用户名: 密码: 验证码:
典型危险废物在两段式回转窑焚烧系统内的热处置和结渣特性研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国2009年的危险废物产生量达到1430万吨,由于危险废物形态复杂,回转窑焚烧是一种比较适宜的安全处置方式。目前对危险废物焚烧特性、灰渣特性的研究尚不深入,回转窑焚烧系统在运行过程中缺乏必要的指导,在实际应用中出现了危险废物焚烧效果不佳、回转窑内结渣、耐火材料腐蚀、污染物排放不达标等问题。依托国家高技术研究发展计划(863计划)重点项目课题“危险废物焚烧系统关键技术与示范”(2007AA061302)和浙江省重大科技专项“工业危险废物新型回转窑集成系统处置技术示范工程”(2007C13084),本文对几种典型危险废物的热解、燃烧特性开展了基础研究工作,并对危险废物焚烧处置工程应用进行试验研究,为现有的危险废物热处置研究提供有益的补充,为回转窑危险废物焚烧系统的运行优化提供支持。
     本文首先运用化学热力学平衡模拟和试验研究对危险废物在不同热处置条件下的气体生成特性进行了研究。研究发现,危险废物热解产物主要是H20、C2H4、C2H2、H2和CO,随着温度的升高,热解气态产物出现进一步分解。在较低的过量空气系数条件下,危险废物的气化产物主要是CO、H2O、H2、和CH4,研究发现,少量O2有利于危险废物在热分解过程中CH4、H2和CO的生成。在危险废物热处置过程中,绝大部分C1元素在300-600℃之间以HCl的形式释放析出,危险废物焚烧过程中,S02是最主要的含S污染物。
     利用热重-红外分析方法进行实验研究和动力学分析表明,危险废物燃烧过程的挥发份析出阶段与其热解过程的挥发份析出阶段具有相似的热分解特性,而氧气对危险废物的热分解具有明显的促进作用,使热分解温度提前,表观活化能降低。研究发现,危险废物热解气态产物的析出主要集中在200-500℃之间,大部分危险废物在700℃之前燃烬。高挥发份危险废物的热解气态产物析出较为集中,析出气体具有较高的浓度;高氮含量有机危险废物热解气中含有大量的HNCO,高硫危险废物热处置过程中的主要气态污染物是S02。有机化工污泥的固定碳燃烧阶段持续时间相对较长,且大部分失重都在固定碳燃烧阶段完成。实验研究发现,升温速率的提高对危险废物热解产物成分的影响较小
     针对较高重金属含量的制革污泥的研究发现,其具有较好的燃烧特性。制革污泥在挥发份燃烧初期有少量有机酸析出,800℃时基本燃烬,超过900℃以后,制革污泥燃烧灰渣开始出现粘结现象。为避免制革污泥焚烧过程中出现结渣,并有效减少重金属的挥发,可以选择800℃为制革污泥的最佳燃烧温度。
     本文利用计算流体软件,对危险废物在两段式回转窑焚烧系统内的燃烧过程进行了不同运行工况条件下的模拟。研究发现,在回转窑的后部区域,烟气流速存在明显的分层现象。在额定负荷和配风条件下,危险废物在回转窑内能够实现较为充分的燃烧,增加窑头部位的送风量以后,窑内烟气流速分层现象提前,窑内高温区域前移,危险废物在回转窑内的燃烧完全程度提高,二燃室的燃烧现象明显减弱。模拟研究表明,投用窑头助燃燃烧器可以在回转窑内部形成一个稳定的沿着回转窑轴向分布的高温区域,有助于促进窑内温度的稳定和危险废物在窑内的燃烧。
     对危险废物焚烧处置工程应用的研究发现,两段式回转窑焚烧系统完全可以满足危险废物焚烧和污染物排放控制要求,稳定运行期间二噁英排放浓度只有0.016-0.035 TEQ ng/m3,但回转窑内存在较大程度的结渣隐患。危险废物焚烧飞灰呈现明显的小颗粒团聚特征,底渣质地致密,具有明显的烧结迹象,灰渣中部分重金属含量较高。通过对不同部位灰渣采样的分析,研究了危险废物在高温焚烧条件下的灰渣特性,以及烟气流动方向飞灰的形成过程和小颗粒的团聚过程,以及小颗粒在大颗粒表面富集的过程,为危险废物焚烧应用及污染物排放控制提供借鉴。
The hazardous waste output in China was 14.3 Mt in 2009. Incineration in rotary kiln is reasonable for hazardous waste treatment because of the complicated composition of hazardous wastes, while the farther investigation on combustion and slagging characteristics is necessary for application of the hazardous waste incineration. There are many problems in application of rotary kiln combustion such as incomplete combustion, ringing in kiln, corrosion to the refractory materials, and discharge of pollutants emission. Funded by National High Technology Research and Development Key Program of China (2007AA061302), Important Project on Science and Technology of Zhejiang Province of China (2007C13084), the basic characteristic of pyrolysis and combustion of typical hazardous waste were investigated and experimental studies were conducted in this paper, which is useful to hazardous waste thermal disposal and the operation optimization for incineration system.
     The gaseous products of hazardous waste in pyrolysis and combustion at different condition were investigated by using thermodynamic equilibrium calculation and experimental study. The products were further decomposed with temperature increasing, and the main gaseous products in pyrolysis were H2O, C2H4, C2H2, H2 and CO. The main gaseous products in gasification at low air coefficient were CO, H2O, H2 and CH4. The generation of CH4, H2, CO were promoted by present of little O2. Most chlorine element in hazardous waste was emitted as HC1 in the temperature range of 300-600℃. SO2 is the most important sulfur containing gases product, while little SO2 were emitted during hazardous waste thermal disposal when air coefficient is lower than 0.6.
     The similarity of thermal decomposition characteristics for the pyrolysis and low temperature stage during combustion was confirmed by TG-FTIR, and the decomposition was accelerated and advanced by present of O2. Most of the gaseous products in pyrolysis emitted during 200-500℃, and combustion of the hazardous waste almost finished before 700℃because of the low concentration of fixed carbon. The high-concentration gaseous products were emitted in a narrow temperature range during high volatile hazardous waste pyrolysis. Large amount of HNCO was emitted during high nitrogen hazardous waste pyrolysis, while SO2 is the most important gaseous product for high sulfur hazardous waste thermal disposal. The fixed carbon of organic chemical industry sludge burnt in a wide temperature range, and most of the weight lost in this stage. Heating rate has little influence on the gaseous products during hazardous waste pyrolysis.
     The heavy metal sludge form tannery industry has good combustion characteristics compared with paper mill sludge and lake sludge. There was some organic acid gaseous product emitted at low temperature stage in tannery sludge combustion, and the combustion almost finished before 800℃. The combustion residue of tannery sludge was sintered above 900℃. For tannery sludge,800℃is a reasonable incineration temperature to control heavy metal volatilization.
     The operation at different conditions of the hazardous waste two-stage incineration system consist of rotary kiln and secondary combustion chamber was simulated with Computational Fluid Dynamics code (FLUENT). The lamination of the velocity was obvious at the kiln end. Lamination of the velocity and the high-temperature zone in rotary kiln was advanced when the supplied air from the front-end increased. The proportion of the waste combustion in rotary kiln was enhanced when the air from the front-end increased. Stabilization of the combustion in kiln was strengthened by burner at the front-end.
     Based on the on-site investigation on the application of hazardous waste incineration system consists of rotary kiln and secondary combustion chamber, it is confirmed that the two-stage incineration system is appropriate for complete combustion and gaseous pollutants control. The dioxins content in flow gas emission is 0.016-0.035 TEQ ng/m3 during the steady operation of the incineration system, while there was a tendency of combustion residue sintering in rotary kiln operation. The fly ash, which is agglomerated particle, exhibited the loose and cracked structure, while there is no large pore structure in bottom residue. Bottom residue from the hazardous waste incineration is rigidity, and the residue was melted in high temperature zone before it is flush off from the kiln. The particle agglomeration of the fly ash was confirmed by using the microstructure analysis on the ashes sampled from different position in the incineration and flue gas purification system. The research is useful for application of hazardous waste incineration and emission control.
引文
[1]国家环境保护总局,国家质量监督检验检疫总局,危险废物鉴别标准,2007.GB5085-2007:1.
    [2]中华人民共和国环境保护部,国家危险废物名录,2008.
    [3]环境保护部,医疗废物集中焚烧处置设施运行监督技术规范(试行)HJ 516-2009,2009.
    [4]王琪,段华波,黄启飞,危险废物鉴别体系比较研究,环境科学与技术,2005.28(6):16-18.
    [5]Waste Types, http://www.epa.gov/osw/hazard/wastetypes/index.htm.
    [6]EPA, RCRA Orientation Manual:Hazardous Waste Identification,2008 Ⅲ-4.
    [7]宋小霞,郑洋,汪群慧,胡华龙,郭琳琳,日本危险废物统计制度的研究,环境科学
    与管理,2007.32(11):7-8,28.
    [8]L. Butti, Hazardous waste management and the precautionary principle, Waste Management,2009.29(9):2415-2416.
    [9]中华人民共和国,环境保护法,1979.
    [10]中华人民共和国,海洋环境保护法,1982.
    [11]国家环境保护总局,固体废物污染环境防治法,2004.
    [12]中华人民共和国环境保护部,国家环境保护“十一五”规划,2008.
    [13]国家环境保护总局,国家环境保护”十一五”科技发展规划,2006.
    [14]国家环境保护总局,国家环境保护工程技术中心“十一五”专项规划,2007.
    [15]国家环保总局,关于印发《“十一五”全国环境保护法规建设规划》的通知2005.
    [16]国家环境保护总局,国家环境保护重点实验室“十一五”专项规划,2007.
    [17]国家环境保护总局,全国危险废物和医疗废物处置设施建设规划,2004.
    [18]中华人民共和国环境保护部,中国环境状况公报(2009年),2010.
    [19]国家统计局,中国统计年鉴.
    [20]J. Granados, P.J. Peterson, Hazardous waste indicators for national decision makers, Journal of Environmental Management,1999.55(4):249-263.
    [21]M. El-Fadel, M. Zeinati, K. El-Jisr, D. Jamali, Industrial-waste management in developing countries:The case of Lebanon, Journal of Environmental Management,2001. 61(4):281-300.
    [22]N. Marinkovic, K. Vitale, N.J. Holcer, A. Dzakula, T. Pavic, Management of hazardous medical waste in Croatia, Waste Management,2008.28(6):1049-1056.
    [23]R. Mohee, Medical wastes characterisation in healthcare institutions in Mauritius, Waste Management,2005.25(6):575-581.
    [24]M. Tsakona, E. Anagnostopoulou, E. Gidarakos, Hospital waste management and toxicity evaluation:A case study, Waste Management,2007.27(7):912-920.
    [25]J.I. Blenkharn, Standards of clinical waste management in hospitals--A second look, Public Health,2007.121(7):540-545.
    [26]国家环境保护总局,关于成立国家环境保护总局固体废物管理中心的通知,2006.
    [27]L.F. Mohamed, S.A. Ebrahim, A.A. Al-Thukair, Hazardous healthcare waste management in the Kingdom of Bahrain, Waste Management,2009.29(8):2404-2409.
    [28]I. Khadam, J.J. Kaluarachchi, Applicability of risk-based management and the need for risk-based economic decision analysis at hazardous waste contaminated sites, Environment International,2003.29(4):503-519.
    [29]M. Berkun, E. Aras, S. Nemlioglu,Disposal of solid waste in Istanbul and along the Black Sea coast of Turkey, Waste Management,2005.25(8):847-855.
    [30]M.-S. Wei, F. Weber, An Expert System for Waste Management, Journal of Environmental Management,1996.46(4):345-358.
    [31]R. Kikuchi, R. Gerardo, More than a decade of conflict between hazardous waste management and public resistance:A case study of NIMBY syndrome in Souselas (Portugal), Journal of Hazardous Materials,2009.172(2-3):1681-1685.
    [32]T. Rothermel, Editorial. Will the hazardous waste management business be too hazardous for business?, Environmental Science & Technology,1980.14(3):241-242.
    [33]D.W. Drummond, How not to be a large quantity generator of hazardous waste,Journal of Chemical Health and Safety,2006.13(1):9-14.
    [34]H. Sigman, The Effects of Hazardous Waste Taxes on Waste Generation and Disposal, Journal of Environmental Economics and Management,1996.30(2):199-217.
    [35]J. Josephson, Hazardous Waste Management-Seeking Least-Cost'Approaches, Environmental Science & Technology,1993.27(12):2298-2301.
    [36]Hierarchy of Waste Management, http://www.envirocentre.ie/Content.aspx?ID= 96448806-bc07-4f5a-9e67-cb684d985609 & PID=518accea-eec4-4cdf-b034-78ce58eacb4d,
    [37]H. Alter, Environmentally sound management of the recycling of hazardous wastes in the context of the Basel Convention, Resources, Conservation and Recycling,2000.29(1-2): 111-129.
    [38]R.R.A.M. Mato, M.E. Kaseva, Critical review of industrial and medical waste practices in Dar es Salaam City, Resources, Conservation and Recycling,1999.25(3-4):271-287.
    [39]G. Salihoglu, Industrial hazardous waste management in Turkey:Current state of the field and primary challenges, Journal of Hazardous Materials,2010.177(1-3):42-56.
    [40]M. Streicher-Porte, R. Widmer, A. Jain, H.-P. Bader, R. Scheidegger, S. Kytzia, Key drivers of the e-waste recycling system:Assessing and modelling e-waste processing in the informal sector in Delhi, Environmental Impact Assessment Review,2005.25(5):472-491.
    [41]Hazardous Waste, http://www.epa.gov/wastes/hazard/tsd/index.htm.
    [42]T.-L. Hu, J.-B. Sheu, K.-H. Huang, A reverse logistics cost minimization model for the treatment of hazardous wastes, Transportation Research Part E:Logistics and Transportation Review,2002.38(6):457-473.
    [43]I.D. Haylamicheal, M.A. Dalvie, Disposal of obsolete pesticides, the case of Ethiopia, Environment International,2009.35(3):667-673.
    [44]H.-J. Hsing, F.-K. Wang, P.-C. Chiang, W.-F. Yang, Hazardous wastes transboundary movement management:a case study in Taiwan, Resources, Conservation and Recycling,2004.40(4):329-342.
    [45]A.M. Davis, R. Altamirano Perez, Hazardous-waste management at the Mexican-U.S. border, Environmental Science & Technology,1989.23(10):1208-1210.
    [46]K.E. Fischer, Certifications for professional hazardous materials and waste management, Journal of Chemical Education,1988.65(11):A282.
    [47]C. Visvanathan, Hazardous waste disposal, Resources, Conservation and Recycling,1996. 16(1-4):201-212.
    [48]M.K. Lindell, Assessing emergency preparedness in support of hazardous facility risk analyses:Application to siting a US hazardous waste incinerator, Journal of Hazardous Materials,1995.40(3):297-319.
    [49]N. Roussat, C. Dujet, J. Mehu, Choosing a sustainable demolition waste management strategy using multicriteria decision analysis, Waste Management,2009.29(1):12-20.
    [50]国家环境保护总局,全国危险废物和医疗废物处置设施建设规划实施工作简报第18期,2006.
    [51]国家环境保护总局,关于《全国危险废物和医疗废物处置设施建设规划》实施进展情况通报,2007.
    [52]E. Autret, F. Berthier, A. Luszezanec, F. Nicolas, Incineration of municipal and assimilated wastes in France:Assessment of latest energy and material recovery performances, Journal of Hazardous Materials,2007.139(3):569-574.
    [53]A.B. Mukherjee, R. Zevenhoven, J. Brodersen, L.D. Hylander, P. Bhattacharya, Mercury in waste in the European Union:sources, disposal methods and risks, Resources, Conservation and Recycling,2004.42(2):155-182.
    [54]M. Schuhmacher, M.C. Agramunt, M.C. Rodriguez-Larena, J. Diaz-Ferrero, J.L. Domingo, Baseline levels of PCDD/Fs in soil and herbage samples collected in the vicinity of a new hazardous waste incinerator in Catalonia, Spain, Chemosphere,2002.46(9-10): 1343-1350.
    [55]M. Mari, M.A. Borrajo, M. Schuhmacher, J.L. Domingo, Monitoring PCDD/Fs and other organic substances in workers of a hazardous waste incinerator:A case study, Chemosphere,2007.67(3):574-581.
    [56]R.G. Evans, B.N. Shadel, D.W. Roberts, S. Clardy, D. Jordan-Izaguirre, D.G. Patterson, L.L. Needham, Dioxin incinerator emissions exposure study Times Beach, Missouri, Chemosphere,2000.40(9-11):1063-1074.
    [57]R. Bie, S. Li, H. Wang, Characterization of PCDD/Fs and heavy metals from MSW incineration plant in Harbin, Waste Management,2007.27(12):1860-1869.
    [58]K.-I. Choi, S.-H. Lee, D.-H. Lee, Emissions of PCDDs/DFs and dioxin-like PCBs from small waste incinerators in Korea, Atmospheric Environment,2008.42(5):940-948.
    [59]S.C. Rowat, Incinerator toxic emissions:a brief summary of human health effects with a note on regulatory control, Medical Hypotheses,1999.52(5):389-396.
    [60]E. Desroches, G. Antonini, Impact of incinerator internal hydrodynamics on hazardous organic waste destruction efficiency, Fuel,2000.79(10):1195-1207.
    [61]C.-H. Park, H.-S. Jeon, J.-K. Park, PVC removal from mixed plastics by triboelectrostatic separation, Journal of Hazardous Materials,2007.144(1-2):470-476.
    [62]国家环境保护总局,国家质量监督检验检疫总局,危险废物焚烧污染控制标准(GB18484-2001),中华人民共和国国家标准,2001.
    [63]国家质量监督检验检疫总局,医疗废弃物焚烧环境卫生标准GB/T 18773-2002,2002.
    [64]H.-U. Hartenstein, M. Horvay, Overview of municipal waste incineration industry in west Europe (based on the German experience), Journal of Hazardous Materials,1996. 47(1-3):19-30.
    [65]M.D. Hunsicker, T.R. Crockett, B.M.A. Labode, An overview of the municipal waste incineration industry in Asia and the former Soviet Union, Journal of Hazardous Materials,1996.47(1-3):31-42.
    [66]陈敬军,危险废物回转窑焚烧炉的工艺设计,有色冶金设计与研究,2007.28(2-3):81-87.
    [67]马晓茜,回转窑式医院垃圾焚烧炉设计,工业锅炉,1999(4):10-12.
    [68]陈善平,孙向军,宋尧,刘开成,周洪权,国内垃圾焚烧炉排炉单炉规模750t/d可行性研究,中国高新技术企业,2010(16):82-84.
    [69]严建华,沈祥智,李晓东,马增益,温俊明,池涌,岑可法,流化床焚烧垃圾的关键问题及预处理措施,中国动力工程学报,2005.25(1):1-6.
    [70]M. Schuhmacher, J.L. Domingo, H. Kiviranta, T. Vartiainen, Monitoring dioxins and furans in a population living near a hazardous waste incinerator:levels in breast milk, Chemosphere,2004.57(1):43-49.
    [71]E.A.H. Timmermans, F.P.J. de Groote, J. Jonkers, A. Gamero, A. Sola, J.J.A.M. van der Mullen, Atomic emission spectroscopy for the on-line monitoring of incineration processes, Spectrochimica Acta Part B:Atomic Spectroscopy,2003.58(5):823-836.
    [72]M.B. Birk, Trial burn activities for a mixed waste incinerator, Waste Management,1998. 18(6-8):467-471.
    [73]A. Karademir, Health risk assessment of PCDD/F emissions from a hazardous and. medical waste incinerator in Turkey, Environment International;2004.30(8):1027-1038.
    [74]B.S. Hallsdottir, Emissions of Persistent Organic Pollutants in Iceland 1990-2008,2010.
    [75]国家环境保护部,《中国环境状况公报》(2009年),2010年.
    [76]王玉如,白广彬,白庆中,模拟医疗废物在TG-DTA-FTIR上的热失重特性研究,环境科学,2007.28(7):1637-1643.
    [77]邓娜,张于峰,马洪亭,医疗废物中输液管(含PVC)与纱布(含纤维素)的混合热解动力学模型,天津大学学报,2008.41(2):147-152.
    [78]全翠,李爱民,高宁博,几种典型电子垃圾大物料量热重实验及机理研究,燃烧科学与技术,2010.16(1):45-50.
    [79]孙路石,陆继东,曾丽,余亮英,印刷线路板热分解动力学特性,华中科技大学学报,2001.29(12):40-42.
    [80]彭绍洪,陈烈强,甘舸,蔡明招,废旧电路板真空热解,化工学报,2006.57(11):2720-2726.
    [81]谭中欣,典型危险废弃物焚烧过程中无机污染物HCl和重金属的生成特性及其控制的机理研究: 机械与能源学院,浙江大学,杭州,2006:89.
    [82]刘刚,典型危险废物回转窑热处置特性和技术研究:机械与能源工程学院,浙江大学,杭州,2006.
    [83]祝红梅,医疗废物典型组分的热解焚烧特性及回转式流化冷渣三段焚烧系统的数值模拟: 能源工程学系,浙江大学,杭州,2009:25-27.
    [84]张文群,张振山,应用Gibbs自由能最小法研究Li/SF6气液浸没燃烧反应,兵工学报,2005.26(6):812-815.
    [85]李英杰,赵长遂,碳酸钙循环煅烧-碳酸化吸收C02的热力学分析,热能动力工程,2008.23(3):306-310.
    [86]欧阳旭,胡仰栋,气相反应产物中固相沉积始现的反应温度点计算,计算机与应用化学,2010.27(3):359-363.
    [87]金保升,朱颖,王小芳,用吉布斯自由能最小化方法模拟垃圾气化熔融工艺,中国电机工程学报,2007.27(26):46-51.
    [88]赵锦超,龚欣,代正华,郭晓镭,盛新,韩启元,卞修荣,用BP神经网络对气流床 粉煤气化炉的预测,华东理工大学学报(自然科学版),2009.35(5):688-692.
    [89]M. Diaz-Somoano, Martinez-Tarazona, M. R., Trace element evaporation during coal gasification based on a thermodynamic equilibrium calculation approach, Fuel,2003.82(2): 137-145.
    [90]孟韵,张军营,钟秦,郑楚光,王犇,燃煤过程中微量元素砷和硒形态转化的热力学平衡模拟,环境污染治理技术与设备,2002.3(9):1-5.
    [91]陈安合,杨学民,林伟刚,生物质燃烧过程中Cl及碱金属逸出的化学热力学平衡分析,过程工程学报,2007.7(5):989-998.
    [92]卿山,王华,何屏,吕国强,医疗废物焚烧过程中脱氯机理和试验,环境工程,2007.25(3):66-70.
    [93]蔡铭,徐明厚,乔瑜,詹靖,韩军,燃煤烟气中痕量元素的形态及其分析方法,热力发电,2004(8):10-13.
    [94]孟韵,张军营,钟秦,煤燃烧过程中有害痕量元素形态分布的化学热力学平衡分析,燃料化学学报,2005.33(1):28-32.
    [95]陈汉平,赵向富,米铁,代正华,基于ASPEN PLUS平台的生物质气化模拟,华中科技大学学报(自然科学版),2007.35(9):49-52.
    [96]李延兵,肖睿,金保升,邓中乙,基于Gibbs自由能最小原理分析C02重整CH4,东南大学学报(自然科学版),2006.36(5):769-773.
    [97]李季,杨学民,林伟刚,城市生活垃圾焚烧体系化学热力学平衡分析,燃料化学学报,2003.31(6):584-588.
    [98]郭向阳,何立明,兰宇丹,陈灯,基于化学平衡的等离子体助燃计算与分析,空军工程大学学报(自然科学版),2007.8(6):8-11.
    [99]李要建,田君国,徐永香,盛宏至,废物热处理平衡产物和净输入热功率计算模型,燃烧科学与技术,2009.15(6):521-527.
    [100]鲍卫仁,章劲草,申曙光,曹青,吕永康,大同煤在等离子体热解中生成HCN和NH3的研究,煤炭学报,2006.31(2):232-236.
    [101]祝红梅,严建华,蒋旭光,沈逍江,岑可法,模拟医疗垃圾组分的平衡分析,化学工程,2006.34(11):59-63.
    [102]赵慕愚,徐宝琨,复杂化学平衡计算,吉林大学出版社,长春,1990:5-7.
    [103]谭中欣,严建华,蒋旭光,池涌,岑可法,染料残渣焚烧过程中HCl的排放特征及其对重金属形态转化的影响,中国电机工程学报,2007.27(5):13-17.
    [104]关键,王勤辉,骆仲泱,岑可法,新型近零排放煤气化燃烧利用系统的优化及性能预测,中国电机工程学报,2006.26(9):7-13.
    [105]关键,王勤辉,骆仲泱,岑可法,新型近零排放煤利用系统中污染元素的迁移转化规律研究,浙江大学学报(工学版),2007.41(12):2063-2068.
    [106]祝红梅,严建华,沈逍江,蒋旭光,岑可法,模拟输液器的热解特性,化工学报,2007.58(1):222-226.
    [107]容銮恩,袁镇福,刘志敏,田子平: 电站锅炉原理,中国电力出版社,北京,2005:72-82.
    [108]J. Liu, X. Jiang, L. Zhou, X. Han, Z. Cui, Pyrolysis treatment of oil sludge and model-free kinetics analysis, Journal of Hazardous Materials,2009.161(2-3):1208-1215.
    [109]马师白,殷剑君,鲁军,高晋生,PVC的热解脱氯动力学分析,环境化学,2001.20(2):172-178.
    [110]R. Miranda, J. Yang, C. Roy, C. Vasile, Vacuum pyrolysis of commingled plastics containing PVC I. Kinetic study, Polymer Degradation and Stability,2001.72(3):469-491.
    [111]S. Galvagno, S. Casu, G. Casciaro, M. Martino, A. Russo, S. Portofino, Steam Gasification of Refuse-Derived Fuel (RDF):Influence of Process Temperature on Yield and Product CompositionComposition, Energy & Fuels,2006.20(5):2284-2288.
    [112]孙庆雷,李文,陈皓侃,李保庆,刘旭光,DAEM和Coats-Redfern积分法研究煤半焦燃烧动力学的比较,化工学报,2003.54(11):1598-1602.
    [113]王爽,王宁,于立军,姜秀民,李祯,何培民,海藻的热解特性分析,中国电机工程学报,2007.27(14):102-106.
    [114]J.H. Yan, H.M. Zhu, X.G. Jiang, Y. Chi, K.F. Cen, Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model, Journal of Hazardous Materials,2009.162(2-3):646-651.
    [115]谢正文,袁巧,曲方,基于TG-FTIR的餐饮业烟道油垢燃烧特性分析,湖南科技大学学报(自然科学版),2009.24(4):108-112.
    [116]王雷,李润东,李爱民,魏砾宏,冯磊,军用航空有机玻璃热分析动力学研究,航空学报,2005.26(6):783,786.
    [117]何翊,孙挺,β-CD/1-MCP包结物热分解反应最可几机制的判断,食品科学,2006.27(2):42-45.
    [118]张兴高,朱慧,阳世清,张炜,赵凤起,刘子如,潘清,富氮高能物质BTATz的热分解动力学和分解机理,推进技术,2007.28(3):322-326.
    [119]B.-S. Kang, S.G. Kim, J.-S. Kim, Thermal degradation of poly(methyl methacrylate) polymers:Kinetics and recovery of monomers using a fluidized bed reactor, Journal of Analytical and Applied Pyrolysis,2008.81(1):7-13.
    [120]卢林刚,张晴,徐晓楠,董希琳,王大为,新型膨胀阻燃聚丙烯的热分解动力学研究,中国塑料,2009.23(5):53-60.
    [121]唐爱东,张露露,舒万艮,黄可龙,热稳定剂及与PVC混合物的热解反应研究,化学通报,2002(6):403-406.
    [122]黄建智,万里强,田建军,赵占峰,王晓飞,扈艳红,黄发荣,杜磊,1,3-二(炔丙基
    氧)苯与4,4'-二叠氮甲基联苯的聚合反应及聚合物性能的研究,化学学报,2007.65(22):2629-2634.
    [123]胡付欣,杨性坤,热塑性弹性体热寿命和热降解动力学研究,橡胶工业,2007.54(3):141-145.
    [124]胡昕,热分析技术在氯化聚乙烯防水卷材中的应用,化学建材,2003(1):33-35.
    [125]张崇民,阎果,李超,王文忠,废弃塑料燃烧动力学,化工冶金,2000.21(2):212-215.
    [126]解强,沈吉敏,张宪生,厉伟,模化城市生活垃圾衍生燃料制备及热解特性的研究,燃料化学学报,2003.31(5):471-475.
    [127]杨坤彬,彭金辉,张利波,郭胜惠,夏洪应,升温速率对椰壳热解特性的影响及动力学分析,农业工程学报,2009.25(8):226-229.
    [128]任强,孙春燕,刘伟,周涵,高聚合度聚氯乙烯的热降解特性研究,石油炼制与化工,2007.38(5):23-27.
    [129]郑学刚,唐黎华,俞丰,应卫勇,朱子彬,PVC的热失重和热解动力学,华东理工大学学报,2003.29(4):346-350.
    [130]彭科,奚波,姚强,印刷电路板基材的热解实验研究,环境污染治理技术与设备,2004.5(5):34-37.
    [131]A.M. Cunliffe, N. Jones, P.T. Williams, Recycling of fibre-reinforced polymeric waste by pyrolysis:thermo-gravimetric and bench-scale investigations, Journal of Analytical and Applied Pyrolysis,2003.70(2):315-338.
    [132]S.M. Al-Salem, P. Lettieri, J. Baeyens, Recycling and recovery routes of plastic solid waste (PSW):A review, Waste Management,2009.29(10):2625-2643.
    [133]杨海平,陈汉平,晏蓉,张世红,郑楚光,油棕废弃物热解的TG-FTIR分析,燃料化学学报,2006.34(3):309-314.
    [134]P. Fu, S:Hu, J. Xiang, P. Li, D. Huang, L. Jiang, A. Zhang, J. Zhang, FTIR study of pyrolysis products evolving from typical agricultural residues, Journal of Analytical and Applied Pyrolysis,2010.88(2):117-123.
    [135]E.L.K. Mui, D.C.K. Ko, G. McKay, Production of active carbons from waste tyres--a review, Carbon,2004.42(14):2789-2805.
    [136]J.F. Mastral, C. Berrueco, J. Ceamanos, Modelling of the pyrolysis of high density polyethylene:Product distribution in a fluidized bed reactor, Journal of Analytical and Applied Pyrolysis,2007.79(1-2):313-322.
    [137]G.H. Liu, X.Q. Ma, Z. Yu, Experimental and kinetic modeling of oxygen-enriched air combustion of municipal solid waste, Waste Management,2009.29(2):792-796.
    [138]A. Chouchene, M. Jeguirim, B. Khiari, F. Zagrouba, G. Trouve, Thermal degradation of olive solid waste:Influence of particle size and oxygen concentration, Resources, Conservation and Recycling,2010.54(5):271-277.
    [139]廖艳芬,王树荣,骆仲泱,周劲松,余春江,岑可法,纤维素热裂解过程动力学的试验分析研究,浙江大学学报(工学版),2002.36(2):172-176.
    [140]梁栋,王云鹤,王进,于斌,陈衍宽,升温速率与煤氧化特征关系的实验研究,煤炭科学技术,2007.35(3):72-74.
    [141]F. Barontini, V. Cozzani, Formation of hydrogen bromide and organobrominated compounds in the thermal degradation of electronic boards, Journal of Analytical and Applied Pyrolysis,2006.77(1):41-55.
    [142]C. Quan, A. Li, N. Gao, Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes, Waste Management,2009.29(8):2353-2360.
    [143]Y.H. Lin, M.H. Yang, T.T. Wei, C.T. Hsu, K.J. Wu, S.L. Lee, Acid-catalyzed conversion of chlorinated plastic waste into valuable hydrocarbons over post-use commercial FCC catalysts, Journal of Analytical and Applied Pyrolysis.87(1):154-162.
    [144]秦成,田文栋,肖云汉,垃圾衍生燃料热重法的燃烧特性,燃烧科学与技术,2004.10(3):232-236.
    [145]R. Miranda, C. Sosa_Blanco, D. Bustos-Martinez, C. Vasile, Pyrolysis of textile wastes: I. Kinetics and yields, Journal of Analytical and Applied Pyrolysis,2007.80(2):489-495.
    [146]R. Font, I. Martin-Gullon, M. Esperanza, A. Fullana, Kinetic law for solids decomposition. Application to thermal degradation of heterogeneous materials, Journal of Analytical and Applied Pyrolysis,2001.58-59:703-731.
    [147]T. Faravelli, G. Bozzano, M. Colombo, E. Ranzi, M. Dente, Kinetic modeling of the thermal degradation of polyethylene and polystyrene mixtures, Journal of Analytical and Applied Pyrolysis,2003.70(2):761-777.
    [148]Q. Ren, C. Zhao, X. Wu, C. Liang, X. Chen, J. Shen, G. Tang, Z. Wang, TG-FTIR study on co-pyrolysis of municipal solid waste with biomass, Bioresource Technology,2009. 100(17):4054-4057.
    [149]L. Duan, C. Zhao, W. Zhou, C.Qu, X. Chen, Investigation on Coal Pyrolysis in CO2 Atmosphere, Energy & Fuels,2009.23(7):3826-3830.
    [150]S. Kim, Pyrolysis kinetics of waste PVC pipe, Waste Management,2001.21(7): 609-616.
    [151]H. Matsuda, S. Ozawa, K. Naruse, K. Ito, Y. Kojima, T. Yanase, Kinetics of HC1 emission from inorganic chlorides in simulated municipal wastes incineration conditions, Chemical Engineering Science,2005.60(2):545-552.
    [152]L.I. Darvell, J.M. Jones, B. Gudka, X.C. Baxter, A. Saddawi, A. Williams, A. Malmgren, Combustion properties of some power station biomass fuels, Fuel,2010. In Press, Corrected Proof.
    [153]T. Rogaume, J. Koulidiati, F. Richard, F. Jabouille, J.L. Torero, A model of the chemical pathways leading to NOx formation during combustion of mixtures of cellulosic and plastic materials, International Journal of Thermal Sciences,2006.45(4):359-366.
    [154]F. Murena, Kinetics of sulphur compounds in waste tyres pyrolysis, Journal of Analytical and Applied Pyrolysis,2000.56(2):195-205.
    [155]J. Giuntoli, S. Arvelakis, H. Spliethoff, W. de Jong, A.H.M. Verkooijen, Quantitative and Kinetic Thermogravimetric Fourier Transform Infrared (TG-FTIR) Study of Pyrolysis of Agricultural Residues:Influence of Different Pretreatments, Energy & Fuels,2009.23(11):5695-5706.
    [156]S.Y. Yorulmaz, A.T. Atimtay, Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis, Fuel Processing Technology,2009.90(7-8):939-946.
    [157]王刚,李文,李保庆,陈皓侃,不同液化条件下生物质残渣的燃烧特性研究,燃料化学学报,2007.35(2):164-168.
    [158]’刘振海,徐国华,张洪林,热分析仪器,化学工业出版社,北京,2006:63-151.
    [159]陈培榕,邓勃,现代仪器分析实验与技术,清华大学出版社,北京, 1999:105.
    [160]翁诗甫,傅里叶变换红外光谱仪,化学工业出版社,北京,2005:69-114.
    [161]曾泳淮,林树昌,分析化学-仪器分析部分,高等教育出版社,北京,2004:123-157.
    [162]R. Font, A. Fullana, J. Conesa, Kinetic models for the pyrolysis and combustion of two types of sewage sludge, Journal of Analytical and Applied Pyrolysis,2005.74(1-2):429-438.
    [163]刘文铁,王淑彦,陆慧林,崔崇威,污泥的热解动力学及机理研究,热能动力工程,2006.24(5):529-531.
    [164]王俊琪,方梦祥,骆仲泱,岑可法,煤的快速热解动力学研究,中国电机工程学报,2007.27(17):18-22.
    [165]P. Girods, A. Dufour, Y. Rogaume, C. Rogaume, A. Zoulalian, Pyrolysis of wood waste containing urea-formaldehyde and melamine-formaldehyde resins, Journal of Analytical and Applied Pyrolysis,2008.81(1):113-120.
    [166]胡荣祖,高胜利,赵凤起,史启祯,张同来,张建军,热分析动力学(第二版),科学出版社,北京,2008:116-209.
    [167]M. Haroun, A. Idris, S.R. Syed Omar, A study of heavy metals and their fate in the composting of tannery sludge, Waste Management,2007.27(11):1541-1550.
    [168]A. Fullana, J.A. Conesa, F. Font, S. Sidhu, Formation and Destruction of Chlorinated Pollutants during Sewage Sludge Incineration, Environmental Science & Technology,2004. 38(10):2953-2958.
    [169]M. Horttanainen, J. Kaikko, R. Bergman, M. Pasila-Lehtinen, J. Nerg, Performance analysis of power generating sludge combustion plant and comparison against other sludge treatment technologies, Applied Thermal Engineering,2010.30(2-3):110-118.
    [170]D.H. Lee, R. Yan, J. Shao, D.T. Liang, Combustion Characteristics of Sewage Sludge in a Bench-Scale Fluidized Bed Reactor, Energy & Fuels,2007.22(1):2-8.
    [171]王裕明,胡建红,冉景煜,张力,蒲舸,唐强,混合工业污泥燃烧及动力学特性实验研究,中国电机工程学报,2007.27(17):44-50.
    [172]刘敬勇,孙水裕,龙来寿,陈涛,陈敏婷,金属化合物对工业污水污泥燃烧的催化作用及机制,中国电机工程学报,2009.29(23):51-60.
    [173]刘亮,李录平,周孑民,景雪晖,涂福炳,污泥燃烧的热重实验研究,电站系统工程,2006.22(1):11-12.
    [174]L. Zhang, M. Ito, A. Sato, Y. Ninomiya, T. Sakano, C. Kanaoka, M. Masui, Combustibility of dried sewage sludge and its mineral transformation at different oxygen content in drop tube furnace, Fuel Processing Technology,2004.85(8-10):983-1011.
    [175]R. Font, A. Fullana, J.A. Conesa, F. Llavador, Analysis of the pyrolysis and combustion of different sewage sludges by TG, Journal of Analytical and Applied Pyrolysis,2001.58-59: 927-941.
    [176]Y.H. Yu, S.D. Kim, J.M. Lee, K.H. Lee, Kinetic studies of dehydration, pyrolysis and combustion of paper sludge, Energy,2002.27(5):457-469.
    [177]王兴润,金宜英,王志玉,杜欣,聂永丰,应用TGA-FTIR研究不同来源污泥的燃烧和热解特性,燃料化学学报,2007.35(1):27-31.
    [178]廖艳芬,漆雅庆,马晓茜,城市污水污泥焚烧处理环境影响分析,环境科学学报,2009.29(11):2359-2365.
    [179]J, Jiang, X. Du, S. Yang, Analysis of the combustion of sewage sludge-derived fuel by a thermogravimetric method in China, Waste Management,2010.30(7):1407-1413.
    [180]刘亮,李录平,周孑民,鄢晓忠,闫宏杰,污泥和煤混烧特性的热重分析法研究,环境科学学报,2006.26(5):835-839.
    [181]M. Otero, L.F. Calvo, M.V. Gil, A.I. Garcia, A. Moran, Co-combustion of different sewage sludge and coal:A non-isothermal thermogravimetric kinetic analysis, Bioresource Technology,2008.99(14):6311-6319.
    [182]J. Shao, D.H. Lee, R. Yan, M. Liu, X. Wang, D.T. Liang, T.J. White, H. Chen, Agglomeration Characteristics of Sludge Combustion in a Bench-Scale Fluidized Bed Combustor, Energy & Fuels,2007.21(5):2608-2614.
    [183]H. Cui, Y. Ninomiya, M. Masui, H. Mizukoshi, T. Sakano, C. Kanaoka, Fundamental Behaviors in Combustion of Raw Sewage Sludge, Energy & Fuels,2006.20(1):77-83.
    [184]M.H. Lopes, I. Gulyurtlu, I. Cabrita, Control of Pollutants during FBC Combustion of Sewage Sludge, Industrial & Engineering Chemistry Research,2004.43(18):5540-5547.
    [185]W.L.E. Magalhaes, A.E. Job, C.A. Ferreira, H.D. da Silva, Pyrolysis and combustion of pulp mill lime sludge, Journal of Analytical and Applied Pyrolysis,2008.82(2):298-303.
    [186]D.C.R. Espinosa, J.A.S. Tenorio, Thermal behavior of chromium electroplating sludge, Waste Management,2001.21(4):405-410.
    [187]J. Shao, R. Yan, H. Chen, H. Yang, D.H. Lee, D.T. Liang, Emission Characteristics of Heavy Metals and Organic Pollutants from the Combustion of Sewage Sludge in a Fluidized Bed Combustor, Energy & Fuels,2008.22(4):2278-2283.
    [188]H. Yao, I. Naruse, Combustion Characteristics of Dried Sewage Sludge and Control of Trace-Metal Emission, Energy & Fuels,2005.19(6):2298-2303.
    [189]S. Swarnalatha, K. Ramani, A.G. Karthi, G. Sekaran, Starved air combustion-solidification/stabilization of primary chemical sludge from a tannery, Journal of Hazardous Materials,2006.137(1):304-313.
    [190]W. Rulkens, Sewage Sludge as a Biomass Resource for the Production of Energy. Overview and Assessment of the Various Options, Energy & Fuels,2007.22(1):9-15.
    [191]N. Nipattummakul, I. Ahmed, S. Kerdsuwan, A.K. Gupta, High temperature steam gasification of wastewater sludge, Applied Energy,2010.87(12):3729-3734.
    [192]翟云波,魏先勋,曾光明,张德见,楚凯锋,氮气气氛下城市污水厂污泥热解特性,现代化工,2004.24(2):36-40.
    [193]I.C. Kantarli, J. Yanik, Use of Waste Sludge from the Tannery Industry, Energy & Fuels,2009.23(6):3126-3133.
    [194]王子曦,李桂菊,张晓镭,制革污泥热解动力学研究,中国皮革,2008.37(3):34-38.
    [195]李培生,李洁,胡益,余万,基于DTA方法的污泥与煤混合物燃烧反应动力学,华中科技大学学报(自然科学版),2008.36(6):119-121.
    [196]朱晓琬,邓文义,王飞,蒋旭光,严建华,池涌,岑可法,桨叶式干燥机热干燥处理制革污泥的排放特性,化工学报,2008.59(8):2083-2088.
    [197]刘倩,王琦,王健,王树荣,骆仲涣,岑可法,纤维素热解过程中活性纤维素的生成研究,工程热物理学报,2007.28(5):897-899.
    [198]王翠苹,李定凯,王凤印,杨启容,生物质成型颗粒燃料燃烧特性的试验研究,农业工程学报,2006.22(10):174-177.
    [199]孙学信,燃煤锅炉燃烧实验技术与方法,中国电力出版社,北京,2002.
    [200]聂其红,孙绍增,李争起,张晓杰,吴少华,秦裕琨,褐煤混煤燃烧特性的热重分析法研究,燃烧科学与技术,2001.7(1):72-76.
    [201]樊越胜,邹峥,高巨宝,曹子栋,煤粉在富氧条件下燃烧特性的实验研究,中国电机工程学报,2005.25(24):118-121.
    [202]刘亮,李录平,柏湘杨,涂福炳,周孑民,混煤热解特性及燃烧过程的实验研究,动力工程,2006.26(1):130-134.
    [203]W. Deng, J. Yan, X. Li, F. Wang, Y. Chi, S. Lu, Emission characteristics of dioxins, furans and polycyclic aromatic hydrocarbons during fluidized-bed combustion of sewage sludge, Journal of Environmental Sciences,2009.21(12):1747-1752.
    [204]W. Lin, K. Dam-Johansen, F. Frandsen, Agglomeration in bio-fuel fired fluidized bed combustors, Chemical Engineering Journal,2003.96(1-3):171-185.
    [205]M. Bakoglu, A. Karademir, S. Ayberk, Partitioning characteristics of targeted heavy metals in IZAYDAS hazardous waste incinerator, Journal of Hazardous Materials,2003.99(1): 89-105.
    [206]D. Marani, C.M. Braguglia, G. Mininni, F. Maccioni, Behaviour of Cd, Cr, Mn, Ni, Pb, and Zn in sewage sludge incineration by fluidised bed furnace, Waste Management,2003. 23(2):117-124.
    [207]K.-S. Wang, K.-Y. Chiang, S.-M. Lin, C.-C. Tsai, C.-J. Sun, Effects of chlorides on emissions of toxic compounds in waste incineration:Study on partitioning characteristics of heavy metal, Chemosphere,1999.38(8):1833-1849.
    [208]H. Yao, G. Luo, M. Xu, T. Kameshima, I. Naruse, Mercury Emissions and Species during Combustion of Coal and Waste, Energy & Fuels,2006.20(5):1946-1950.
    [209]H. Yao, I.S.N. Mkilaha, I. Naruse, Screening of sorbents and capture of lead and cadmium compounds during sewage sludge combustion, Fuel,2004.83(7-8):1001-1007.
    [210]M.A. Abreu, S.M. Toffoli, Characterization of a chromium-rich tannery waste and its potential use in ceramics, Ceramics International,2009.35(6):2225-2234.
    [211]M. Helena Lopes, P. Abelha, N. Lapa, J.S. Oliveira, I. Cabrita, I. Gulyurtlu, The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed, Waste Management,2003.23(9):859-870.
    [212]L. Reijnders, Disposal, uses and treatments of combustion ashes:a review, Resources Conservation and Recycling,2005.43(3):313-336.
    [213]J. Reich, C. Pasel, J.-D. Herbell, M. Luckas, Effects of limestone addition and sintering on heavy metal leaching from hazardous waste incineration slag, Waste Management,2002. 22(3):315-326.
    [214]E. Rendek, G. Ducom, P. Germain, Influence of waste input and combustion technology on MSWI bottom ash quality, Waste Management,2007.27(10):1403-1407.
    [215]B. Juric, L. Hanzic, R. Ilic, N. Samec, Utilization of municipal solid waste bottom ash and recycled aggregate in concrete, Waste Management,2006.26(12):1436-1442.
    [216]C.T. Li, Y.J. Huang, K.L. Huang, W.J. Lee, Characterization of slags and ingots from the vitrification of municipal solid waste incineration ashes, Industrial & Engineering Chemistry Research,2003.42(11):2306-2313.
    [217]Y. Liu, L. Zheng, X. Li, S. Xie, SEM/EDS and XRD characterization of raw and washed MSWI fly ash sintered at different temperatures, Journal of Hazardous Materials,2009. 162(1):161-173.
    [218]周苗生,王华,周波,安春国,王磊,宿志强,多形态危险废物集成进料系统的开发,能源工程,2009(5):25-29.
    [219]国家环境保护总局,国家质量监督检验检疫总局,国家发展和改革委员会,医疗
    废物焚烧炉技术要求(试行),2003.GB 19218-2003.
    [220]阎常峰,林伯川,陈恩鉴,陈勇,垃圾焚烧灰渣的成分分析及其熔融特性,热能动力工程,2002.17(4):356-358.
    [221]J.G. Jiang, X. Xu, J. Wang, S.J. Yang, Y. Zhang, Investigation of basic properties of fly ash from urban waste incinerators in China, Journal of Environmental Sciences-China,2007. 19(4):458-463.
    [222]M. Cobo, A. Galvez, J.A. Conesa, C.M. de Correa, Characterization of fly ash from a hazardous waste incinerator in Medellin, Colombia, Journal of Hazardous Materials,2009. 168(2-3):1223-1232.
    [223]B. Shemwell, Y.A. Levendis, G.A. Simons, Laboratory study on the high-temperature capture of HCl gas by dry-injection of calcium-based sorbents, Chemosphere,2001.42(5-7): 785-796.
    [224]岳勇,姚强,宋蔷,李水清,王珲,不同煤燃烧源排放的PM10形态及重金属分布的对比研究,中国电机工程学报,2007.27(35):33-38.
    [225]王军,蒋建国,隋继超,杨仕键,张妍,垃圾焚烧飞灰基本性质的研究,环境科学,2006.27(11):2283-2287.
    [226]薛兴华,王运泉,肖晨生,周水,电厂燃煤飞灰粒度特征研究,煤炭学报,2006. 31(5):635-639.
    [227]何宏舟,骆仲泱,岑可法,无烟煤流化床燃烧中热破碎现象的研究综述,热能动力工程,2006.21(3):221-226.
    [228]许明磊,垃圾焚烧过程受热面积灰烧结特性试验研究: 机械与能源工程学院,浙江大学,杭州,2007:50.
    [229]徐国涛,李伟,陈向东,赵荣坤,舒方华,张洪雷,大型链蓖机-回转窑结圈原因及炉衬用耐火材料研究,钢铁研究学报,2009.37(6):34-39.
    [230]林谷丰,以无烟煤为燃料的回转窑结后圈的处理,新世纪水泥导报,2008(5):19-20.
    [231]赵正富,湿法回转窑结圈事故的处理与分析,水泥,2006(3):33-35.
    [232]范晓慧,甘敏,袁礼顺,李光辉,姜涛,庄剑鸣,氧化球团链篦机—回转窑结圈机理的研究,钢铁,2008.43(3):15-20.
    [233]杨雪峰,姜涛,范晓慧,李光辉,昆钢球团回转窑结圈机理研究及预防控制,烧结球团,2009.34(3):21-24.
    [234]张子洋,梁永和,余为,吴芸芸,简传好,聂建华,球团矿回转窑耐火材料的蚀损及其对结圈的影响,硅酸盐通报,2009.28(增刊):110-113.
    [235]周庆刚,煤基直接还原铁回转窑结圈机理及生产过程中的控制,第十一届全国炼铁原料学术会议,2009.
    [236]李军,张化明,邯钢氧化球团回转窑结圈原因分析及预防,烧结球团,2007.32(3):55-58.
    [237]张汉泉,链篦机-回转窑氧化球团结圈结块原因及预防,金属矿山,2005.349(7):59-61.
    [238]彭志坚,陈铁军,许海法,朱科良,阳仁贵,陈清,邱理平,田湖回转窑煅烧石灰结圈原因及抑制措施的探讨,武汉科技大学学报(自然科学版),2004.27(2):136-139.
    [239]陈铁军,彭志坚,罗敏,涟钢石灰回转窑结圈形成的机理及防止措施,矿产保护与利用,2004(1):37-42.
    [240]马福辉,杨晓源,宁加明,李光辉,昆钢球团回转窑结圈研究与预防,烧结球团,2006.31(5):19-22.
    [241]叶匡吾,回转窑结圈的防止和消除,烧结球团,1998.23(6):32-34.
    [242]李坦平,唐声飞,湿法回转窑结圈的原因与防治,云南建材,2001(5):30-33.
    [243]D.W.J. Owens, Hazardous waste incineration in a rotary kiln, The University of Utah, 1991.
    [244]马爱纯,熟料窑内流动、传热和煤粉燃烧的数值模拟和优化研究,中南大学,长沙,2007.
    [245]冉景煜,固态医疗垃圾循环流化床气固流动与燃烧特性数值分析与实验,重庆大学,重庆,2003.
    [246]李相国,预分解系统内流动、燃烧与分解的研究及数值模拟,武汉理工大学,武汉,2006.
    [247]陈思维,窑尾预分解系统冷模流场研究,武汉理工大学,武汉,2005.
    [248]A.L. Jakway, Experimental and Numerical-Modeling Studies of a Field-Scale Hazardous Waste Rotary Kiln Incinerator, Louisiana State University,1985.
    [249]A.L. Jakway, A.M. Sterling, V.A. Cundy, C.A. Cook, Three-Dimensional Numerical Modeling of a Field-Scale Rotary Kiln Incinerator, Environmental Science & Technology,1996.30(5):1699-1712.
    [250]F. Marias, A model of a rotary kiln incinerator including processes occurring within the solid and the gaseous phases, Computers & Chemical Engineering,2003.27(6):813-825.
    [251]X.L. Huai, W.L. Xu, Z.Y. Qu, Z.G. Li, F.P. Zhang, G.M. Xiang, S.Y Zhu, G. Chen, Analysis and optimization of municipal solid waste combustion in a reciprocating incinerator, Chemical Engineering Science,2008.63(12):3100-3113.
    [252]Y. Yang, M.A. Reuter, D.T.M. Hartman, CFD Modelling for control of hazardous waste incinerator, Control Engineering Practice,2003.11(1):93-101.
    [253]S. Wang, J. Lu, W. Li, J. Li, Z. Hu, Modeling of Pulverized Coal Combustion in Cement Rotary Kiln, Energy & Fuels,2006.20(6):2350-2356.
    [254]F. Marias, H. Roustan, A. Pichat, Modelling of a rotary kiln for the pyrolysis of aluminium waste, Chemical Engineering Science,2005.60(16):4609-4622.
    [255]王福军,计算流体动力学分析-CFD软件原理与应用,清华大学出版社,北京,2004:185-188.
    [256]郑楚光,周向阳,湍流反应的PDF模拟(第二版),华中科技大学出版社,武汉,2005.
    [257]建筑材料科学研究院,水泥窑热工测量,中国建筑工业出版社,北京,1987.
    [258]隋良志,王兆国,姚春林,水泥工业耐火材料,中国建材工业出版社,北京,2005.
    [259]K. Nishida, Y. Nagayoshi, H. Ota, H. Nagasawa, Melting and stone production using MSW incinerated ash, Waste Management,2001.21(5):443-449.
    [260]E.D. Lavric, A.A. Konnov, J.D. Ruyck, Dioxin levels in wood combustion--a review, Biomass and Bioenergy,2004.26(2):115-145.
    [261]M. Schuhmacher, S. Granero, J.M. Llobet, H.A.M. de Kok, J.L. Domingo, Assessment of baseline levels of PCDD/F in soils in the neighbourhood of a new hazardous waste incinerator in Catalonia, Spain, Chemosphere,1997.35(9):1947-1958.
    [262]M. Schuhmacher, H. Kiviranta, P. Ruokojarvi, M. Nadal, J.L. Domingo, Concentrations of PCDD/Fs, PCBs and PBDEs in breast milk of women from Catalonia, Spain:A follow-up study, Environment International,2009.35(3):607-613.
    [263]M.'Nadal, G. Perell, M. Schuhmacher, J. Cid, J.L. Domingo, Concentrations of PCDD/PCDFs in plasma of subjects living in the vicinity of a hazardous waste incinerator: Follow-up and modeling validation, Chemosphere,2008.73(6):901-906.
    [264]Y.-C. Ling, P.C.C. Hou, A Taiwanese study of 2,3,7,8-substituted PCDD/DFs and coplanar PCBs in fly ashes from incinerators, Journal of Hazardous Materials,1998.58(1-3): 83-91.
    [265]Y.C. Zhao, L.J. Song, G.J. Li, Chemical stabilization of MSW incinerator fly ashes, Journal of Hazardous Materials,2002.95(1-2):47-63.
    [266]J.D. Chou, M.Y. Wey, H.H. Liang, S.H. Chang, Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators, Journal of Hazardous Materials,2009.168(1):197-202.
    [267]M. Li, J. Xiang, S. Hu, L.-S. Sun, S. Su, P.-S. Li, X.-X. Sun, Characterization of solid residues from municipal solid waste incinerator, Fuel,2004.83(10):1397-1405.
    [268]H. Kaneko, Evaluation of municipal waste incinerator fly ash toxicity and the role of cadmium by two aquatic toxicity tests, Waste Management,1996.16(5-6):555-559.
    [269]E. Gidarakos, M. Petrantonaki, K. Anastasiadou, K.W. Schramm, Characterization and hazard evaluation of bottom ash produced from incinerated hospital waste, Journal of Hazardous Materials,2009.172(2-3):935-942.
    [270]L.J. Zhao, F.S. Zhang, M.J. Chen, Z.G. Liu, D.B.J. Wu, Typical pollutants in bottom ashes from a typical medical waste incinerator, Journal of Hazardous Materials,2010. 173(1-3):181-185.
    [271]K.E. Haugsten, B. Gustavson, Environmental properties of vitrified fly ash from hazardous and municipal waste incineration, Waste Management,2000.20(2-3):167-176.
    [272]Y. Yang, Y. Xiao, J.H.L. Voncken, N. Wilson, Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator, Journal of Hazardous Materials,2008. 154(1-3):871-879.
    [273]Y.-M. Kuo, C.-T. Wang, C.-H. Tsai, L.-C. Wang, Chemical and physical properties of plasma slags containing various amorphous volume fractions, Journal of Hazardous Materials,2009.162(1):469-475.
    [274]C.-K. Chen, C. Lin, L.-C. Wang, G.-P. Chang-Chien, The size distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans in the bottom ash of municipal solid waste incinerators, Chemosphere,2006.65(3):514-520.
    [275]Y.J. Tuan, H. Paul Wang, J.E. Chang, C.C. Chao, C.K. Tsai, Speciation of copper in the thermally stabilized slag, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2010. In Press, Corrected Proof.
    [276]K.L. Lin, C.T. Chang, Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash, Journal of Hazardous Materials,2006. 135(1-3): 296-302.
    [277]K. Park, J. Hyun, S. Maken, S. Jang, J.-W.Park, Vitrification of Municipal Solid Waste Incinerator Fly Ash Using Brown's Gas, Energy & Fuels,2004.19(1):258-262.
    [278]D. Bo, F.-S. Zhang, L. Zhao, Influence of supercritical water treatment on heavy metals in medical waste incinerator fly ash, Journal of Hazardous Materials,2009.170(1):66-71.
    [279]H.-Y. Wu, Y.-P. Ting, Metal extraction from municipal solid waste (MSW) incinerator fly ash--Chemical leaching and fungal bioleaching, Enzyme and Microbial Technology,2006. 38(6):839-847.
    [280]R. Derie, A new way to stabilize fly ash from municipal incinerators, Waste Management,1996.16(8):711-716.
    [281]J. Wienecke, H. Kruse, U. Huckfelct, W. Eickhoff, O. Wassermann, Organic compounds in the flue gas of a hazardous waste incinerator, Chemosphere,1995.30(5):907-913.
    [282]A. Costera, C. Feidt, P. Marchand, B.L. Bizec, G. Rychen, PCDD/F and PCB transfer to milk in goats exposed to a long-term intake of contaminated hay, Chemosphere,2006.64(4): 650-657.
    [283]L.J. Zhao, F.S. Zhang, Z.P. Hao, H.L. Wang, Levels of polycyclic aromatic hydrocarbons in different types of hospital waste incinerator ashes, Science of the Total Environment,2008.397(1-3):24-30.
    [284]P.H. Taylor, D. Lenoir, Chloroaromatic formation in incineration processes, The Science of The Total Environment,2001.269(1-3):1-24.
    [285]Y. Horii, G. Ok, T. Ohura, K. Kannan, Occurrence and Profiles of Chlorinated and Brominated Polycyclic Aromatic Hydrocarbons in Waste Incinerators, Environmental Science & Technology,2008.42(6):1904-1909.
    [286]J.J. Cudahy, R.W. Helsel, Removal of products of incomplete combustion with carbon, Waste Management,2000.20(5-6):339-345.
    [287]A. Karademir, M. Bakoglu, F. Taspinar, S. Ayberk, Removal of PCDD/Fs from Flue Gas by a Fixed-Bed Activated Carbon Filter in a Hazardous Waste Incinerator, Environmental Science & Technology,2004.38(4):1201-1207.
    [288]Z. Yang, The effects on baghouse filter bags during the incineration of high-fluoride wastes, Powder Technology,2000.108(2-3):160-163.
    [289]M. Blumenstock, R. Zimmermann, K.W. Schramm, A. Kaune, U. Nikolai, D. Lenoir, A. Kettrup, Estimation of the dioxin emission (PCDD/FI-TEQ) from the concentration of low chlorinated aromatic compounds in the flue and stack gas of a hazardous waste incinerator, Journal of Analytical and Applied Pyrolysis,1999.49(1-2):179-190.
    [290]H.J. Heger, R. Zimmermann, M. Blumenstock, A. Kettrup, On-line real-time measurements at incineration plants:PAHs and a PCDD/F surrogate compound at stationary combustion conditions and during transient emission puffs, Chemosphere,2001.42(5-7): 691-696.
    [291]浙江省环境保护厅,2009年浙江省环境状况公报,2010:21-22.
    [292]杭州市环境保护局,2008年杭州市环境状况公报,2009:6-7.
    [293]南昌有色冶金设计研究院,杭州危险废物及医疗废物处置项目初步设计,2006:39-43.
    [294]浙江省环境监测中心,杭州大地环保有限公司第二次污染源废气监测报告,2009.
    [295]中国环境监测总站,杭州市工业固体废物处置项目二期工程(崇贤区块危废和医疗焚烧及填埋场)竣工环境保护验收监测报告,2009.
    [296]中华人民共和国城乡建设环境保护部,农用污泥中污染物控制标准,中华人民共和国国家标准,1984.GB 4284-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700