用户名: 密码: 验证码:
鼠李糖脂作用下17α-炔雌醇在水/底泥中的迁移转化规律及生物有效性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,药品及个人护理品(PPCPs)作为一类新型污染物,在水体环境中广泛检出。PPCPs中多数物质具有半疏水特性,易吸附沉积于底泥、土壤等固相介质上而长期滞留于环境中。针对疏水毒害有机污染物,生物表面活性剂代替化学合成表面活性剂应用于环境污染物的受控迁移转化和生物强化降解,是现代生物修复技术的重要部分。
     鼠李糖脂是研究最为广泛的生物表面活性剂之一,是由微生物分泌的多种同系物组成的混合物。基于鼠李糖脂的分子结构多样性和可选择培养性,目前罕见有关于鼠李糖脂同系物在环境修复各环节中作用效应及差异的研究报道。此外,针对半疏水性PPCPs物质与PAHs等完全疏水物质分子结构特征及环境行为的差异,有关鼠李糖脂对半疏水性物质作用特性及规律的研究亦尚未见到。为此,本研究选择环境雌激素效力最强的人工合成17α-炔雌醇(EE2)为特征PPCPs污染物,在鼠李糖脂同系物组分分离提纯及分子结构、性质表征的基础上,以不同环境介质条件为实验体系,深入系统地探索了鼠李糖脂同系物组分对EE2的胶束增溶、吸附/解吸、及对其生物有效性的影响等作用特性及机制。最后通过易混合置换实验,探讨了鼠李糖脂作用下EE2在模拟饱和底泥柱中的迁移转化规律,为推动基于鼠李糖脂生物表面活性剂的特征PPCPs受控定向迁移和生物强化修复技术的应用奠定了理论基础,丰富了表面活性剂生物修复技术的研究内容。得到的主要研究结果如下:
     (1)对诱变菌Pseudomonas aeruginosa MIG-N146的鼠李糖脂发酵产物进行粗提和分离纯化,得到了单鼠李糖脂和双鼠李糖脂同系物组分,分别命名为RL-F1和RL-F2。RL-F1和RL-F2在水溶液中的CMC分别为0.11和0.07 mM。DLS和TEM测试表明,RL-F1聚集胶束粒径的尺寸较小,呈单分散模式。而RL-F2胶束粒径相对较大,分布较广,呈多分散模式,且RL-F2聚集胶束较易随其本身浓度的增加发生形变。
     (2)增溶平衡和增溶动力学实验研究表明,与RL-F1相比,RL-F2对EE2有着较大的胶束增溶能力,但EE2向RL-F2准胶束相传质的速率相对较低。溶质增溶后,RL-F2胶束/EE2复合结构的颗粒粒径尺寸及可分散性增加的幅度较RL-F1时大。半疏水性溶质EE2与鼠李糖脂聚集胶束的结合不是单一的作用模式,EE2同时占据在鼠李糖脂胶束中具有中等极性微环境的核-壳内界面处和疏水碳链内核部位。而RL-F2胶束与EE2分子之间的作用更趋于疏水相互作用结合。根据聚集胶束核-壳结构/增溶溶质的复合理论模型分析证明,鼠李糖脂同系物的聚集体类型及其微观形态是影响鼠李糖脂增溶性能的重要因素。
     (3)对新鲜配制EE2/底泥的吸附实验体系,RL-F2的存在能有效抑制EE2在底泥相中的吸附。与之相反,RL-F1在较宽的浓度范围内,对EE2的吸附均表现出一定的促进作用。对陈化EE2/底泥的脱附实验体系,两种鼠李糖脂同系物对EE2均有一定的脱附效能。而整体上,RL-F2对EE2的脱附效率均大于RL-F1,这与RL-F2胶束对EE2较高的增溶分配能力是一致的。采用兼顾吸附态表面活性剂和水相胶束竞争作用的HOC分配模型模拟证明,有机污染物-表面活性剂-底泥的复杂体系,鼠李糖脂同系物类型是影响HOC分配的最关键因素。
     (4)摇瓶生物降解实验研究表明,鼠李糖脂的投加不会改变水/底泥体系微生物对EE2的生物利用转化过程。RL-F1对EE2生物降解的强化程度远远大于RL-F2。将实际测试的降解速率增效因子与理论值进行对比,可以推断,粗糖脂混合物对有机物生物有效性的作用效应并非简单的同系物之间作用贡献的加和,混合产物体系各组分的作用特性受到抑制。鼠李糖脂同系物组分对EE2的生物强化降解效应与其增溶脱附效应不呈正比例关系。鼠李糖脂作用下微生物摄取有机物的途径有多种,而有机物增溶后鼠李糖脂胶束的生物有效性对有机物的微生物降解起主要作用。
     (5)模拟底泥柱的易混合置换实验表明,高孔隙水流速条件下,RL-F2作用体系EE2的淋溶穿透率较高,约达83.3%(此时生物转化部分仅占13.6%),这使得EE2在底泥柱中的最终残留显著降低。双鼠李糖脂对EE2在模拟底泥柱中的传输有较好的增溶洗脱作用。而低孔隙水流速条件下,RL-F1的存在大大促进了EE2在底泥柱中吸附滞留,此时大部分滞留溶质可以通过生物强化降解的途径而被有效去除,EE2的生物降解转化率大大增加(75.3%)。
     综上所述,不同环境介质条件下,对不同的作用环节,鼠李糖脂同系物对有机物的作用效应及贡献表现出一定的特异性和非一致性。建议在实际应用中,应针对修复目的、鼠李糖脂产物组成及其在不同环节的作用特性等进行区别、综合的考虑。单鼠李糖脂表现出对EE2较强的吸附固定作用,且能较大程度上提高有机物的生物有效性,这为复杂环境体系有机污染物的修复提供了一种基于单鼠李糖脂的有机物固定-生物强化降解相结合的技术手段。
Recently, as emerging contaminants, pharmaceuticals and personal care products (PPCPs) were widely detected in the aqueous environment. Most of PPCPs have moderate hydrophobic properties. They are tended to adsorb and deposit onto sediments and soils. It thus leads them long-term persistent. Biosurfactants, taking place of chemical synthetic surfactants, are usually applied to change migration and transformation of the hydrophobic toxic contaminants and/or enhance their biodegradation of them, which are important parts of the modern bioremediation technology.
     Rhamnolipids are among the best known biosurfactants and are usually produced as multicomponent mixtures of homologues. However, the predominance of individual rhamnolipidic homologue in each bioremediation part, and the relationship with their molecular components for such biosurfactant mixtures had not been clearly understood. Because of the moderate hydrophobic property, the environmental chemical behaviors of PPCPs are differentiated from that of the complete hydrophobic hydrocarbons. It thus may lead to different functional performances for rhamnolipids. Accordingly, in this study, molecular structures and micellization properties of the purified rhamnolipidic homologue fractions were characterized. The most estrogenic synthetic 17α-ethinylestradiol (EE2) was chose as typical PPCPs contaminant. Based on these, the rhamnolipidic functioned performances for EE2 including micellar solubilization, sorption and desorption, and enhanced biodegradation were systematically investigated step by step within different environmental medium systems. Finally, EE2 migration and transformation mechanisms in modeled sediment column affected by rhamnolipids were explored by mixable displacement experiment. Research results were as follows:
     (1) Two representative rhamnolipidic fractions, RL-F1 and RL-F2, were seperated and purified from the secretions of Pseudomonas aeruginosa mutant strain MIC-N146. They were characterized as mono- and di-rhamnlipids through HPLC-MS and FTIR analyses. The critical micelle concentration of RL-F1 and RL-F2 were 0.11 and 0.07 mM, respectively. DLS and TEM measurements indicated that, the micelle size of RL-F2 was relatively bigger than RL-F1. Size distribution for RL-F2 micelles showed multi-dispersity, while monodisperse mode was observed for RL-F1. It also found that aggregate shape transition was tended to accompany with increase of the RL-F2 bulk concentration.
     (2) Solubilization equilibrium and solubilization kenitics experiments were carried out as batch tests. RL-F2 had a higher maximum solubilizaiton capability of EE2, but observed smaller mass transfer rate than RL-F1. Organic solubilization brought about size increase of the micelles. It was found that the increase of micelle size and size dispersity for RL-F2 aggregates were relatively larger after EE2 solubilzation. Combination of the moderate hydrophobic EE2 and rhamnolipidic micelle were not caused by a single interaction mode. Once solubilization, EE2 molecules located in the core-shell interface having moderate polar microevironment, as well as the hydrophobic core part. According to model analysis of the micelle/solubilizate composite structure, the type of rhamnolipid and aggregated geometry has a great impact on the incorporation of solubilizate into surfactant aggregates.
     (3) EE2 distribution within sediment-water sorption and desorption systems effected by rhamnolipids were investigated and compared. When freshly-treated sorbate was used, in general, RL-F2 was observed to inhibit EE2 desorption from sedment. In contrast, the coexistence of RL-F1 produced considerable net enhancement for EE2 sorption. When aged sorbate was used, both rhamnolipids could facilitate mobilization of EE2. But the desorption efficiency functioned by RL-F2 was generally larger than that of RL-F1. It was consistent with its higher solubilization capacity for EE2. Experimental data was further estimated by the conceptual model that considered the sorbed rhamnolipids and aqueous micelles for organic partitioning. It demonstrated strongly rhamnolipid type being a most important influencing factor towards HOC distribution.
     (4) The effect of rhamnolipids on the bioavailability of EE2 in sediment/water system was tested. Addition of rhamnolipids was observed to not change the process of microbial transformation of EE2. The enhancement extend of EE2 biodegradation functioned by RL-F1 was much larger than that by RL-F2. After comparing the actual degradation-rate enhancing coefficients with the theoretical ones, it could be inferred that the crude rhamnolipids functioned effect for HOC’s bioavailability is not a simple addition action process played by each homologue fraction. The functional effect of individual component will be suppressed within a mixed system. The contribution of rhamnolipid homologue to EE2 biodegradation enhancement was not positively proportional to its corresponding solubilization and mobilization efficacy. When in the present of rhamnolipid, there were diverse paths for HOC uptake by microorganisms. The total bioavailability of the rhamnolipid micelle after HOC solubilizing played a major role for biodegradation.
     (5) When with higher pore water velocity, RL-F2 functioned EE2 breakthrough rate was about 83.3%, while biotransformation part covered only 13.6%. It led to a marked decrease in the final residual rate. When the pore water velocity was lower, EE2 was largely retained within the sediment column due to enhanced sorption. Most of the sorbed EE2 went through biodegradation process. The biodegradation rate was enhanced as high as 75.3%. It also led to an efficient removal of HOC.
     Taken together, rhamnolipid-homologue functioned performance present high specificity and inconsistency when within different environmental medium and effect process. In actual applications, one should carry out an overall consideration in terms of the remediation target, biosurfactant homologue composition and each homologue performance. Monorhamnolipid showed good sorption enhancement of EE2. It also could increase the EE2 bioavailability in a large extend. This provides an important technique for HOC removal within complex environment solid system, i.e. a combined technique based on monorhamnolipid functioned HOC immobilization and enhanced biodegradation. The results of this study provide useful information for controlled transport of PPCPs and bioremediation enhancement technology. It also enriches the research content for bioremediation technology.
引文
[1] Zhou W. Zhu L. Enhanced desorption of phenanthrene from contaminated soil using anionic/ nonionic mixed surfactant. Environmental Pollution. 2007. 147: 350-357
    [2] Ko S.-O., Schlautman M. A., Carraway E. R. Partitioning of hydrophobic organic compounds to sorbed surfactants. 1. experimental studies. Environ. Sci. Technol. 1998. 32: 2769-2775
    [3] Ko S.-O., Schlautman M. A. Partitioning of hydrophobic organic compounds to sorbed surfactants. 2. Model Development/predictions for surfactant-enhanced remediation applications. Environ. Sci. Technol. 1998. 32: 2776-2781
    [4] Volkering F., Breure A. M., Rulkens W. H. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation. 1998. 8: 401-417
    [5] EPA. Pharmaceuticals & Personal Care Products in the Environment: An Emerging Concern? .http://www.epa.gov/nerl/research/1999/html/g8-14.html., 1999.12.24/2005.3.20
    [6] Martac C., Francisco O., Juan M. L., et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant[J]. Water Research, 2004, 38: 2918-2926
    [7] Halling-S?rensen B., Nors Nielsen S., Lanzky P.F., et al. Occurrence, fate and effects of pharmaceutical substances in the environment– a review[J]. Chemosphere. 1998, 36: 357-393
    [8] Ellis J.B. Pharmaceutical and personal care products (PPCPs) in urban receiving waters[J]. Environmental Pollution. 2006, 144: 184-189
    [9] Crane M., Watts C., Boucard T. Chronic aquatic environmental risks from exposure to human pharmaceuticals[J]. Sci Total Environ. 2006, 367: 23- 41
    [10] Christensen F. M. Pharmaceuticals in the environment - A human risk [J]. Regulatory Toxicology and Pharmacology. 1998, 28(3): 212-221
    [11] Lishman L., Smyth S.A., Sarafin K., et al. Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontatio, Canada[J]. Science of the Total Environment. 2006, 367: 544-558
    [12] Yu J.T., Bouwer E.J., Coelhan M. Occurrence and biodegradability studies of seected pharmaceuticals and personal care products in sewage effluent[J]. Agricultural water management. 2006, 86: 72-80
    [13] Liu Z.-H., Kanjo Y., Mizutani S. Removal mechanisms for endocrine disruptingcompounds (EDCs) in wastewater treatment-physical means, biodegradation, and chemical advanced oxidation: a review[J]. Science of the Total environment. 2009, 407(2): 731-748
    [14] Kolpin D.W., Furlong E.T., Meeyer M.T. Pharmaceuticals, hormones and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance[J]. Environmental Science and Technology, 2002, 36: 1202-1211
    [15] Kuster M., López de Alda M.J., Hernando M.D., et al. Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain)[J]. Journal of Hydrology. 2008, 358: 112-123
    [16] Kasprzyk-Hordern B., Dinsdale R.M., Guwy A.J. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK[J]. Water Research. 2008, 42: 3498-3518
    [17] Osenbrück K., Gl?ser H.-R., Kn?ller K., et al. Sources and transport of selected organic micropollutants in urban groundwater underlying the city of Halle (Saale), Germany[J]. Water Research. 2007, 41: 3259-3270
    [18] Moldovan Z. Occurrences of pharmaceutical and personal products as micropollutants in rivers from Romania[J]. Chemosphere. 2006, 64: 1808-1817
    [19] Peng X.Z., Yu Y.Y., Tang C.M., et al. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China[J]. Science of the Total Environment. 2008, 397: 158-166
    [20] Carballa M., Fink G., Omil F., et al. Determination of the solid-water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge[J]. Water Research. 2008, 42: 287-295
    [21] L?ffler D., R?mbke J., Meller M., et al. Environment fate of pharmaceuticals in water/sediment systems[J]. Environment Science and Technology. 2005, 39: 5209-5218
    [22] Beausse J. Selected drugs in solid matrices: a review of environmental determination, occurrence and properties of principal substances[J]. Trends in Analytical Chemistry. 2004, 23: 10
    [23] Stein K., Ramil M., Fink G., et al. Analysis and sorption of psychoactive drugs onto sediment[J]. Environment Science and Technology. 2008, 42: 6415-6423
    [24] Sanderson H., Laird B., Pope L., et al. Assessment of the environment fate and effects of ivermectin in aquatic mesocosms[J]. Aquatic Toxicology. 2007, 85: 229-240
    [25] Kuch HM, Ballschmitter K. Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range[J]. Environmental Science and Technology. 2001, 35: 3201– 3206
    [26] Richardson B.J., Lam P.K.S. Martin M. Emerging chemicals of concern: Pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China[J]. Marine Pollution Bulletin. 2005, 50: 913-920
    [27] Ying, G.-G., Kookana, R. S.; Ru, Y.-J. Occurrence and fate of hormone steroids in the environment[J]. Environ. Int. 2002, 28: 545-551
    [28] Lai K. M., Johnson K. L., Scrimshaw M. D., Lester J. N. Binding of waterborne steroid estrogens to solid phases in river and estuarine systems[J]. Environ. Sci. Technol. 2000, 34: 3890-3894
    [29] Yu Z. Q., Huang W. L. Competitive sorption between 17α-ethinyl estradiol and naphthalene/phenanthrene by sediments[J]. Environ. Sci. Technol. 2005, 39: 4878-4885
    [30] Dayal M., Barnhart K. T. Noncontraceptive benefits and therapeutic uses of the oral contraceptive pill[J]. Semin. Reprod. Med. 2001, 19: 295-303
    [31] Lai K.M., Scrimshaw M.D., & Lester J.N. Prediction of the bioaccumulation factors and body burden of natural and synthetic estrogens in aquatic organisms in the river systems[J]. The Science of the Total Environment, 2002, 289: 159–168
    [32] Routledge E.J., Sheahan D., Desbrow C., et al. Identification of estrogenic chemicals in STW effluent 2. In vivo responses in trout and roach[J]. Environmental Science and Technology, 1998, 32: 1559–1565
    [33] Purdom C.E., Hardiman P.A., Byre V.J., et al. Estrogenic effects of effluents from sewage treatment works[J]. Chem Ecol 1994, 8:275– 85
    [34] Desbrow C., Routeldge E., Brighty G., et al. Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening[J]. Environmental Science and Technology, 1998, 32: 1549–1558
    [35] Cargouet M., Perdiz D., Mouatassim-Souali A., et al. Assessment of river contamination by estrogenic compounds in Paris area (France). Science of the Total Environment, 2004, 324: 55–66
    [36] Daston G.P., Gooch J.W., Breslin W.J., et al. Environmental estrogens and reproductive health: A discussion of the human and environmental data[J]. Reproductive Toxicology, 1997, 11: 465–481
    [37] Jobling S., Sheahan D., Osborne J., et al. Inhibition of testicular growth in rainbowtrout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals[J]. Environmental Toxicology and Chemistry, 1996, 15: 194–202
    [38] Metcalfe C.D., Metcalfe T.L., Kiparissis Y., et al. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes)[J]. Environmental Toxicology and Chemistry, 2001, 20: 297–308
    [39] Pawlowski S., van Aerle R., Tyler C.R., et al. Effects of 17a-ethinylestradiol in a fathead minnow (Pimephales promelas) gonadal recrudescence assay[J]. Ecotoxicology and Environmental Safety, 2004, 57: 330–345
    [40] Carlsson C., Johansson A.-K., Alvan G., et al. Are pharmaceuticals potent environmental pollutants? Part I: Environmental risk assessments of selected active pharmaceutical ingredients[J]. Science of the Total Environment, 2006, 364: 67–87
    [41] Holbrook R.D., Love N.G., Novak J.T. Sorption of 17β-estradiol and 17α-ethinylestradiol by colloidal organic carbon derived from biological wastewater treatment systems[J]. Environmental Science and Technology, 2004, 38: 3322-3329
    [42]常红、胡建英、邵兵等.固相萃取-LC-MS法检测水中痕量雌激素.环境化学,2003, 22(4): 400-403
    [43] Shen J. H., Gutendorf B., Vahl H. H., et al. Toxicological profile of pollutants in surface water from an area in Taihu Lake, Yangtze Delta[J]. Toxicology, 2001, 166: 71-78
    [44] Bushée E.L., Edwards D.R., Moore P.A. Quality of runoff from plots treated with municipal sludge and horse bedding[J]. Trans ASAE, 1998, 41: 1035–1041
    [45] Nichols D.J., Daniel T.C., Moore Jr P.A., et al. Runoff of estrogen hormone 17β-estradiol from poultry litter applied to pasture[J]. J Environ Qual, 1997, 26: 1002–1006
    [46] Shore L.S., Kapulnik Y., Gurevich M., et al. Induction of phytoestrogen production in Medicago sativa leaves by irrigation with sewage water[J]. Environ Exp Bot, 1995a, 35:363– 9
    [47] Nichols D.J., Daniel T.C., Edwards D.R., et al. Use of grass filter strips to reduce 17β-estradiol in runoff from fescue-applied poultry litter[J]. J Soil Water Conserv, 1998, 53: 74– 77
    [48] Shore L.S., Correll D.L., Chakraborty P.K. Relationship of fertilization with chick manure and concentrations of estrogens in small streams. In: Steele K, editor. Animal waste and the land–water interface. Boca Raton, FL: CRC Press; 1995b. p. 155– 62
    [49] Peterson E.W., Davis R.K., Orndorff H.A. 17β-Estradiol as an indicator of animalwaste contamination in mantled karst aquifers[J]. J Environ Qual, 2001, 29: 826–834
    [50] Labadie P., Cundy A. B., Stone K., et al. Evidence for the migration of steroidal estrogens through river bed sediments[J]. Environ. Sci. Technol. 2007, 41: 4299-4304
    [51] Ternes T.A., Stumpf M., Mueller J., et al. Behaviour and occurrence of estrogens in municipal sewage treatment plants—I. Investigations in Germany, Canada and Brazil[J]. Sci Total Environ 1999a, 225:81– 90
    [52] Ternes T.A., Kreckel P., Mueller J. Behaviour and occurrence of estrogens in municipal sewage treatment plants—II. Aerobic batch experiments with activated sludge[J]. Sci Total Environ 1999b, 225: 91– 9
    [53] Lopez de Alda M.J., Gil A., Paz E., Barcelo D. Analyst (Cambridge, UK) ,2002, 127: 1299
    [54] Williams R.J., Johnson A.C., Smith J.J.L., et al. Environ[J]. Sci. Technol, 2003, 37: 1744
    [55] Ternes T.A., Andersen H., Gilberg D., et al. Anal[J]. Chem, 2002,74: 3498
    [56] Lei B., Huang S., Zhou Y., et al. Levles of six estrogens in water and sediment from three rivers in Tianjin area, China[J]. Chemosphere, 2009, 76: 36-42
    [57] Zhang X., Li Q., Li G., et al. Levels of estrogenic compounds in Xiamen Bay sediment, China[J]. Marine Pollution Bulletin, 2009, 58: 1210-1216
    [58] Kuster M., de Alda M. J. L., BarcelóD. Analysis and distribution of estrogens and progestogens in sewage sludge, soils and sediments[J]. Trends in Analytical Chemistry, 2004, 23: 10-11
    [59] Jurgens M.D., Williams R.J., Johnson A.C. R&D Technical Report P161[R]. Environment Agency, Bristol, UK, 1999
    [60] Lai K.M., Scrimshaw M.D., Lester J.N. Biotransformation and bioconcentration of steroid estrogens by Chlorella vulgaris[J]. Applied and Environmental Microbiology, 2001, 68: 859-864
    [61] Ying G.G., Kookana R.S., Dillon P. Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material[J]. Water Res, 2003, 37: 3785-3791
    [62] Casey F. X. M., Larsen G. L., Hakk H., et al. Fate and transport of 17β-estradiol in soil-water system[J]. Environmental Science and Technology, 2003, 37: 2400-2409
    [63] Bowman J. C., Zhou J. L., Readman J. W. Sediment-water interactions of natural oestrogens under estuarine conditions[J]. Mar. Chem, 2002, 77: 263-276
    [64] Kim S.-C., Carlson K. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices[J]. Environ. Sci. Technol,2007, 41: 50-57
    [65] Tolls J. Sorption of veterinary pharmaceuticals in soils: a review[J]. Environ. Sci. Technol, 2001, 35: 3397-3406
    [66] Clouzot L., Marrot B., Doumenq P., et al. 17α-ethinylestradiol: an endocrine disrupter of great concern. Analytical methods and removal processes applied to water purification[J]. A review. Environmental Progress, 2008, 27(3): 383-396
    [67] Stumpe B., Marschner B. Factors controlling the biodegradation of 17β-estradiol, estrone and 17α-ethinylestradiol in different natural soils[J]. Chemosphere, 2009, 74: 556-562
    [68] Ying G.G., Kookana R.S. Degradation of five selected endocrine-disrupting chemicals in seawater and marine sediment[J]. Environ. Sci. Technol, 2003, 37: 1256-1260
    [69] Ying G. G., Toze S., Hanna J., et al. Decay of endocrine-disrupting chemicals in aerobic and anoxic groundwater[J]. Water Research, 2008, 42: 1133-1141
    [70] Jürgens M.D., Holthaus K.I.E., Johnson A.C., et al. The potential for estradiol and ethinylestradiol degradation in English rivers[J]. Environmental Toxicology Chemistry, 2001, 21: 480-488
    [71] Czajka C. P., Londry K. L. Anaerobic biotransformation of estrogens[J]. Science of the Total Environment, 2006, 367: 932-941
    [72] Weber S., Leuschner P., K?mpfer P., et al. Degradation of estradiol and ethinyl estradiol by activated sludge and by a defined mixed culture. Appl[J]. Microb. Cell Physiol, 2005, 67, 106–112
    [73] Jjemba P.K. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment[J]. Ecotoxicology and Environmental Safety, 2006, 63: 113-130
    [74] Khanal S. K., Xie B., Thompson M. L., et al. Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems[J]. Environmental Science and Technology, 2006, 40(21): 6537-6546
    [75] Greca M. D., Pinto G., Pistillo P., Pollio A., et al. Biotransformation of ethinylestradiol by microalgae[J]. Chemosphere, 2008, 70: 2047-2053
    [76] Cajthaml T., K?esinováZ., SvobodováK., et al. Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi[J]. Chemosphere, 2009, 75: 745-750
    [77] Braga O., Smythe G., Sch?fer A.I., et al. Fate of steroid estrogens in Australian inland and coastal wastewater treatment plants. Environ[J]. Sci. Technol, 2005, 39: 3351-3358
    [78] Liebig M., Egeler P., Oehlmann J., et al. Bioaccumulation of 14C-17α-ethinylestradiolby the aquatic oligochaete Lumbriculus variegates in spiked artificial sediment[J]. Chemosphere, 2004, 59: 271-280
    [79] Tyler C.R., Spary C., Gibson R., et al. Accounting for differences in estrogenic responses in rainbow trout (oncorhynchus mykiss: Salmonidae) and roach(Rutilu rutilus: Cyprinidae) exposed to effluents from wastewater treatment works[J]. Environmental Science and Technology, 2005, 39(8): 2599-2607
    [80] Pojana G., Gomiero A., Jonkers N., et al. Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon[J]. Environment International. 2007, 33: 929
    [81]张天胜等编著.生物表面活性剂及其应用[M].北京.化学工业出版社,2005
    [82] Bognolo G. Biosurfactants as emulsifying agents for hydrocarbons. Colloids and Surfaces A[J]. Physicochemical and Engineering Aspects. 1999, 152(2): 41-52
    [83] Desai J. D., Banat I. M. Microbial production of surfactants and their commercial potential. Microbiol. Mol[J]. Biol. Rev, 1997, 61: 47-64
    [84] Lang S. Biological amphiphiles (microbial biosurfactants)[J]. Curr. Opin. Colloid. In, 2002, 7: 12-20
    [85] Rocha C., Infante C. Enhanced oily sludge biodegradation by a tension-active agent isolated from Pseudomonas aeruginosa USB-CS1[J]. Appl. Microbiol. Biotechnol., 1997, 47: 615-619
    [86] Maier R.M., Soberón-Chávez G. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications[J]. Appl. Microbiol. Biot., 2000, 54: 625
    [87] Nitschke M., Costa S.V.A.O., Contiero J. Rhamnolipid surfactants: an update on the feneral aspects of these remarkable biomolecules[J]. Biotechnol Prog. 2005, 21: 1593-1600
    [88] Monteiro S. A., Sassaki G. L., de Souza L. M., et al. Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 641[J]. Chemistry and Physics of Lipids, 2007, 147:1-13
    [89] Sabatini D. A., Knox R. C., Harwell J. H. Surfactant-enhanced DNAPL remediation: surfactant selection, hydraulic efficiency, and economic factors[J]. Environmental Research Brief., 1996, EPA/600/S-96/002
    [90] Mulligan C.N. Environmental applications for biosurfactants[J]. Environmental Pollution, 2005, 133: 183
    [91] Zhang Y., Maier, W. J., Miller R. M. Effect of rhamnolipids on the dissolution, bioavailability, and biodegradation of phenanthrene[J]. Environ. Sci. Technol, 1997, 3:2211-2217
    [92] Shin K.-H., Kim K.-W., Seagren E. A. Combined effects of pH and biosurfactant addition on solubilization and biodegradation of phenanthrene[J]. Appl. Microbiol. Biotechnol, 2004, 65: 336-343
    [93] Cho Y. C., Ostrofsky, E. B., Rhee, G. Y. Effects of a rhamnolipid biosurfactant on the reductive dechlorination of polychlorinated biphenyls by St. Lawrence River (North America) microorganisms[J]. Environ. Toxicol. Chem, 2004, 23: 1425-1430
    [94] Fiebig R., Detlef, S., Chung J.-C., et al. Biodegradation of polychlorinated biphenyls (PCBs) in the presence of a bioemulsifier produced on sunflower oil[J]. Biodegradation, 1997, 8: 67-75
    [95] Mata-Sandoval J. C., Karns J., Torrents A. Effect of rhamnolipids produced by Pseudomonas aeruginosa UG2 on the solubilization of pesticides[J]. Environ. Sci. Technol, 2000, 34: 4923-4930
    [96] Al-Tahhan R. A., Sandrin T. R., Bodour A. A., et al. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates[J]. Appl. Environ. Microbiol, 2000, 66: 3262-3268
    [97] Zhang L., Somasundaran P., Singh S. K., et al. Synthesis and interfacial properties of sophorolipid derivatives[J]. Colloid. Surfac. A., 2004(5): 75-82
    [98] Haigh S. D. A review of the interaction of surfactants with organic contaminants in soil. Sci[J]. Total Environ., 1996, 185: 161-170
    [99]钟华.鼠李糖脂的菌体吸附及其对菌体表面的改性作用研究[D].湖南:湖南大学,2008
    [100]陈宝梁.表面活性剂在土壤有机污染物修复中的作用及机理[D].浙江:浙江大学,2004
    [101] Christian S. D., Scamehom J. F. Solubilizaiton in surfactant aggregates[M]. Marcel Dekker, New York, 1995
    [102] [阿根廷] Drew Myers著.表面、界面和胶体—原理及应用[M].吴大诚、朱谱新、王罗新、高绪珊等译.北京:化学工业出版社,2004. 8
    [103] Lee J. W., Liao P. M., Kuo C. C., et al. Influence of a nonionic surfactant (Triton X-100) on contaminant distribution between water and several soil solids. J. Colloid[J]. Interface. Sci., 2009, 229: 445-452
    [104] Sun B., Inskeep W. P., Boyd A. S. Sorption of nonionic organic compounds insoil-water systems containing a micelle-forming surfactants[J]. Environ. Sci. Technol., 1995, 29: 903-913
    [105] Poggi-Varaldo H.M., Rinderknecht-Seijas N. A differential availability enhancement factor for the evaluation of pollutant availability in soil treatments[J]. Acta Biotechnologica, 2003, 23 (2–3): 271–280
    [106] Mata-Sandoval J. C., Karns, J., Torrents A. Influence of rhamnolipids and Triton X-100 on the desorption of pesticides from soils[J]. Environ. Sci. Technol, 2002, 36: 4669-4675
    [107] Noordman W., Braussaeau N., Janssen D. Effects of rhamnolipid on the dissolution, bioavailability and biodegradation of phenanthrene[J]. Environmental Science and Technology , 1998, 31: 2211–2217
    [108] Noordman W. H., Burseau M. L., Janssen D.B. Adsorption of a multi-component rhamnolipid surfactant to soil[J]. Environmental Science and Technology, 2000, 34: 832–838
    [109] Mulligan C.N., Eftekhari F. Remediation with surfactant foam of PCP contaminated soil[J]. Engineering Geology, 2003, 70: 269–279
    [110]王世荣、李祥高、刘东志.表面活性剂化学[M].北京:化学工业出版社,2005
    [111]颜肖慈、罗明道.界面化学[M].北京:化学工业出版社,2004
    [112] Jordan R. N., Nichols E. P., Cunningham A. B. The role of (bio)surfactant sorption in promoting the bioavailability of nutrients localized at the solid-water interface[J]. Wat. Sci. Tech., 1999, 39: 91-98
    [113] Alexander M. Biodegradation and bioremediation[M]. 2nd. Aan Diego. California: Academic Press, 1999
    [114] Lang S., Wullbrandt D. Rhamnose lipids-biosynthesis, microbial production and application potential. Appl[J]. Microbiol. Biotechnol., 1999, 51: 22-32
    [115] Makkar R. S., Cameotra S. S. Biosurfactant production by microorganisms on unconventional carbon source[J]. Journal of surfactants and detergents, 1999, 2(2): 237-241
    [116] Déziel E., Lépine F., Dennie D., et al. Liquid chromatography/ mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene[J]. Biochimica et Biophysica Acta., 1999, 1440: 244
    [117] Straube W. L., Nestler C. C., Hansen L. D., et al. Remediation of polyaromatic hydrocarbons (PAHs) through landfarming with biostimulation and bioaugmentation[J].Acta Biotechnologica, 2003, 2-3: 179-196
    [118] Reuter K., Mofid M. R., Marahiel M. A., et al. Crystal structure of the surfactant synthetase-activating enzyme Sfp: a prototype of the 40-phosphopantetheinyl thansferase superfamily[J]. EMBO. J., 1999, 18: 6823-6831
    [119] Carrillo C., Teruel J.A., Aranda F.J. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin[J]. Biochin. Biophys. Acta., 2003, 1611: 91-97
    [120] Herman D. C., Zhang Y., Miller R. M. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions[J]. Appl. Environ. Microbiol., 1997, 63: 3622-3627
    [121] Angelova B., Schmauder H. P. Lipophilic compounds in biotechnology interactions with cells and technological problems[J]. J. Biotechnol., 1999, 67: 13-32
    [122] Paria S. Surfactant-enhanced remediation of organic contaminated soil and water[J]. Advances in Colloid and Interface Science, 2008, 138: 24-58
    [123] Singh A., Van Hamme J. D., Ward O. P. Surfactants in microbiology and biotechnology: Part 2. Application aspects[J]. Biotechnol. Adv., 2007, 25: 99
    [124] Mata-Sandoval J., Karns J., Torrents A. Influence of rhamnolipids and Triton X-100 on the biodegradation of three pesticides in aqueous phase and soil slurries[J]. J. Agric. Food Chem., 2001, 49: 3296
    [125] Vipulanandan C., Ren X. Enhanced solubility and biodegradation of naphthalene with biosurfactant[J]. Journal of Environmental Engineering, 2000, 126: 629-634
    [126] Haba E., Abalos A., Jauregui O., Espuny M.J., Manreas A. Use of liquid chromatography- mass spectroscopy for studying the composition and properties of rhamnolipids produced by different straining of Pseudomonas aeruginosa[J]. J. Surfact. Deterg., 2003, 6: 155-161
    [127] Benincase M., Abalos A, Oliveira I., Manreas A. Chemical structure, surface properties and biological actives of the biosurfactant produced by pseudomonas aeruginosa LBI from soapstock[J]. Antonie Leeuwenhoek, 2004, 85: 1-8
    [128] Peker S., Helvaci ?., ?zdemir G. Interface-subphase interactions of rhamnolipids in aqueous rhamnose solution[J]. Langmuir, 2003, 19: 5838-5845
    [129] Tolls J. Sorption of veterinary pharmaceuticals in soils: a review[J]. Environ. Sci. Technol., 2001, 35: 3397-3406
    [130] Wehrhan A., Kasteel R., Simunek J., Groeneweg J. Vereecken H. Transport of sulfadiazine in soil columns-experiments and modeling approaches[J]. Journal ofContaminant Hydroloogy, 2007, 89: 107-135
    [131] Fontaine D. D., Lehmann R. G., Miller J. R. Soil adsorption of neutral and anionic forms of a sulfonamide herbicide, flumetsulam[J]. J. Environ. Qual., 1991, 20: 759-762
    [132] Weber E. J., Spidle D. L., Thorn K. A. Covalent binding of aniline to humic substances. 1. Kinetic studies[J]. Environ. Sci. Technol, 1996, 30: 2755-2763
    [133] Hari A. C., Paruchuri R. A., Sabatini D. A., Kibber T. C. G. Effects of pH and cationic and nonionic surfactants on the adsorption of pharmaceuticals to a natural aquifer material. Environ. Sci. Technol, 2005, 39: 2592-2598
    [134] Polubesova T., Zadaka D., Groisman L., Nir S. Water remediation by micelle-clay system: case study for tetracycline and sulfonamide antibiotics[J]. Water Research, 2006, 40: 2369-2374
    [135] Ariel L.-P., Pemberton J.E., Becker B.A., Otto W.H., Larive C.K., Maier R.M. Determination of the acid dissociation constant of the biosurfactant monorhamnolipid in aqueous solution by potentiometric and spectroscopic methods[J]. Anal. Chem., 2006, 78: 7649
    [136] Noordman W. H., Ji W., Brusseau M. L., Janssen D. B. Effects of rhamnolipid biosurfactants on removal of phenanthrene from soil[J]. Environ. Sci. Technol., 1998, 32: 1806-1812
    [137] Mata-Sandoval J. C., Karns J., Torrents A. High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil[J]. Journal of Chromatography A., 1999, 864: 211
    [138] Abdel-Mawgoud A. M., Lépine F., Déziel E. Rhamnolipids: diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol., 2010, 86: 1323-1336
    [139] Dar A. A., Rather G. M., Ghosh S., Das A. R. Micellization and interfacial behavior of binary and ternary mixtures of model cationic and nonionic surfactants in aqueous NaCl medium[J]. Journal of Colloid and Interface Science, 2008, 322: 572
    [140] Abalos A., Pinazo A., Infante M. R., Casals M., García F., Manresa A. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes[J]. Langmuir, 2001, 17: 1367
    [141] Parra J. L., Guinea J., Manresa M. A., Robert M., MercadéM. E., Comelles F., Bosch M. P. Chemical characterization and physicochemical behavior of biosurfactants[J]. J Am Oil Chem Soc.,1989,66: 141
    [142] Syldatk C., Lang S., Wagner F., Wray V., Witte L.. Chemical and physicalcharacterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes[J]. Z Naturforsch, 1985, 40: 51
    [143] Helvaci ?. ?., Peker S., ?zdemir G. Effect of electrolytes on the surface behavior of rhamnolipids R1 and R2[J]. Colloids and Surfaces B: Biointerfaces, 2004, 35: 225
    [144] ?zdemir G., Peker S., Helvaci ?. ?. Effect of pH on the surface and interfacial behavior of rhamnolipids R1 and R 2. Colloids and Surfaces A: Physicochem[J]. Eng. Aspects., 2004, 234: 135
    [145] Ju L.-K., Pinzon N. M. Analysis of rhamnolipid biosurfactants by methylene blue complexation. Appl. Microbiol. Biotechnol., 2009,82: 975-981
    [146] Déziel E., Lépine F., Milot S., Villemur R. Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP[J]. Biochimica et Biophysica Acta, 2000, 1485: 145
    [147] Arino S., Marchal R., Vandecasteele J.-P. Identification an production of a rhamnolipidc bisurfactant by a Pseudomonas species[J]. Appl. Microbiol Biotechnol., 1996, 45: 162
    [148] Pornsunthorntawee O., Wongpanit P., Chavadej S., Abe M., Rujiravanit R. Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil[J]. Bioresource Technology, 2008, 99: 1589
    [149] K. Nakanshi, P. H. Solomon (王绪明译). Infrared absorption spectroscopy. 1977(1984), 99
    [150] Ohta A., Matsubara H., Ikeda N., Aratono M. Miscibility of binary surfactant mixtures in the adsorbed film and micelle: the effect of size of polar head group[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 183-185: 403
    [151] Javadian S., Gharibi H., Bromand Z., Sohrabi B. Electrolyte effect on mixed micelle and interfacial properties of binary mixtures of cationic and nonionic surfactants[J]. Journal of Colloid and Interface Science, 2008, 318: 449
    [152] Champion J. T., Gilkey J. C., Lamparski H., Retterer J., Miller R. M. Electron microscopy of Rhamnolipid (biosurfactant) Morphology: effects of pH, cadmium, and octadecane[J]. Journal of Colloid and Interface Science, 1995, 170: 569
    [153] Ishigami Y., Gama Y., Nagahora H., Yamaguchi M., Nakahara H., Kamata T. Chemistry Letters[J]. Chem. Lett., 1987, 5: 763
    [154] Ariel L.-P., Pemberton J.E., Becker B.A., Otto W.H., Larive C.K., Maier R.M. Determination of the acid dissociation constant of the biosurfactant monorhamnolipid inaqueous solution by potentiometric and spectroscopic methods[J]. Anal. Chem., 2006, 78: 7649
    [155] Wydro P. The influence of the size of hydrophilic group on the miscibility of zwitterionic and nonionic surfactants in mixed monolayers and micelles[J]. Journal of Colloid and Interface Science, 2007, 316: 107
    [156] Yoshimura T., Esumi K. Physicochemical Properties of Ring-Type Trimeric Surfactants from Cyanuric Chloride[J] . Langmuir, 2003,19: 3535
    [157] Gao N., Dong J., Zhang G., Zhou X., Eastoe J., Mutch K. J., Heenan R. K. Surface and micelle properties of novel multi-dentate surfactants[J]. Journal of Colloid and Interface Science, 2007, 314: 707
    [158] Worakitkanchanakul W., Imura T., Fukuoka T., Morita T., Sakai H., Abe M., Rujiravanit R., Chavadej S., Minamikawa H., Kitamoto D. Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B[J]. Colloids and Surfaces B: Biointerfaces, 2008, 65: 106
    [159] Lee Y. C., Liu H. S., Lin S. Y., Huang H. F., Wang Y. Y., Chou L. W. An observation of the coexistence of multimers and micelles in a nonionic surfactant C10E4 solution by dynamic light scattering[J]. Journal of the Chinese Institute of Chemical Engineers, 2008, 39: 75
    [160] Sánchez M., Aranda F. J., Espuny M. J., Marqués A., Teruel J. A., Manresaá., Ortiz A. Aggregation behaviour of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa in aqueous media[J]. Journal of Colloid and Interface Science, 2007,307: 246
    [161] Lee Y. C., Liu H. S., Lin S. Y., Huang H. F., Wang Y. Y., Chou L. W. An observation of the coexistence of multimers and micelles in a nonionic surfactant C10E4 solution by dynamic light scattering[J]. Journal of the Chinese Institute of Chemical Engineers, 2008, 39: 75
    [162] Regev O., Guillemet F. Various bilayer organizations in a single-tail nonionic surfactant: unilamellar vesicles, multilamellar vesicles, and flat-stacked lamellae[J]. Langmuir, 1999, 15: 4357– 64
    [163] Leng J., Egelhaaf S. U., Cates M. E. Kinetics of the micelle-to-vesicle transition: aqueous lecithin– bile salt mixtures[J]. Biophys J, 2003, 85: 1624–1646
    [164] Bharatiya B., Aswal V. K., Hassan P. A., Bahadur P. Influence of a hydrophobic diol on the micellar transitions of Pluronic P85 in aqueous solution[J]. Journal of Colloid and Interface Science, 2008, 320: 452
    [165] Pornsuntrorntawee O., Chavadej S., Rujiravanit R. Solution properties and vesicleformation of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa SP4[J]. Colloid. Surface. B., 2009, 72: 6-15
    [166] Gradzielski, M. Investigations of the dynamics of morphological transitions in amphiphilic systems[J]. Current Opinion in Colloid & Interface Science 2004, 9: 256-263
    [167] Rharbi, Y.; Winnik, M. A. Kinetics of fusion and fragmentation nonionic micelles: Trition X-100[J]. Langmuir 1999, 15: 4697-4700
    [168] Ilgenfritz, G.; Schneider, R.; Grell, E.; Lewitzki, E.; Ruf, H. Thermodynamic and kinetic study of the sphere-to-rod transition in nonionic micelles: aggregation and stress relaxation in C14E8 and C16E8/H2O systems[J]. Langmuir 2004, 20: 1620-1630
    [169] Prak D. J. L., Abriola L. M., Weber W. J., Bocskay K. A. Solubilization rates of n-alkanes in micellar solutions of nonionic surfactants[J]. Environ. Sci. Technol. 2000, 34: 476-482
    [170] Majhi P. R., Blume A. Temperature-induced micelle-vesicle transitions in DMPC-SDS and DMPC-DTAB mixtures studied by calorimetry and dynamic light scattering[J]. J. Phys. Chem. B., 2002, 106: 10753-10763
    [171] Kanga S. A., Bonner J. S., Page C. A., Mills M. A., Autenrieth R. L. Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactants[J]. Environ. Sci. Technol., 1997, 31: 556-561
    [172] Ishii S., Ishikawa S., Mizuno N., Matsuoka K., Honda C., Endo K. Indomethacin solubilization induced shape transition in CnE7 (n=14,16) nonionic micelles[J]. J. Colloid Interf. Sci., 2008, 317: 115-120
    [173] De La Maza A., Coderch L., Lopez O., Parra J. L. Vesicle to micelle structural transitions involved in the interaction of dodecylbetaine with liposomes: transmission electron microscopy and light scattering studies[J]. Micron., 1998, 29: 175-182
    [174] Bhat P. A., Rather G. M., Dar A. A. Effect of surfactant mixing on partitioning of model hydrophobic drug, naproxen, between aqueous and micellar phases[J]. J. Phys. Chem. B., 2009, 113: 997-1006
    [175] Choucair A., Eisenberg A. Interfacial solubilization of model amphiphilic molecules in block copolymer micelles[J]. J. Am. Chem. Soc., 2003, 125: 11993-12000
    [176] Cang H., Brace D. D., Fayer M. D. Dynamic partitioning of an aromatic probe between the headgroup and core regions of cationic micelles[J]. J. Phys. Chem. B., 2001, 105: 10007-10015
    [177] Kim B.-J., Im S.-S., Oh S.-G. Investigation on the solubilization locus of aniline-HClsalt in SDS micelles with 1H NMR spectroscopy[J]. Langmuir ,2001, 17: 565-566
    [178] Goldenberg M. S., Bruno L. A., Rennwantz E. L. Determination of solubilization sites and efficiency of water-insoluble agents in ethylene oxide-containing nonionic micelles[J]. J. Colloid Interf. Sci., 1993, 158: 351-363
    [179] Ishigami Y., Gama Y., Nagahora H., Yamaguchi M., Nakahara H., Kamata T. The pH-sensitive conversion of molecular aggregates of rhamnolipid biosurfactant[J]. Chem. Lett., 1987, 5: 763-766
    [180] Ariel L.-P., Pemberton J. E., Becker B. A., Otto W. H., Larive C. K., Maier R. M. Determination of the acid dissociation constant of the biosurfactant monorhamnolipid in aqueous solution by potentiometric and spectroscopic methods[J]. Anal. Chem. 2006, 78: 7649-7658
    [181] Thangamani S., Shreve G. S. Effect of anionic biosurfactant on hexadecane partitioning in multiphase systems[J]. Environ. Sci. Technol., 1994, 28: 1993-2000
    [182] Nagarajan R. Solubilization of hydrocarbons and resulting aggregate shape transitions in aqueous solutions of Pluronic? (PEO-PPO-PEO) block copolymers[J]. Colloid. Surface. B., 1999, 16: 55-72
    [183] Mata J. P., Aswal V. K., Hassan P. A., Bahadur P. A phenol-induced structural transition in aqueous cetyltrimethylammonium bromide solution[J]. J. Colloid Interf. Sci., 2006, 299: 910-915
    [184] Grimberg S. J., Nagel J., Aitken M. D. Kinetics of phenanthrene dissolution into water in the presence of nonionic surfactants. Environ[J]. Sci. Technol., 1995, 29: 1480-1487
    [185] Chen G., Qiao M., Zhang H., Zhu H. Sorption and transport of naphthalene and phenanthrene in silica in the presence of rhamnolipid biosurfactant. Sep[J]. Sci. Technol., 2005, 40: 2411-2425
    [186] Zhu L., Chen B. Iteractions of organic contaminants with mineral-adsorbed surfactants[J]. Environ. Sci. Technol., 2003, 37: 4001-4006
    [187] Northcott G. L., Jones K. C. Partitioning, extractability, and formation of nonextractable PAH resudues in soil. 1. compound differences in aging and sequestration[J]. Environ. Sci. Technol., 2001, 35: 1103-1110
    [188] Hatzinger P., Alexander M. Effect of aging of chemicals in soil on their biodegradability and extractability[J]. Environ. Sci. Technol., 1995, 29: 537-545
    [189] Brown D. G., Al Nuaimi K. S. Nonionic surfactant sorption onto the bacterial cell surface: a multi-interaction isotherm[J]. Langmuir, 2005, 21: 11368-11372
    [190] Trirathi S., Brown D. G. Effects of linear alkylbenzene sulfonate on the sorption ofBrij 30 and Brij 35 onto aquifer sand[J]. Environ. Sci. Technol., 2008, 42: 1492-1498
    [191] Ochoa-Loza F. J., Noordman W. H., Jannsen D. B., Brusseau M. L., Maier R. M. Effect of clays, metal oxides, and organic matter on rhamnolipid biosurfactant sorption by soil[J]. Chemosphere. 2007, 66: 1634-1642
    [192] Somasundaran P., Krishnakumar S. Adsorption of surfactants and polymers at the solid-liquid interface[J]. Colloid. Surface. A., 1997, 123-124: 491-513
    [193] Higgins C. P., Luthy R. G. Sorption of perfluorinated surfactants on sediments[J]. Environ. Sci. Technol., 2006, 23: 7251-7256
    [194] Rico-Ricoá., Temara A., Behrends T., Hermens J. L. M. Effect of sediment properties on the sorption of C12-2-LAS in marine and estuarine sediments[J]. Environ. Pollut. 2009, 157: 377-383
    [195] Yu Z.Q., Xiao B.H., Huang W.L., Peng P. Sorption of steroid estrogens to soils and sediments[J]. Environ. Toxicol. Chem., 2004, 23: 531-539
    [196] Wang P., Keller A. A. Particle-size dependent sorption and desorption of pesticides within a water-soil-nonionic surfactant system[J]. Environ. Sci. Technol., 2008, 42: 3381-3387
    [197] Zhou W., Zhu L. Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant-PAHs system[J]. Environ. Pollut, 2007, 147: 66-73
    [198] Park J. H., Feng Y. C., Cho S. Y., Voice T. C., Boyd, S. A. Sorbed atrazine shifts into non-desorbable sites of soil organic matter during aging[J]. Water Res., 2004, 38: 3881-3892
    [199] Rodriguez-Cruz M. S., Sanchez-Martin M. J., Sanchez-Camazano M. Surfactant-enhanced desorption of atrazine and linuron residues as affected by aging of herbicides in soil. Arch[J]. Environ. Contam. Toxicol. 2006, 50: 128-137
    [200] Edwards D. A., Adeel Z., Luthy R. G. Distribution of nonionic surfactant and phenanthrene in a sediment aqueous system[J]. Environ. Sci. Technol., 1994, 28: 1550-1560
    [201] Brown D. G. Relationship between micellar and hemi-micellar processes and the bioavailability of surfactant-solubilized hydrophobic organic compounds[J]. Environ. Sci. Technol., 2007, 41: 1194-1199
    [202] Ahimou F., Jacques P. Deleu M.Surfactin and iturin A effects on Bacillussubtilis surface hydrophobicity[J]. Enzyme.Microb.Tech., 2000, 27: 749-754
    [203] Ron E. Z., Rosenberg E.Biosurfactants and oil bioremediation.Curr.Opin. Biotech.,2002, 13:249-252
    [204] Ueno Y., Hirashima N., Inoh Y., Furuno T., et al. Characterization of biosurfactant-containing liposomes and their efficiency for gene transfection[J]. Biol. Pharm. Bull., 2007, 30:169-172
    [205] Aranda F. J., Teruel J. A., Espuny M. J., et al. Domain formation by a Rhodococcus sp. biosurfactant trehalose lipid incorporated into phosphatidylcholine membranes[J]. BBA-Biomembranes, 2007, 1768: 2596-2604
    [206] Rinklebe J., Langer U. Relationship between soil microbial biomass determined by SIR and PLFA analysis in floodplain soil[J]. J. Soils Sediments, 2010, 10: 4-8
    [207] Kara ?., ?ensoy H., BolatЛ. Slope length effects on microbial biomass and activity of eroded sediments[J]. J. Soils Sediments, 2010, 10: 434-439
    [208] Jurgens M.D., Holthaus K.I.E., Johnson A.C., Smith J.J.L., Hetheridge M., Williams R.J. The potential for estradiol and ethinylestradiol degradation in English rivers[J]. Environ. Toxicol. Chem., 2002, 21: 480–488
    [209] Kunkel U., Radke M. Biodegradation of acidic pharmaceuticals in bed sediments: insight from a laboratory experiment[J]. Environment Science and Technology., 2008, 42: 7273-7279
    [210]梁生康、苏荣国、王修林、周爱华、汪卫东.生物表面活性剂对铜绿假单胞菌摄取烷烃的强化机制.应用与环境生物学报.2006, 12(4): 566-569
    [211] Shreve, G.S., Inguva, S., Gunnan, S. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. Molecular and Marine Biology and Biotechnology , 1995.4: 331–337
    [212] Zhang Y., Miller R.M., Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant)[J]. Applied and Environmental Microbiology,1992, 58: 3276-3282
    [213] Layton A., Gregory B., Seward J., Schultz T., Sayler G. Environ. Sci. Technol. 2000, 34: 3925
    [214] Ren H., Ji S., ud din Ahmad N., Dao W., Cui C. Degradation characteristics and metabolic pathway of 17α-ethylestradiol by sphingobacterium sp. JCR5. Chemosphere, 2007, 66: 340-346
    [215]任海燕、纪树兰、崔成武、刘志鹏、王道、陈莎.甾体雌激素的污染状况与去除途径[J].中国给水排水.2004,20(12):24-26
    [216] Mohan P.K., Nakhla G., Yanful E. K. Biokinetics of biodegradation of surfactantsunder aerobic, anoxic and anaerobic conditions[J]. Water Research, 2006, 40: 533-540
    [217] Hamer U., Marschner B., Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions[J]. Soil Biol. Biochem., 2005, 37: 445–454
    [218] Puglisi, E., Cappa, F., Fragoulis, G., Trevisan, M., Attilio, A.M.,. Bioavailability and degradation of phenanthrene in compost amended soils[J]. Chemosphere, 2007, 67: 548–556
    [219] Kamath R., Schnoor J. L., Alvarez P. J. J. A model for the effect of rhizodeposition on the fate of phenanthrene in aged contaminated soil[J]. Environ. Sci. Technol., 2005, 39: 9669–9675
    [220] Alexander M., Introduction to Soil Microbiology[M]. New York: John Wiley & Sons Inc. 1961
    [221] Tate, R. Soil Microbiology[M]. John Wiley & Sons, New York, 2000
    [222] Cirja M., Zuehlke S., Ivashechkin P., Hollender J., Schaeffer A. P.F.X. Corvini, Water Res., 2007, 41: 4403
    [223] Vader J.S., Van Ginkel C. G., Sperling F. M. G. M., De Jong J., De Boer W., De Graaf, J. S. M. Van der Most, P. G. W. Stokman, Chemosphere , 2000, 41 : 1239
    [224] Shi J., S. Fujisawa, S. Nakai, M. Hosomi, Water Res., 2004, 38 : 2323
    [225] Ren Y.-X., Nakano K., Nomura M., Chiba N., Nishimura O. Water Res., 2007, 41: 3089
    [226] Della Greca M., Pinto G., Pistillo P., Pollo A., Previtera L., Temussi F. Chemosphere , 2008, 70: 2047
    [227] Zhang X., Chen P., Wu F., Deng N., Liu J., Fang T., Hazard J. Mater., 2006, 133: 291
    [228] Mazellier P., Me′ite′L., Laat J. D. Chemosphere (2008) On-line article (DOI: 10.1016/j.chemosphere.2008.07.046)
    [229] Segmuller B. E., Armstrong B.L., Dunphy R., Oyler A.R., Pharm J. Biomed. Anal. 2000, 23: 927
    [230] Skotnicka-Pitak J., Garcia E. M., Pitak M., Age D.S. Identification of the transformation products of 17α-ethinylestradiol and 17β-estradiol by mass spectrometry and other instrumental techniques. Trends in Analytical Chemistry, 2008, 27(11):1036-1052
    [231] Skotnicka-Pitak J., Khunjar W. O., Love N. G., Age D.S. Characterization of metabolites formed during the biotransformation of 17α-ethinylestradiol by Nitrosomonas europaea in batch and continuous flow bioreactors, Environ. Sci. Technol. 2008, 27(11):1036-1052
    [232] Hooper A. B., Vannelli T., Bergmann D. J., Arciero D. M. Enzymology of the oxidation of ammonia to nitrite by bacteria[J]. Antonie van Leeuwenhoek, 1997, 71: 59–67
    [233] Chain P., Lamerdin J., Larimer F., Regala W., Lao V., Land M., Hauser L., Hooper A. B., Klotz M. G., Norton J. M., Sayavedra-Soto L. A., Arciero D. M., Hommes N. G., Whittaker M. R., Arp, D. J. Complete genome sequence of the ammoniaoxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea[J]. J. Bacteriol., 2003, 185: 2759–2773
    [234] Ensign, S. A., Allen J. R. Aliphatic epoxide carboxylation. Annu[J]. Rev. Biochem., 2003, 72: 55–76
    [235] Hyman M. R., Wood P. M. Suicidal inactivation and labeling of ammonia mono-oxygenase by acetylene[J]. Biochem. J., 1985, 227: 729–735
    [236] Hyman M. R., Arp D. J. 14C2H2 and l4C02 Labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase[J]. Biol. Chem., 1992, 267:1534–1545
    [237] Chain P., Lamerdin J., Larimer F., Regala W., Lao V., Land, M., Hauser L., Hooper A. B., Klotz M. G., Norton J. M., Sayavedra-Soto L. A., Arciero D. M., Hommes N. G., Whittaker M. R., Arp D. J. Complete genome sequence of the ammoniaoxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea[J]. J. Bacteriol., 2003, 183: 2759–2773
    [238] Shi J., Fujisawa S., Nakai S., Hosomi M. Water Res. 2004, 38: 2323
    [239] UenoY., Hirashima N., Inoh Y., Furuno T., et al. Characterization of biosurfactant-containing liposomes and their efficiency for gene transfection. Biol[J]. Pharm.Bull., 2007, 30: 169-172
    [240] Aranda F. J., Teruel J. A., Espuny M. J., et al. Domain formation by a Rhodococcus sp.biosurfactant trehalose lipid incorporated into phosphatidylcholine membranes. BBA-Biomembranes, 2007, 1768: 2596-2604
    [241] Lang S., Philp J. C. Surface-active lipids in rhodococci.Anton.Leeuw. Int.J.G.,1998, 74:59-70
    [242] Carrillo C., Teruel J. A., Aranda F. J., et al. Molecular mechanism of membranepermeabilization by the peptide antibiotic surfactin.Biochim[J]. Biophys.Acta., 2003, 1611:91-97
    [243] Sullivan E., Molecular R. genetics of biosurfactant production.Curr[J]. Opin. Biotech., 1998, 9: 263-269
    [244] Guha S., Jaffe P.R. Biodegradation kinetics of phenanthrene partitioned into the micellar phase of nonionic surfactants[J]. Environ. Sci. Technol., 1996, 30(2): 605-611
    [245] Guha S., Jaffe P.R. Bioavailability of hydrophobic compounds portioned into the micellar phase of nonionic surfactants[J]. Environ. Sci. Technol., 1996, 30(4): 1382-1391
    [246] Tayebe B. Lotfabad1, Habib Abassi, Reza Ahmadkhaniha. Characterization of a Rhamnolipid-type Biosurfactant Produced by Pseudomonas aeruginosa[J]. Bioresource Technology. 2010
    [247] Lee L. S., Strock T. J., Sarnah A. K., C. Rao P. S. Sorption and dissipation of testosterone, estrogens, and their primary transformation products in soils and sediment[J]. Environ. Sci. Technol., 2003, 37: 4098-4105
    [248] Das B. S., Lee L. S., Rao P. S. C., Hultgren R. P. Sorption and degradation of steroid hormones in soils during transport: column studies and model evaluation[J]. Environ. Sci. Technol., 2004, 38: 1460-1470
    [249] Mulligan C. N., Yong R. N., Gibbs B. F. Surfactant-enhanced remediation of contaminated soil: a review[J]. Engineering Geology, 2001, 60: 371-380
    [250] Harwell J. H., Sabatini, D. A., Knox R. C. Surfactants for ground water remediation[J]. Colloids and Surface A: Physicochemical and Engineering Aspects, 1999, 151: 25-268
    [251] Sheng G., Xu S., Boyd S. A. Mechanism(s)-controlling sorption of neutral organic contaminants by surfactant-derived and natural organic matter[J]. Environ. Sci. Technol., 1996, 30: 1553-1557
    [252] Feng Y., Park J.-H., Voice T. C., Boyd S. A. Bioavailability of soil-sorbed biphenyl to bacteria[J]. Environ. Sci. Technol., 2000, 34(10): 1977-1984
    [253] Guerin W. F., Boyd S. A. Bioavailability of naphthalene associated with natural and synthetic sorbents[J]. Water Res., 1997, 32: 1504-1512
    [254] Kunkel U., Radke M. Biodegradation of acidic pharmaceuticals in bed sediments: insight from a laboratory experiment[J]. Environment Science and Technology., 2008, 42: 7273-7279
    [255] Gamerdinger A. P., Lemley A. T., Wagene R. J. Nonequilibrium sorption and degradation of three 2-chloro-s-triazine herbicides in soil-water system[J]. Environ. Qual., 1991, 20(4): 818-822
    [256] Casey F. X. M., Hakk H., ?im?nek J., Larsen G. L. Fate and transport of testosterone in agricultural soils[J]. Sci. Technol., 2004, 38: 790-798
    [257] Yeom I. T., Ghosh M. M., Cox C. D. Environ. Sci. Technol. 1996, 30: 1589-1595
    [258] Sahoo D., Smith J. A. Environ. Sci. Technol. 1997, 31, 1910-1915
    [259] Deitsch J. J., Smith J. A. Environ. Sci. Technol. 1995, 29, 1069-1080
    [260] Smith J. A., Galan A. Sorption of nonionic organic contaminants to single and dual-organic cation betonites from water[J]. Environ. Sci. Technol., 1995, 29, 685-692
    [261] Xu S., Sheng G., Boyd S. A. Use of organoclays in pollution abatement[J]. Advances in Agronomy, 1997, 59: 25-62
    [262] Colucci M. S., Bork H., Topp E. J. Environ. Qual. 2001, 30, 2070-2076
    [263] Bolton J. L., Pisha E., Zhang F., Shengxiang Q. Chem. Res. Toxicol. 1998, 11, 1113-1127
    [264] Kadowaki T., Wheelock C. E., Adachi T., Kudo T., Okamoto S., Tanaka N., Tonomura K., Tsujimoto G., Mamitsuka H., Goto S., Kanehisa M. Identification of endocrine disruptor diodegradation by integration of structure-activity relationship with pathway analysis[J]. Environ. Sci. Technol., 2008, 41: 7997-8003
    [265] Sabatini D. A., Knox R. C., Harwell J. H. Surfactant-enhanced DNAPL remediation: surfactant selection, hydraulic efficiency, and economic factors[J]. Environmental Research Brief., 1996, EPA/600/S-96/002
    [266] Dean, S.M., Jin, Y., Cha, D.K., Wilson, S.V., Radosevich, M. Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria. Journal of Environmental Quality, 2001, 30: 1126–113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700