584
    [72] Osborn E F, Muan A. Phase Diagrams of Oxide Systems-Plate 1[M]. New York: Amer. Ceram. Soc. and the Edward Orton, 1960
    [73] Anderson M A, Jonsson P G, Hallberg M. Optimisation of ladle slag composition by application of sulphide capacity mode[J]. Ironmaking and Steelmaking, 2000, 27(4): 287~293
    [74]张旭升,关勇,吕春风,等.新型LF炉精炼渣的研制与应用[J].鞍钢技术,2006,(2):33~37
    [75] Margareta A, Tandersson P. Application of sulphide capacity concept on high basicity Ladle Slag used in Bearing-Steel production[J]. ISIJ International, 1999, 39(11): 1140~1149
    [76]战东平.钢的二次精炼过程预熔渣深脱硫理论与工艺研究[D].东北大学博士学位论文.2003.68~70
    [77]莫鼎成.炉渣的渣型和冷却制度对渣中硫化物颗粒分布的影响[J].有色冶金(冶炼部分).1989,(1):26~29
    [78] Dirk D, Peter T J, Bart B, etal. Anajysis of the air-cooling process of basic slags[C].ⅧInternational Conference on Molten Slags Fluxes and Salts. Santiago.Chile, 2009: 13-22
    [79]余亮.含钒钢渣的富钒相与钒富集研究[D].北京科技大学博士学位论文.2007.45~67
    [80]赵俊学,张丹力,马杰等.冶金原理[M].西安:西安工业大学出版社,2002.145~146
    [81]周宏,吴晓春,崔巍.硫在CaO-A12O3系熔渣与钢液间的分配率[J].钢铁,1995,30(6):15~16
    [82]乐可襄,董元琥,王世俊,等.CaO-SiO2-MgO-Al2O3精炼渣的脱硫性能[J].特殊钢,1998,19(3):15~18
    [83] Fruehan R J. The thermodynamics and process dynamics of ladle furnace refining process[C]. 42ndElectric Furnace Conference Proceedings, Toronto, Canada, 1984: 185~196
    [84]吴铿,梁志刚,张二华,等.LF精炼过程中硫分配比和脱硫动力学方程研究[J].金属学报,2001,37(10):1069~1072
    [85]赖志贤.CaO在高碳铬铁熔池中的行为探讨[J] .铁合金,2000,(5):12~15
    [86]祝贞学,王宏明,李贵荣,等.Li2O和B2O3对精炼渣脱硫性能影响的试验研究[J].上海金属,2006,28(1):19~21
    [87]任允芙.冶金工艺岩相与矿相学[M].北京:北京钢铁学院,1981.208
    [88] H.Taylor.C12A7及其衍生结构[J].郭俊才译.国外建材科技,1995,16(1):14~15
    [89] Tai P H, Jung C H, Kang Y K. Electrical and Optical Properties of 12CaO·7Al2O3 Electride Doped Indium Tin Oxide Thin Film Deposited by RF Magnetron Co-sputtering[J]. Thin Solid Films, 2009, 38(4): 1178~1182
    [90] Grymek J. The new way of Alumina Lixiviation from sinters containing 12CaO·7A12O3 in J. Grzymek’s Method[J]. Light Metals, 1988, (4): 129~133
    [91] Katsuro H, Naoto U, Masahiro H, etal. Effect of stability and diffusivity of extra-framework oxygen species on the formation of oxygen radicals in 12CaO·7Al2O3[J]. Solid State Ionics, 2004, (3): 89~94
    [92] Lloyd R R, Provis J L, Van D. Microscopy and microanalysis of inorganic polymer cements. 2: the gel binder[J] . J Mater SCI, 2009, 44: 620~631
    [93] Ryoji K, James W. Richardson J, etal. Free oxygen ions and cage deformation in the nanoporous material 12CaO·7Al2O3: A temperature-dependent neutron powder diffraction study[J]. Solid State Ionics, 2008, 58(2): 2365~2371
    [94]张荣生.钢铁生产中的脱硫[M] .北京:冶金工业出版社,1986.97-106
    [95]周公度,段连运.结构化学基础[M].(第二版).北京:北京大学出版社,1995.137~141
    [96] Filippos P, Uday B P. Incorporation of Sulphur in an Optimized Ladle Steelmaking Slag[J]. ISIJ International, 1996, 24(36): 402
    [97]何环宇,倪红卫,甘万贵,等.精炼钢渣硫赋存形式及含硫相形成机理[J].钢铁,2009,44(3):32~35
    [98]许传才.铁合金冶炼工艺学[M].北京:冶金工业出版社,2008.56-63
    [99]王新华.钢铁冶金-炼钢学[M] .北京:高等教育出版社,2007.36
    [100] Shiro B, Makoto H, Tetsuro K, etal. Sulphide Capacity and Sulphur Solubility in CaO-Al2O3 and CaO-Al2O3- CaF2 Slags[J]. ISIJ International, 2004, 44(11): 1810~1816
    [101] Hao N, Li H, Wang H, etal. Application of the sulphide capacity theory on refining slags during LF treatment[J]. Journal of University of Science and Technology Beijing, 2006, 13(2): 112~116
    [102] Turkdogan E T. Slags and Fluxes for Ferrous Ladle Metallurgy[J]. Ironmaking and Steelmaking, 1985, 12(2): 64~78
    [103] Margareta A, Tandersson P. Application of sulphide capacity concept on high basicity Ladle Slagused in Bearing-Steel production[J]. ISIJ International, 1999, 39(11): 1140~1149
    [104] Ewald M, Herbert H. Microanalytical Investigantion of Oxidizing Slags with Special Consideration of Phosphorus- and Sulphur-containing Phases[J]. ISIJ International, 1993, 33 (1): 88~97
    [105] PENG Xiao-yu, WANG Yun-yan, CHAI Li-yuan, etal. Thermodynamic equilibrium of CaSO4-Ca(OH)2-H2O system[J]. Trans.Nonferrus Met. Soc, China, 2009, 19: 249~252
    [106]邹元燨,周继程,徐元森,等.冶金熔体热力学的若干研究[J].金属学报,1982,18(12):128~140
    [107] D. Lu. Calculation of CaS and MnS Activities and Their Application to Calcium Treatment of Steel[J]. Irormaking and Steelmaking, 1991(5): 342~346
    [108]孙中强,车荫昌,姜茂发,等.Fe-Al-O-S系平衡图[J].钢铁研究学报,2005,17(5):39~42
    [109]龚坚,王庆祥.钢液钢液钙处理的热力学分析[J].炼钢,2003,19(3):56~59
    [110]李文超.冶金与材料物理化学[M].北京:冶金工业出版社,2001.51~78
    [111]王正烈,周亚平.物理化学[M].北京:高等教育出版社,2001.251~254
    [112] Wu S J, Azhar M U, Shinsuke N, etal. Role of water vapor in oxidative decomposition of calcium sulfide. Fuel, 2004, 83: 671~677
    [113]肖海平,周俊虎,刘建忠,等.CaS氧化反应特性的热重研究[J].浙江大学学报,2006,40(6):982~990
    [114]李文,韩翔字,陈皓,等.加压下硫化钙氧化反应动力学和模型[J].化工学报,2003,54(3):42
    [115] Grogorio M, Marta G C, Antonio B F. Kinetics of oxidation of CaS particles in the regime of high SO2 release[J]. Chemical Engineering Science, 1996, 54(6): 77~90
    [116] Davies N H, Laughlin K M, Hayhurst A N. The oxiation of calcium sulphide at the temperatures of fluidized-bed combustors[J]. Chemical Engineering Science, 2007, 62(23): 6827~6835
    [117]张国聪,余达铮,蔡建利,等.粗硫化钙碳化生产硫化氢气体小试[J].纯碱工业,2000,(5):49~51
    [118] HUANG Jie-jie, ZHAO Jian-tao, CHEN Fu-yuan, etal. Investigation of Calcium Sulfide Regeneration with Steam[J]. China Univ. of Mining & Tech, 2005, 15(4): 288~291
    [119]贾建业,兰斌明,谢先德.,等.硫化物矿物溶解度与溶液pH值的关系[J].长春科技大学学报,2001,3(31):242~246
    [120]郭德威.无机化学丛书(第五卷)[M].北京:科学出版社,1990.453~455
    [121]岑况.共存矿物溶解度与硫化物金属成矿作用[J].地质学报,1999,73(3):243~249
    [122]方兆珩.浸出[M].北京:冶金工业出版社,2007.4~15
    [123]熊庆荣.压榨油与浸出油[J].食品与健康.2008,(8):35~35
    [124]李进建.柏叶汁饮料的研制[J].食品科学.2002,23(8):114~116
    [125]姜永海,席北斗,李秀金,等.不同浸取剂对垃圾焚烧飞灰浸出特性影响研究[J].环境科学,2007,28(10):2400-2403
    [126] Chandler A J, Eighmy T T, Hartlen J, etal. Municipal solid waste incinerator residues[M]. : Elsevier Science & Technology,1997: 867
    [127] Kylefors K, Andreas L, Lagerkvist, A. A comparison of small-scale, pilot-scale and large-scale tests for predicting leaching behavior of landfilled wastes[J]. waste management, 2003, 23: 45-59
    [128] Kenneth N H. Mineral Processing and Extrative Metallurg Review[J]. 1992, (8): 57~72
    [129]李忻洁,何品晶,章骅,等.危险废物焚烧炉渣中重金属的快速浸出与水洗处理[J].环境卫生工程,2006,14(5):9~11
    [130] Sreeram K J, Ramasami T. Speciation and recovery of chromium from chromite ore processing residues[J]. J. Environ. Monit, 2001, (3): 526~530
    [131]杨馗,徐明仙,林春锦.超临界水的物理化学性质[J].浙江工业大学学报,2001,4(29):386~390
    [132] Robert M, Peter J, Christopher J, etal. Determining Phase Boundaries and Vapour/Liquid Critical Fluids: a Multi-technique Approach[J]. Supercritical Fluids, 2006, 30(3): 259~272
    [133]黄国龙.超临界状态下水的特性[J].西北电力技术,2004,(4):82~84
    [134] Fred J, Armellini W, Jefferson W. Tester: Fluid phase equilibria, 1993, 84, 123~142
    [135]苏根利,谢鸿森,丁东业,等.超临界水的物理化学性质及意义[J].地质地球化学,1998,2(26):83-89
    [136]王红秋,张宁.超临界技术在化学工业中的应用现状及进展[J].湖北化工学报,2003,(1):1~3
    [137] Walrafen G E, Chu Y C. Raman spectra from water vapor to the supercritical fluild[J]. PHY Chem B, 1999, 103: 1332-1338
    [138] Dioxin C N, Abraham M A. Conversion of methanol by catalytic supercritical water oxidation[J] . supercritical fluids, 1992(5): 269~273
    [139] Savage P E, Smith M A. Kinetics of oxidation in supercritical water[J] . Environ Sci Techol, 1995, 29(2): 216~216
    [140] Kalinichev A G, Henzinger K. Molecular synamtics of supercritical water: A computer simulation of vibration spectra with the flexible B J H potential[J] .Geochimica et. Comsmochimica Acta, 1995, 59: 641~650
    [141]刘欣,郭永明,林林.超(亚)临界水在化学反应中的应用[J] .内蒙古石油化工,2008(3):34~37
    [142] Li B, Yang Y, Gan Y X, etal. On-line coupling of subcritical water extraction with high-performance liquid chromatography via solid-phase trapping[J]. Chromatogr. A, 2000, (7): 175~184
    [143]王艳,刘畅,柏杨,等.水热反应釜中高温高压离子水溶液热力学性质[J] .化工学报,2006,8(57):1856~1864
    [144] Holgate H R, Tester J W. Oxidation of H2 and CO in sub-and supercritical water: reaction kinetics, pathway, and water-density effect: experimental results[J]. Chem Phys, 1994, 98: 800~809
    [145]吴仁铭.亚临界水萃取在分析化学中的应用[J].化学进展,2002,14(1):32-36
    [146] Ikushima Y, Hatakeda K. Complete decomposition of toxic organic compounds such as PCBS and dioxins by supercritical water oxidation[J]. Chem Phys, 1998, 108: 5855.
    [147] T.Tanaka, Y.Yamasaki, S.Hara, etal. Application of Hydrothermal Process to Recycling of Iron & Steelmaking Slag[J]. CAMP-ISIJ, 2003, 16: 963
    [148] N.Yamasaki, A.Shirakawa, N.Hirano, etal. Examination of Solidified Waste Glass Power after Hydrothermal Hot Pressing[J]. J.Mater. Sci.Lett. 2002, 21: 711
    [149] Y. Sugano, R.Shhara, T.Murakami, etal. Hydrothermal Synthesis of Zeolite A Using Blast Furnace Slag[J]. ISIJ Int., 2005, 45: 937
    [150] Soon J T, Adachi T, Tanaka T, etal. Estimation of the Environment Credit for the Recycling of BF Slag by Hydrothermal Reaction on LCA[C]. The Korean Institute of Metals and Materials. Asia Steel International Conference 2009. 2009, Busan, Korea.
    [151]王艳,刘畅,柏杨,等.水热反应釜中高温高压离子水溶液热力学性质[J].化工学报,2006,57(8):1856~1864.
    [152]程兰征,章燕豪.物理化学[M].上海:上海科学技术出版社,1998.198~210
    [153]傅玉普、王新平.物理化学简明教程[M].大连:大连理工大学出版社,2007.169-181
    [154]何环宇,倪红卫,刘吉刚,等.亚临界水对钢渣再生脱硫的作用[C].中国金属学会冶金反应工程学主编.第十二届冶金反应工程学会,武汉,2008.第十二届冶金反应工程学会论文集.武汉科技大学,2008:282~286
    [155]天津大学无机化学教研室编.无机化学[M].(第三版).北京:高等教育出版社,2002.296~332
    [156]腾业龙.水中硫化氢的溶解规律[J].干旱环境监测,1984,8(1):11~13
    [157]李洪桂.冶金原理[M].北京:科学出版社,2005.298~299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700