用户名: 密码: 验证码:
安徽铜山矽卡岩铜矿床特征与成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安徽铜山矽卡岩铜矿床产于长江中下游成矿带中的安庆–贵池矿集区。区内赋矿地层为下二叠统栖霞组与中石炭统黄龙组,褶皱与断裂是重要的控矿构造。中生代岩浆活动强烈,形成了石英闪长玢岩、石英二长斑岩和花岗闪长斑岩等侵入岩。在花岗闪长斑岩与赋矿地层的接触带,产有一定规模的含铜矽卡岩。本文对该区矽卡岩矿床进行了详细研究,重点分析了矽卡岩演化规律和矿床成因,建立了矽卡岩空间成矿模式,取得了以下主要成果和认识。
     1.铜山岩体成岩年龄为145.1±1.2 Ma,与成矿年龄(147.5±2.3Ma)基本一致。该岩体是由壳幔同熔岩浆上升侵位形成的,岩浆结晶的温度为750 ~ 755℃,压力为1.16 ~ 1.64 kb。岩体形成于板块碰撞后隆起到造山晚期的构造背景。
     2.铜山铜矿矽卡岩具有明显的时空分带。水平方向上,近岩体的矽卡岩中石榴石含量较高,远岩体的矽卡岩中透辉石含量较高;靠近大理岩带发育钙铁辉石矽卡岩,远离大理岩带的灰岩硅化较强。垂向上,从浅部到深部依次产有角岩、钙质矽卡岩和镁质矽卡岩。铜多富集于含石英脉的岩体、距岩体较远的矽卡岩、角岩及大理岩中。在时间上,矽卡岩经历了进化交代阶段、磁铁矿阶段、石英-硫化物阶段和晚期退化蚀变阶段。其中,大规模的黄铜矿化主要发生于石英-硫化物阶段。
     3.成矿物质主要来源于岩浆,偶有地层硫混入;在进化交代阶段,成矿流体主要来源于岩浆水,碳源主要为海相沉积碳酸盐岩;在退化蚀变阶段,大气降水在成矿流体中的比例逐渐增大,也为流体系统提供了重要的碳源。
     4.流体包裹体有Ⅰ型含子晶多相包裹体、Ⅱ型气液包裹体和Ⅲ型富CO2包裹体三类。进化交代阶段的成矿流体具有高温、高盐度特征;退化蚀变阶段由于大气降水参与,流体温度与盐度均依次降低。
     5.铜山铜矿矽卡岩属于接触交代成因,垂向上矽卡岩类型主要受地层岩性控制,矽卡岩分带模式受控于地质体不同空间部位的成矿流体性质、围岩特征、氧化还原态及温度等条件。
Tongshan skarn copper deposit is located in the Anqing-Guichi ore-clustered district of the Lower Yangtze River metallogenic belt. Ore host strata include the Qixia Formation of the Lower Permian and the Huanglong Formation of the Middle Carboniferous. Folds and faults are important ore control structures. Intrusions formed during the intense magmatism of the Mesozoic Era consist of quartz diorite porphyry, quartz monzonite porphyry and granodiorite porphyry. Copper-bearing skarns on a certain scale occur in the contact zone between the granodiorite porphyry and ore host strata. A detailed study has been carried out on the skarn deposit in this area, with a focus on an analysis of skarn evolution and ore genesis so as to set up a mode of skarn mineralization. The following are major achievements obtained in this dissertation.
     1.The Tongshan intrusion is dated at 145.1±1.2 Ma, close to the metallogenic age (147.5±2.3Ma). Emplacement of the crust-mantle syntactic magma is responsible for the formation of this intrusion. The crystallization conditions of minerals are estimated to be temperature of 750 to 755℃and pressure of 1.16 to 1.64 kb. The tectonic setting for the formation of the pluton is defined as post collision uplift to late orogeny.
     2. Skarn in the Tongshan copper deposit indicates an evident temporal and spatial Zoning. Horizontally, garnet is rich in the skarn near the intrusion, but diopside is rich in the skarn far from the intrusion. Hedenbergite skarn occurs near the marble zone, but limestone with stronger silicification exists far away from the marble zone. Vertically, hornfel, calcareous skarn and magnesian skarn occur in order from shallow to deep. Enrichment of Cu exists in the porphyries with quartz veins, skarns far from intrusion, hornfel and marble. The evolution process of skarns includes prograde metasomatic, magnetite, quartz-sulfide, and late retrograde stages. Copper mineralization mainly happened in quartz-sulfide stage.
     3. Ore-forming material may be mainly from magma, but sulfur occasionally from strata. During the prograde metasomatic stage, ore-forming fluids may be mainly from magmatic water, but carbon generally from marine sedimentary carbonate. In contrast, meteoric water may be gradually increased in the ore-forming fluids and provide a larger part of carbon during the retrograde stage.
     4. Inclusions includeⅠ-type of polyphase inclusions with daughter crystals,Ⅱ-type of fluid inclusions andⅢ-type of CO2-rich inclusions. From the prograde metasomatic stage to the retrograde stage, addition of meteoric water is responsible for the decrease of temperature and sality of ore-forming fluids.
     5. The skarn in the tongshan copper deposit is contact metasomatism skarn. Vertical occurrence of skarns and metamorphic rocks may be controlled by the lithologies of strata. The zoning mode of skarns may be controlled by the property of fluids and wall-rocks, redox state and temperature condition in the different locations of geological bodies.
引文
Albuquerque A C. Geochemistry of biotites from granitic rocks, northern Portugal. Geochim. Cosmoehim. Acta., 1973, 37: 1799 ~ 1802
    Bevan P A. The Rosita mine-a brief history and geological description. Canadian Inst. Mining Metallurgy Bull., 1973, 66 (736): 80 ~ 84
    Bodnar R J. Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta, 1993, 57: 683 ~ 684
    Boynton W V. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P. ed. Rare Earth Element Chemistry. Amsterdam: Elsevier, 1984, 63 ~ 114
    Brady J B. Chemical components and diffusion. American Journal of Science, 1975, 275: 1073 ~ 1088
    Buddington A F, Lindsley D H. Iron-titanium oxide minerals and synthetic equivalents. Journal of Petrology, 1964, 5: 310 ~ 357
    Burt D M. Some phase equilibria in the system Ca-Fe-Si-C-O. Carnegje Inst Washington Yesr Book, 1971, 70: 178 ~ 184
    Calagari A A. Fluid inclusion studies in quartz veinlets in the porphyry copper deposit at Sungun, East-Azarbaidjan, Iran. Journal of Asian Earth Sciences, 2004, 23: 179 ~ 189
    Calagari A A, Hosseinzadeh G. The mineralogy of copper-bearing skarn to the east of the Sungun-Chay river, East-Azarbaidjan, Iran. Journal of Asian Earth Sciences, 2006, 28: 423 ~ 438
    Candela P A, Piccoli P L. Model ore-metal partitioning from melt into vapor and vapor/brine mixtures. In: Thompson J F H, eds. Magmas, fluids and ore deposits. Mineralogical Association of Canada Short Course Handbook, 1995, 23: 101 ~ 127
    Ciobanu C L, Cook N J. Skarn textures and a case study: the Ocna de Fier-Dognecea orefield, Banat, Romania. Ore Geology Reviews, 2003, 24: 315 ~ 370
    Dai J Z, Mao J W, Zhao C S, et al. New U– Pb and Re– Os age data and the geodynamic setting of the Xiaojiayingzi Mo (Fe) deposit, western Liaoning province, Northeastern China. Ore Geology Reviews, 2008, 35: 235 ~ 244
    Deer W A, Howie R A, Zussman J. An introduction to the rock-forming minerals. UK: Longman Group UK Ltd, 1996
    Ding X, Jiang S Y, Zhao K D, et al. In situ U– Pb SIMS dating and trace element (EPMA) composition of zircon from a granodiorite porphyry in the Wushan copper deposit, China. Contribution to Mineralogy and Petrology, 2006, 86: 29 ~ 44
    Einaudi M T, Meinert L D, Newberry R J. Skarn deposits. Economic geology 75th anniversary volume, 1981, 317 ~ 391
    Einaudi M T. Descriptions of skarn associated with porphyry copper plutons, southwestern North America. In: Titley S R, eds. Advances in geology of the porphyry copper deposits, southwestern North America. Tucson: University of Arizona Press, 1982, 139 ~ 184
    Einsudi M T, Burt D M. Introduction, terrninolofy, classification and composition of skarn deposits. Econ Geol, 1982, 77 (4): 745 ~ 754
    Etsuo Uchida, Sho Endo, Mitsutoshi Makino. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 2007, 57 (1): 47 ~ 56
    Foster M D. Interpretation of composition of trioctahedral micas. U.S Geol. Surv. Prof. Paper, 1960, 354B: 1 ~ 49
    Grammatikopoulos T A, Clark A H. A comparative study of wollastonite skarn genesis in the Central Metasedimentary Belt, southeastern Ontario, Canada. Ore Geology Reviews, 2006, 29: 146 ~ 161
    Guilbert J M, Lowell J D. Variations in zoning patterns in porphyry copper deposits. Canadian Institute of Mining and Metallurgy Bulletin, 1974, 67: 99 ~ 109
    Hanchar J M, Miller C F. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories. Chem. Geol., 1993, 110: 1 ~ 13
    Hedequinst J W, Arribas Jr A, Renolds T J. Evolution of an intrusion– centered hydrothermal system. Far southeast– Lepanto porphyry and epithermal Cu– Au deposits, Philippines. Economic Geology, 1998, 93: 373 ~ 404
    Hellingwerf R H. Paragenetic zoning and genesis of Cu-Zn-Fe-Pb-As sulfide skarn ores in a ProterozoicRift Basin, Gruv?sen, Western Bergslagen, Sweden. Economic Geology, 1984, 79: 696 ~ 715
    Hietanen A. Metasomatic metamorphism in western Clearwater County, Idaho. U.S. Geological Survey Professional Paper, 1962, 344-A: A1 ~ A166
    Hutchinson R W. Massive sulphide deposits and their possible significance to other ores in Southeast Asia. Geol. Soe. Malaysia. Bulletin, 1986, 19: l ~ 22
    James A H. Zoned alteration in limestone at porphyry copper deposits, Ely, Nevada. Economic Geology, 1976, 71: 488 ~ 512
    Karimzadeh Somarin A, Moayyed M. Granite - and gabbrodiorite - associated skarn deposits of NW Iran. Ore Geology Review, 2002, 20: 127 ~ 138
    Kesler S E. Contact-localized ore formation at the Memémine, Haiti. Econ. Geol., 1968, 63: 541 ~ 552
    Li X H. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences, 2000, 18: 293 ~ 305
    Liu L M, Zhao Y L, Zhao X L. Computational modeling on coupled MTH processes for forming skarn Cu deposits and its significance for deep ore exploration: Examples from Tongling– Anqing district, China. Journal of Geochemical Exploration, 2009, 101: 63
    Love D A, Clark A H, Glover J K. The lithologic, stratigraphic, and structural setting of the giant Antamina copper-zinc skarn deposit, Ancash, Peru. Economic Geology, 2004, 99: 887 ~ 916
    Ludwig K R. Squid 1.02: a user’s manual, Berkeley Geochronology Centre. Special Publication, 2001, 2: 1 ~ 19
    Ludwig K R. user’s manual for Isoplot 3.00, a geochronological toolkit for Microsoft excel. Berkeley, California: Berkeley Geochronology Center. Special Publication, 2003, 4: 70
    Meinert L D. Skarns and skarn deposits. Geoscience Canada, 1992, 19: 145 ~ 162
    Meinert L D. Origins of skarn: regional metamorphicsm and metasonateam, contact effects related to pluteons, and metamorphicsm of pre-existing ore deposits. IXIAGOD Symposium, Abstracts, 1994, 1: 313 ~ 314
    Meinert L D. Application of skarn deposit zonation models to mineral exploration. Exploration and Mining Geology, 1997, 6: 185 ~ 208
    Meinert L D. Gold in skarns related to epizonal intrusions. Reviews in Economic Geology, 2000, 13: 347 ~ 375
    Meinert L D, hedenquist J W, Satoh H, et al. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids. Economic Geology, 2003, 98: 147 ~ 156
    Meinert L D, Dipple G M, Nicolescu S. World skarn deposits. Economic Geology, 2005, 100: 299 ~ 336
    Newberry R J. Scheelite-bearing skarns in the Sierra Nevada region, California. Contrasts in zoning and mineral compositions and tests of infiltration metasomatism theory. In: Barto-Kyriakidis A, eds. Skarns-their genesis and metallogeny. Athens, Greece: Theophrastus Publications S.A., 1991. 343 ~ 384
    Nicolescu S, Cornell D H, Sodervall U, et al. Secondary ion mass spectrometry analysis of rare earth elements in grandite garnet and other skarn related silicates. European Journal of Mineralogy, 1998, 10: 251 ~ 259
    Ochiai K, Tagiri M, Tanaka H. Behavior of the rare earth elements during the skarn formation at the Kamaishi mine, Japan. Resource Geology, 1993, 43: 291 ~ 300
    Oen I S, Maesschalck A A, Lustenhouwer W J. Mid-proterozoic exhalative-sedimentary Mn skarns containing possible microbial fossils, Grythyttan, Bergslagen, Sweden. Economic Geology, 1986, 81: 1533 ~ 1543
    Pan Y M, Dong P. The lower Changjing (Yangzi / Yangtze River) metallogenic belt, east central China: Intrusion– and wall rock– hosted Cu - Fe - Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 1999, 15 (4): 177 ~ 241
    Qiu R L. Multistage carbonatization and mineral geochemistry of a skarn - type copper deposit at Tongshan, Guichi. Chinese Journal of Geochemistry, 1991, 10 (1): 58 ~ 67
    Raith J G. Stratabound tungsten mineralization in regional metamorphic calc-silicate rocks from the Austroalpine Cyrstalline Complex, Austria. Mineral Deposita, 1991, 26: 72 ~ 80
    Ray G E, Webster I C L. An overview of skarn deposits. B.C. Ministry of Energy, Mines and Petroleum Resources Paper, 1991, 4: 213 ~ 252
    Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements.Lithos, 1989, 22: 247 ~ 263
    Robert P R, Long X, Nobu S. Experimental constrains on the origin of potassium– rich adakites in eastern China. Acta Petrologica Sinica, 2002, 18 (3): 293 ~ 302
    Shinohara H, Kazahaya K. Degassing processes related to magmachamber crystallization. In: Thompson J F H, eds. Magmas, fluids and ore deposits. Mineralogical Association of Canada Short Course Handbook, 1995, 23: 47 ~ 70
    Singoyi B, Zaw K. A petrological and fluid inclusion study of magnetite– scheelite skarn mineralization at Kara, Northwestern Tasmania: implications for ore genesis. Chemical Geology, 2000, 173: 239 ~ 253
    Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letter 26, 1975, 207 ~ 221
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In:Sauders A D, Norry M J, eds. Magmatism in the Ocean Basin, Geol. Soc. Spec. Pub., 1989, 42: 313 ~ 345
    Sun W D, Xie Z, Chen J F, et al. Re-Os dating of copper and molybdenum deposits along the Middle and Lower Reaches of the Yangtze River, China. Economic Geology, 2003, 98: 175 ~ 180
    Titley S R. Pyrometasomatism-an alteration type. Economic Geology, 1973, 68: 1326 ~ 1328 T?rnebohm A E. Geognostisk beskrifning ofver Persbergets Grufvef?lt. Sveriges Geologiska Unders?kning: Stockholm, P.A. Norstedt and sons, 1875, 21
    Vavra G, Gebauer D, Schmid R. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulite of the Ivrea Zone (South Alps): an ion microprobe (SHRIMP) study. Conctrib. Mineral. Petrol., 1996, 122: 337 ~ 358
    Vidale R. Metasomatism in a chemical gradient and the formation of calc-silicate bands. American Journal of Science, 1969, 267: 857 ~ 874
    Whalen J B, Currie K I, Chappell B W. A - type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol., 1987, 95 (4): 407 ~ 419
    Williams I S. U - Th - Pb geochromology by ion microprobe. In: McKibben M A, Shanks W C, Ridley W I eds. Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews ofEconomic Geology, 1998, 7: 1 ~ 35
    Xu X S, Fan Q C, O’Reilly S Y, et al. U-Pb Dating of zircons and petrogenic implications for Tongguanshan quartz diorite and its enclaves, Anhui Province. Chinese Science Bulletin, 2004, 49 (19): 2073 ~ 2082
    Zarayskiy G P, Zharikov V A, Stoyanovskaya F M, et al. The experimental study of bimetasomatic skarn formation. International Geology Review, 1987, 29: 761 ~ 858
    Zharikov V A. Skarn. International Geology Review, 1970, 12: 541 ~ 559
    Zhou T F, Yuan F, Yue S C, et al. Geochemistry and evolution of ore - forming fluids of the Yueshan Cu– Au skarn - and vein - type deposits, Anhui Province, South China. Ore Geology Reviews, 2005, 31: 279 ~ 303
    Zhou T F, Fan Y, Yuan F, et al. Geochronology of the volcanic rocks in the Lu Zone (Lujiang– Zongyang) basin and its significance. Science in China (Series D), 2008, 51 (10): 1470 ~ 1482
    北京大学地质学系岩矿教研室.光性矿物学.北京:地质出版社, 1979, 182
    常印佛,刘湘培,吴言昌.长江中下游铜铁成矿带.北京:地质出版社, 1991: 1 ~ 238
    常印佛,董树文,黄德志.论中—下扬子“一盖多底”格局与演化.火山地质与矿产, 1996, 17 (1~2): 1 ~ 15
    陈沪生,张永鸿.下扬子及邻区岩石圈结构构造特征与油气资源评价.北京:地质出版社, 1999, 1 ~ 286
    陈江峰,周泰禧,李学明,等.安徽南部燕山期中酸性侵入岩的源区锶、钕同位素制约.地球化学, 1993, 3: 261 ~ 268
    陈江峰,江博明. Nd, Sr, Pb同位素示踪和中国东南大陆地壳演化.地球化学, 1999, 28 (2): 127 ~ 140
    陈江峰,谢智,张巽,等.安徽的地壳演化: Sr - Nd同位素证据.安徽地质, 2001, 11 (2): 123 ~ 130
    陈江峰,喻钢,杨刚,等.安徽沿江江南晚中生代岩浆–成矿年代学格架.安徽地质, 2005, 15 (3): 161 ~ 170
    陈衍景,陈华勇, Zaw K,等.中国陆区大规模成矿的地球动力学:以矽卡岩型金矿为例.地学前缘, 2004, 11 (1): 57 ~ 72
    程顺波,庞迎春,曹亮.西藏蒙亚啊矽卡岩铅锌矿床的成因探讨.华南地质与矿产, 2008, 3: 50 ~ 56
    董胜.安徽省贵池地区区域地球化学特征及找矿意义.物探与化探, 2006, 30 (3): 215 ~ 219
    董树文,张岳桥,龙长兴,等.中国侏罗纪构造变革与燕山运动新诠释.地质学报, 2007, 81 (11): 1449~ 1461
    杜杨松,秦新龙,田世洪.安徽铜陵铜官山矿区中生代岩浆-热液过程:来自岩石包体及其寄主岩的证据.岩石学报, 2004, 20 (2): 339 ~ 350
    杜杨松,李顺庭,曹毅,等.安徽铜陵铜官山矿区中生代侵入岩的形成过程—岩浆底侵、同化混染和分离结晶.现代地质, 2007, 21 (1): 71 ~ 77
    姜常义,安三元.论火成岩中钙质角闪石的化学组成及其岩石学意义.矿物岩石, 1984, 3: 1 ~ 9
    蒋少涌,李亮,朱碧,等.江西武山铜矿区花岗闪长斑岩的地球化学和Sr-Nd-Hf同位素组成及成因探讨.岩石学报, 2008, 24 (8): 1679 ~ 1690
    金文山,赵凤清,甘晓春,等.江西庐山早元古代星子群变质作用和岩石地球化学特征.岩石矿物学杂志, 1996, 15(1): 1 ~ 9
    李福东,张汉文,宋志杰.鄂拉山地区热液成矿模式.西安:西安交通大学出版社, 1993, 276 ~ 300
    李立平,邵洁涟.贵池铜山铜矿微量元素地球化学特征研究.地质与勘探, 1994, 3: 9 ~ 13
    李亮,蒋少涌.长江中下游地区九瑞矿集区邓家山花岗闪长斑岩的地球化学与成因研究.岩石学报, 2009, 25 (11): 2877 ~ 2888
    李文达,毛建仁,朱云鹤,等.中国东南部中生代火成岩与矿床.北京:地震出版社, 1998, 1 ~ 156
    刘劲鸿.福建马坑铁矿辉石的成因矿物学研究.福建地质, 1993, 248 ~ 257
    刘悟辉,徐文炘,戴塔根,等.湖南柿竹园钨锡多金属矿田野鸡尾矿床同位素地球化学研究.岩石学报, 2006, 22 (10): 2517 ~ 2524
    刘玉平,李朝阳,刘家军.都龙矿床含矿层状夕卡岩成因的地质地球化学证据.矿物学报, 2000, 20 (4): 378 ~ 384
    刘园园,马昌前,张超,等.安徽月山闪长岩的成因探讨—锆石U– Pb定年及Hf同位素证据.地质科技情报, 2009, 28 (5): 22 ~ 30
    楼亚儿,杜杨松.安徽繁昌中生代侵入岩的特征和锆石SHRIMP测年.地球科学, 2006, 35 (4): 359 ~ 366
    陆建军,郭维民,陈卫锋,等.安徽铜陵冬瓜山铜(金)矿床成矿模式.岩石学报, 2008, 24 (8): 1857 ~ 1864
    吕俊武.铜山岩体特征研究.矿产与地质, 2000, 14 (3): 172 ~ 174
    林文蔚,彭丽君.由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+.长春地质学院学报, 1994,24 (2): 155 ~ 162
    林新多.岩浆成因矽卡岩的某些特征及形成机制初探.现代地质, 1989, 3 (3): 351 ~ 358
    马振东,单光祥.长江中下游地区多位一体大型、超大型铜矿形成机制的地质、地球化学研究.矿床地质, 1997, 16 (3): 225 ~ 234
    毛建仁,苏郁香,陈三元,等.长江中下游中酸性侵入岩与成矿.北京:地质出版社, 1990, 1 ~ 190
    毛景文, Holly S,杜安道,等.长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示.地质学报, 2004, 78 (1): 121 ~ 131
    毛景文,邵拥军,谢桂青,等.长江中下游成矿带铜陵矿集区铜多金属矿床模型.矿床地质, 2009, 28 (2): 109 ~ 119
    梅燕雄,毛景文,李进文,等.安徽铜陵大团山铜矿床层状矽卡岩矿体中辉钼矿Re– Os年龄测定及其地质意义.地球学报, 2005, 26 (4): 327 ~ 331
    潘兆橹,赵爱醒,潘铁虹.结晶学及矿物学.北京:地质出版社, 1994, 154 ~ 159
    戚建中,刘红樱,姜耀辉.中国东部燕山期俯冲走滑体制及其对成矿定位的控制.火山地质与矿产, 2000, 21 (4): 244 ~ 266
    唐俊华.长江中下游地区层状铜矿床基本特征和成因.矿产与地质,2000, 14 (76): 76 ~ 80
    唐永成,吴言昌,储国正,等.安徽沿江地区铜金多金属矿床地质.北京:地质出版社, 1998, 76 ~ 80
    陶奎元,毛建仁,杨祝良,等.中国东南部中生代岩石构造组合和复合动力学过程的记录.地学前缘, 1998, 5 (4): 183 ~ 192
    涂光炽,等.矿床地球化学.北京:地质出版社, 1997, 1 ~ 11
    王德滋,周金城,邱检生.橄榄安粗岩系的研究现状.中南大学学报(地球科学版), 1991, 3(4): 321 ~328
    王星,肖荣阁,杨立朋,等.青海谢坑铜金矿床石榴石矽卡岩成因研究.现代地质, 2008, 22 (5): 733 ~ 742
    王勇.铜山铜矿F1断裂带构造控矿特征分析.矿产与地质, 2003, 17 (4): 530 ~ 532
    吴言昌.论岩浆矽卡岩—一种新类型矽卡岩.安徽地质, 1992, 1 (2): 12 ~ 26
    吴言昌,常印佛.关于岩浆矽卡岩问题.地学前缘, 1998, 5(4): 291 ~ 30
    吴言昌,曹奋扬,常印佛.初论安徽沿江地区成矿系统的深部构造-岩浆控制.地学前缘, 1999, 6(2): 285 ~ 296
    谢桂青,屈文俊,侯可军,等.安徽铜山铜钼矿床的地质特征和辉钼矿Re-Os同位素年龄.矿物学报, 2009,增刊: 32~33
    谢桂青,赵海杰,赵财胜,等.鄂东南铜绿山矿田矽卡岩型铜铁金矿床的辉钼矿Re-Os同位素年龄及其地质意义.矿床地质, 2009, 28 (3): 227 ~ 239
    夏元法.铜陵地区层控矽卡岩型矿床地质特征和成矿条件.矿产与地质, 1999, 13(6): 338 ~ 342
    邢凤鸣,徐祥.安徽扬子岩浆岩带与成矿.合肥:安徽人民出版社, 1999, 1 ~ 170
    许继峰,王强,徐义刚,等.宁镇地区中生代安基山中酸性侵入岩的地球化学:亏损重稀土和钇的岩浆产生的限制.岩石学报, 2001, 17 (4): 576 ~ 584
    闫峻,刘海泉,宋传中,等.长江中下游繁昌-宁芜火山盆地火山岩锆石U-Pb年代学及其地质意义. 科学通报, 2009, 54 (12): 1716 ~ 1724
    姚鹏,顾雪祥,李金高,等.甲马铜多金属矿床层控矽卡岩流体包裹体特征及其成因意义.成都理工大学学报(自然科学版), 2006, 33 (3): 285 ~ 293
    叶杰,刘建明.沉积喷流型矿化的岩石学证据—以大兴安岭南段黄岗和大井矿床为例.岩石学报, 2002, 18 (4): 588 ~ 592
    俞沧海,袁小明.贵池铜山岩体岩石化学与地球化学特征.安徽地质, 1999a, 9 (3): 194 ~ 197
    俞沧海,袁小明.贵池铜山岩体演化与成矿的关系.矿产与地质, 1999b, 13 (5): 274 ~ 278
    俞沧海.贵池铜山铜矿床成因探讨.地质与勘探, 2001, 37 (2): 12 ~ 16
    翟裕生,石准立,林新多,等.鄂东大冶式铁矿成因的若干问题.地球科学, 1982, (3): 239 ~ 251
    翟裕生,姚书振,周宗桂,等.长江中下游铜金矿床矿田构造.武汉:中国地质大学出版社, 1999
    张达,吴淦国,狄永军,等.铜陵凤凰山岩体SHRIMP锆石U– Pb年龄与构造变形及其对岩体侵位动力学背景的制约.地球科学, 2006, 31 (6): 823 ~ 830
    张乐骏,周涛发,范裕,等.安徽月山岩体的锆石SHRIMP U-Pb定年及其意义.岩石学报, 2008, 24 (8): 1725 ~ 1732
    张理刚.稳定同位素在地质科学中的应用.西安:陕西科学技术出版社, 1985, 1 ~ 267
    张旗,王焰,钱青,等.中国东部中生代埃达克岩的特征及其构造-成矿意义.岩石学报, 2001, 17 (2): 236 ~ 244
    张乾,潘家永.论接触交代矽卡岩型多金属矿床的矿质来源-以铅同位素组成为依据.矿物学报, 994, 14(4): 369 ~ 372
    张仁杰,马国干,冯少南,等.海南石碌铁矿的Sm-Nd法年龄及其意义.地质科学, 1992, l: 38 ~ 43
    张术根,李桂秀,石得凤,等.宁镇地区燕山期矽卡岩矿床成矿系统稀土元素地球化学研究.中国稀土学报, 2010, 28 (5): 626 ~ 632
    赵劲松,夏斌,丘学林,等.海南岛石碌矽卡岩铁矿石中石榴子石的熔融包裹体及其意义.岩石学报, 2008, 24 (1): 149 ~ 160
    赵一鸣,林文蔚,毕承思,等.中国夕卡岩矿床.北京:地质出版社, 1990. 1 ~ 354
    赵一鸣,张轶男,毕承思.含金夕卡岩矿床产出构造环境和地质地球化学评价标志.地学前缘, 1999, 6(1): 181 ~ 193
    郑建民,谢桂青,陈懋弘,等.岩体侵位机制对矽卡岩型矿床的制约-以邯邢地区矽卡岩铁矿为例. 矿床地质, 2007, 26 (4): 481 ~486
    曾普胜,杨竹森,蒙义峰,等.安徽铜陵矿集区燕山期岩浆流体系统时空结构及成矿.矿床地质, 2004, 23 (3): 298 ~ 308
    曾志刚,李朝阳,刘玉平,等.老君山成矿区变质成因夕卡岩的地质地球化学特征.矿物学报, 1999, 19 (1): 48 ~ 55
    周曙光.安徽铜山矿床成矿物质来源及成矿作用探讨.矿产与地质, 2003, 17 (5): 610 ~ 612
    周涛发,袁峰,岳书仓.安庆铜牛井热液脉型铜、钼、金矿床石英的40Ar - 39Ar快中子活化年龄.地质论评, 2003, 49 (2): 212 ~ 216
    周涛发,范裕,袁峰.长江中下游成矿带成岩成矿作用研究进展.岩石学报, 2008, 24 (8): 1665 ~ 1678
    周余谔,张宜勇,苏其树.安徽铜山铜矿床地球化学特征及其成因.安徽地质, 1996, 6 (2): 54 ~ 68
    周余谔.安徽铜山铜矿床有关地质体中稀土元素特征及其地质意义.安徽地质, 1997, 7 (2): 51 ~ 58
    周作侠.湖北丰山洞岩体成因探讨.岩石学报, 1986, 2(1): 59 ~ 70
    朱光,刘国生,牛曼兰,等.郯庐断裂带的平移运动与成因.地质通报, 2003, 22 (3): 200 ~ 207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700