用户名: 密码: 验证码:
滇东北地区会泽、松梁铅锌矿床流体地球化学与构造地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以滇东北铅锌矿集区会泽和松梁两个铅锌矿床为研究对象,在系统总结区域地质和矿床地质特征的基础上,重点研究了会泽铅锌矿床闪锌矿中的流体包裹体,并结合矿床地球化学,探讨了成矿流体、成矿物质来源和矿床成因。在对松梁铅锌矿床各种构造形迹仔细观察的基础上,对其断裂结构面进行力学性质分析,并详细研究了断裂构造岩的地球化学特征;进而绘制构造地球化学异常地质图,进行隐伏矿定位预测。其中,利用红外显微测温技术对闪锌矿的流体包裹体研究和松梁铅锌矿床地质、地球化学研究及其隐伏矿预测是论文的重点研究内容。论文主要取得了以下成果和认识:
     1.会泽铅锌矿床闪锌矿中原生流体包裹体有五种类型:纯气相、富液相气液两相、富气相气液两相、纯液相和含子矿物多相,以气相包裹体为主。闪锌矿流体包裹体均一温度在100.2-344.5℃之间,存在两个峰值:150℃-200℃和250℃-350℃;捕获温度平均为231.7℃。盐度在1.05~18.04wt%NaCleq之间,平均为11.56wt%NaCleq,流体密度在0.8884-1.0507 g·cm-3之间,平均0.9735 g·cm-3。方解石中流体包裹体主要为中-低温低盐度包裹体,所反映的成矿流体信息局限,闪锌矿中流体包裹体则反映成矿流体的信息更为全面。
     会泽铅锌矿床包裹体均一瞬间压力为70-710×105Pa,平均362.7×105Pa,成矿深度为264-2681m,平均1370m。流体液相阳离子成分富Ca2+、Mg2+、Na+,贫K+、Li+;阴离子富Cl-贫F-,成矿流体为富CO2、贫CH4的Ca2+-Mg2+-Na+-Cl--HCO3--SO42型。
     2.会泽铅锌矿床成矿期经历了三个成矿阶段:第Ⅰ阶段成矿温度200-350℃及以上,盐度15wt%NaCleq及以上;第Ⅱ阶段成矿温度150-250℃,盐度1~18wt%NaCleq,以5-13wt%NaCleq居多;第Ⅲ阶段成矿温度100-220℃,盐度一般在10wt%NaCleq以下,平均在5wt%NaCleq。
     3.会泽铅锌矿床赋矿白云岩形成于较强氧化性的沉积-成岩环境,稀土元素总量较低,变化范围相对较小;δEu显示负异常,δCe显示微弱负异常-无异常。松梁铅锌矿床的容矿碳酸盐岩则显示弱氧化-还原的成岩环境和标准白云岩的特征,稀土元素总量与碳酸盐岩相近,但变化范围较大,δEu均为正异常,δCe大多呈弱负异常-负异常。
     4.会泽铅锌矿床成矿物质为多来源,地层碳酸盐岩、变质基底和岩浆均提供了成矿物质;成矿流体为岩浆水、地层建造水和变质水的混合流体。会泽铅锌矿床的形成经历了多期成矿作用,其成矿模式总结为“沉积成岩-玄武岩浆期后气液叠加-构造改造富集”。
     5.松梁铅锌矿床①号矿体构造原生晕综合轴向分带序列为:Li-P-Cu-Ba-Cd-Ga-Zn-V-Ag-Mn-Ge-In2→U-Sn-Th-Be-∑REE-Pb-Bi→Cs-In-Ta-Tl-Ti-Co-Nb-Mo- W-Li2-V2→Zr-Ni-Sr- Rb-Hf-Cr-Cs2-∑REE2。构造原生晕轴向分带序列和地球化学参数在轴向上的变化规律均说明其构造原生晕结构比较复杂,反映①号矿体成矿作用经历了多阶段,同时预测①号矿体深部延深较好,并有隐伏矿体存在的可能性。在此基础上,建立了矿床构造原生晕理想模型图。
     6.断裂构造岩微量元素主要表现为三个主因子元素组合:地层岩石元素组合因子、铅锌矿化元素组合因子和中高温矿化元素组合因子。构造地球化学异常场的分布规律,可以反映成矿流体的运移方向,为成矿预测提供依据。并分别总结了松梁铅锌矿床的地质、地球化学和物探等找矿标志,圈定了找矿靶区,部分找矿靶区已得到工程验证。
Huize and Songliang lead-zinc deposits, which located in the northeast of Yunnan province, were taken as study object in this doctoral dissertation. Based on the system summary of regional geology and geological features, infrared microthermometric technique was used to study fluid inclusions in sphalerite of Huize lead-zinc deposit, then the source and character of ore-forming fluid and ore-forming material was discussed, as well as the genesis of deposit. Fracture mechanics of fracture structure plane and geochemical feature of fault tectonite was studied based on the field observation, microscopic identification, analysis and test. On the basis of R-type factor analsis of testing data, geological anomalous map and anomaly model of tectonic geochemical was established, which is of help to the location forecasting of concealed orebody. The main conclusions that we got are as follows:
     1. Five types of fluid inclusions can be observed in sphalerite, pure gaseous inclusions, pure liquid inclusions, gas-liquid inclusions with rich liquid, gas-liquid inclusions with rich gas and three-phase inclusions containing a daughter. The homogenization temperature of fluid inclusions in sphalerite range from 100.2℃to 344.5℃, for the average homogenization temperature 179.5℃, which have two change temperature sectors obviously,150℃~200℃and 250℃~350℃, and the average capture temperature for 231.7℃. Salinity of fluid inclusions in sphalerite is similar to homogenization temperature, which range form 1.06wt%NaCleq to 18.04wt%NaCleq, for the average salinity 179.5℃, and have two change sectors, 1~13wt%NaCleq and 13~20 wt%NaCleq. The densities of ore-forming fluid in fluid inclusions range from 0.8884 g·cm-3 to 1.0507 g·cm-3, average fluid densities for 0.9735 g·cm-3. For calcite, fluid inclusions dominated by liquid and pure liquid types, homogenization temperature range from 164℃to 221℃and salinity range from 6.6wt%NaCleq to 12wt%NaCleq. Compare with gangue mineral, fluid inclusions in sphalerite contains more information of ore-forming fluid, and the infrared micro-thermometric technique has provided an ideal method to study the ore-forming fluid of Pb-Zn deposits in the northeast of Yunnan province.
     The metallogenic pressure estimated by fluid inclusions of Huize lead-zinc deposit is about 362.7×105Pa in average, equivaluent to a depth of 1370m. The liquid components of fluid inclusions are mainly Ca2+, Mg2+, Na+, Cl-; with minor amounts of F-, K+, Li+. The gas components of fluid inclusions are mainly H2O and CO2, the CO and CH4 areless abundant. The ore-forming fluid is weak acid to neutral with pH value of 5.6-7.1, and rich in CO2 of Ca2+-Mg2+-Na+-Cl--HCO3--SO42- system.
     2.Three mineralization stage of Huize lead-zinc deposit can be divided, in the first mineralization stage, the homogenous temperature of fluid inclusions ranged from 200℃to 350℃, with salinity of 15wt%NaCleq or above; in the second mineralization stage, the homogenous temperature of fluid inclusions ranged from 150℃to 250℃, with salinity from lwt%NaCleq to 185wt%NaCleq; in the last mineralization, the homogenous temperature of fluid inclusions ranged from 100℃to 220℃, with salinity of less than 10wt%NaCleq.
     3. In Huize lead-zinc deposit, the ore-bearing dolomite formed in the relatively strong oxidizing sedimentation-diagenesis environment. Its rare earth element content is low, with a narrower range of total REE contents, negative Eu anomaly and no remarkable Ce anomaly. Whereas in Songliang lead-zinc deposit, the ore-bearing dolomite formed in the weak oxidizing and reducing environment, with characteristics of low content of rare earth elements, a wider range of REE contents, positive Eu anomaly and weak negative to negative Ce anomaly.
     4. The formation of Huize lead-zinc deposit experienced three stages of sedimentation-diagenesis, post-magmatic hydrothermal superimposition and structural reactivated mineralization, with a variety of sources of ore-forming materials, carbonate strata, metamorphic basement and magma provides ore-forming materials. Ore-forming fluid is mixed fluid of magmatic water, hot brine and metamorphic water.
     5. The axial zonal elemental sequence of No.①orebody in the Songliang lead-zinc deposit: Li-P-Cu-Ba-Cd-Ga-Zn-V-Ag-Mn-Ge-In2→U-Sn-Th-Be-∑REE-Pb-Bi->Cs-In-Ta-Tl-Ti-Co-Nb-Mo-W-Li2-V2→Zr-Ni-Sr-Rb-Hf-Cr-Cs2-∑REE2. axial zonal elemental sequence of tectonic primary halo in the Songliang lead-zinc deposit is concluded, which indicates that the structure of primary halo is complex, the No.①orebody may be superposed by many intermittent orebody, and the ore-forming process may experience more than one Stage of mineralization. The analyses also forecast that the No.①orebody may has a good extend and there may exist concealed orebody in the deep of No.1 orebody. On this basis, the ideal model for tectonic primary halos of Songliang lead-zinc deposit was built.
     6. Trace elements of tectonites shows three principal factors element association by factor analysis, on behalf of the strata rock elements, medium-high temperature ore-forming fluid and medium-low temperature ore-forming fluid respectively. The distribution of tectonic geochemical anomaly can reflect the migration direction of ore-forming fluid, and to provide evidence for metallogenic prediction. In this thesis, geological, geochemical and geophysical prospecting marks of Songliang lead-zinc deposits are summarized respectively; many targets are given on the basis of those prospecting marks, partial prospecting targets has been engineering verification.
引文
[1]柳贺昌,林文达.1999.滇东北铅锌银矿床规律研究[M].昆明:云南大学出版社,1-426
    [2]曾令刚,顾雪祥,王小春等.2005.铅同位素在扬子地台西缘铅锌矿床找矿靶标建立中的初步应用[J].新疆地质,23(4):378-385
    [3]韩润生,陈进,黄智龙等.2006.构造成矿动力学及隐伏矿定位预测—以云南会泽超大型铅锌(银、锗)矿床为例[M].北京:科学出版社.1-170
    [4]刘肇昌,李凡友,钟康慧等.1996.扬子地台西缘构造演化与成矿[M].成都:电子科技大学出版社,1-69
    [5]于炳松,裘愉卓.1998.扬子地块西南部沉积地球化学演化与成矿作用[M].北京:地震出版社.
    [6]陆彦.1998.川滇南北向构造带的两开两合及成矿作用[J].矿物岩石,18(增刊):26-32
    [7]张志斌,李朝阳,涂光炽等.2006.川滇黔接壤地区铅锌矿床产出的大地构造演化背景及成矿作用[J].大地构造与成矿学,30(3):343-354
    [8]黄智龙,陈进,刘丛强等.2001.峨眉山玄武岩与铅锌矿床成矿关系初探[J].矿物学报,21(4):681-688
    [9]黄智龙.2005.川-滇-黔铅锌成矿域成矿年代学研究[R].中国科学院地球化学研究所.
    [10]李文博,黄智龙,陈进,等.2004a.云南会泽超大型铅锌矿床成矿时代研究[J].矿物学报,24(2):112-116
    [11]李文博,黄智龙,王银喜等.2004b.会泽超大型铅锌矿田方解石Sm-Nd等时线年龄及其地质意义[J].地质论评,50(2):189-195
    [12]张长青,毛景文,刘峰等.2005.云南会泽铅锌矿床粘土矿物K-Ar测年及其地质意义[J].矿床地质,24(3):317-324
    [13]张长青,李向辉,余金杰等.2008.四川大梁子铅锌矿床单颗粒闪锌矿铷-锶测年及地质意义[J].地质论评,54(4):532-538
    [14]韩润生,刘丛强,黄智龙等.2000.云南会泽铅锌矿床构造控矿及断裂构造岩稀土元素组成特征[J].矿物岩石,20(4):11-18
    [15]韩润生,陈进,李元等.2001a.云南会泽特富铅锌矿床找矿研究现状及其新进展[J].地学前缘,8(4)
    [16]李波,韩润生,邹海俊等.2006.云南巧家松梁铅锌矿床控矿因素及找矿方向[A].云南地质,25(4):422-423.
    [17]Bo Li, Run-Sheng Han, Hai-Jun Zou et al.2008. Tectono-geochemical Characteristics at 1260m Level in the Songliang Zn-Pb Deposit, Yunnan, China[A]. Geochemica et Cosmochimica Acta,72(12):A540
    [18]Zhou C X, Wei C S, Guo J Y et al.2001. The source of metals in the Qilinchang Pb-Zn deposit, Northeastern Yunnan, China:Pb-Sr isotope constraints [J]. Economic Geology,96:583-598
    [19]黄智龙,李文博,陈进等.2003.云南会泽超大型铅锌矿床构造带方解石稀土元素地球化学[J].矿床地质,22(2):199-207
    [20]黄智龙,李文博,陈进等.2004a.云南会泽超大型铅锌矿床C、O同位素地球化学[J].矿床地质,22(2):199-208
    [21]李文博,黄智龙,张冠.2006.云南会泽铅锌矿田成矿物质来源Pb、S、C、H、O、Sr同位素制约[J].岩石学报,22(10):2567-2580
    [22]张振亮,黄智龙,饶冰等.2005a.会泽铅锌矿床的成矿流体来源:来自水岩反应的证据[J].吉林大学学报:地球科学版,35(5):587-592
    [23]张振亮,黄智龙,饶冰等.2005b.会泽铅锌矿床的成矿流体浓缩机制[J].地球科学-中国地质大学学报,30(4):443-450
    [24]张振亮.2006.云南会泽铅锌矿床成矿流体性质和来源-来自流体包裹体和水岩反应实验的证据[D].中国科学院地球化学研究所
    [25]Han R S, Liu C Q, Huang Z L et al.2004. Fluid inclusions of calcite and sources of ore-forming fluids in the Huize Zn-Pb-(Ag-Ge) district, Yunnan, China. Acta Geoscientica Sinica,78:583-591
    [26]Han R S, Zou H J, Hu B et al.2007. Features of fluid inclusions and sources of ore-forming fluid in the Maoping carbonate-hosted Zn-Pb-(Ag-Ge)deposit, Yunnan, China [J]. Acta Petrologica Sinica,23(9):2109-2118
    [27]陈进.1993.麒麟厂铅锌硫化物矿床成因及成矿模式探讨[J].有色金属矿产与勘查,(2):85-90
    [28]韩润生,刘丛强,黄智龙等.2001b.论云南会泽富铅锌矿床成矿模式[J].矿物学报,21(4):674-680
    [29]黄智龙,陈进,韩润生等.2004b.云南会泽超大型铅锌矿床地球化学及成因[M].北京:地质出版社.1-145
    [30]李家盛,李采一,崔银亮等.2005.云南会泽铅锌矿喷流沉积成因研究[J].云南地质,24(3):254-263
    [31]R S Han, C Q Liu, Z L Huang et al.2007. Geological features and origin of the Huize carbonate-hosted Zn-Pb-(Ag) district, Yunnan, South China [J]. ore geology reviews,31:360-383
    [32]韩润生,陈进,李元等.2001c.云南会泽麒麟厂铅锌矿床构造地球化学及定位预测[J].矿物学报,21(4):667-673
    [33]韩润生,陈进,李元等.2001d.云南会泽麒麟厂铅锌矿床八号矿体的发现[J].地质地球化学,29(3):191-196
    [34]谢家荣.1964.中国矿床学总论[M].北京:学术书刊出版社.
    [35]张位及.1984.试论滇东北铅锌矿床的沉积成因和成矿规律[J].地质与勘探,(7):11-16
    [36]王则江,汪岸儒.1985.天宝山、大梁子铅锌矿古岩溶洞穴沉积成因的探讨[J].四川地质学报,8-15
    [37]陈士杰.1986.黔西滇东北铅锌矿成因探讨[J].贵州地质,8(3):211-222
    [38]廖文.1984.滇东、黔西铅锌金属区硫、铅同位素组成特征与成矿模式探讨[J].地质与勘探,(1):1-6
    [39]廖文.1990.川、滇、黔交界地区层控铅锌矿床的混合成矿模式[J].西南矿产地质,(4):24-37
    [40]赵准.1995.滇东、滇东北地区铅锌矿床的成矿模式[J].云南地质,14(4):364-376
    [41]司荣军,顾雪祥,庞绪成等.2006.云南省富乐铅锌多金属矿床闪锌矿中分散元素地球化学特征[J].矿物岩石,26(1):75-80
    [42]沈秋伟.1993.浅议滇东北(西部)地区铅锌成矿作用[J].云南地质,12(2):168-176
    [43]刘文周.1989.云南金沙厂铅锌矿床地质特征及成因探讨[J].成都地质学院学报,16(2):11-19
    [44]王小春.1992.天宝山铅锌矿床成因分析[J].成都地质学院学报,19(3):10-20
    [45]王奖臻,李朝阳,李泽琴等.2002.川、滇、黔交界地区密西西比河谷型铅锌矿床与美国同类型矿床的对比[J].矿物岩石地球化学通报,21:127-132
    [46]张长青,毛景文,吴锁平等.2005.川滇黔地区MVT铅锌矿床分布、特征及成因[J].矿床地质,24(3):336-348
    [47]张立生.1997.滇东北地区层控Pb-Zn(F-Ba)矿床的热液喀斯特成因[J].地球学报,18(1):41-52
    [48]章明.2003.云南会泽铅锌锗镉矿床地球化学及锗镉富集机制[D].成都理工大学.
    [49]付绍洪.2004.扬子地块西南缘铅锌成矿作用与分散元素镉镓锗富集规律[D].成都理工大学.
    [50]林方成.2005.扬子地台西缘大渡河谷超大型层状铅锌矿床地质地球化学特征及成因[J].地质学报,79(4):540-553
    [51]杨应选,柯成熙,林方成等.1994.康滇地轴东缘铅锌矿床成因及成矿规律[M].成都:四川科技大学出版社.1-175
    [52]林方成.2004.扬子地台西缘铅锌矿床成因类型及成矿演化[J].见:刘建明等,编著.矿床学理论与实践.北京:科学出版社.105-118
    [53]薛步高.2006.超大型会泽富锗铅锌矿复合成因[J].云南地质,25(2):143-159
    [54]柳贺昌.1996.滇、川、黔成矿区的铅锌矿源层(岩)[J].地质与勘探,32(2):12-17
    [55]李连举,刘洪滔,刘继顺.1999.滇东北铅、锌、银矿床矿源层问题探讨[J].有色金属矿产与勘查,8(6):333-339
    [56]胡耀国.1999.贵州银厂坡银多金属矿床银的赋存状态、成矿物质来源与成矿机制[D].中国科学院地球化学研究所.
    [57]李文博,黄智龙,陈进,等.2002a.云南会泽超大型铅锌矿床成矿物质来源-来自矿区外围地层及玄武岩成矿元素含量的证据[J].矿床地质,21(增刊):413-416
    [58]李发源.2003.MVT铅锌矿床中分散元素赋存状态和富集机理研究—以四川天宝山、大梁子铅锌矿床为例[D].成都理工大学.
    [59]司荣军.2005.云南省富乐分散元素多金属矿床地球化学研究[D].中国科学院地球化学研究所
    [60]张振亮,黄智龙,饶冰等.2005c.会泽铅锌矿床成矿流体研究[J].地质找矿论丛,20(2):115-122
    [61]张云湘,骆耀南,杨崇喜.1988.攀西裂谷[M].北京:地质出版社.
    [62]管士平,李忠雄.1999.康滇地轴东缘铅锌矿床铅硫同位素地球化学研究[J].地质地球化学,27(4):45-54
    [63]周朝宪.1998.滇东北麒麟厂锌铅矿床成矿金属来源、成矿流体特征和成矿机理研究[J].矿物岩石地球化学通报,17(1):34-36
    [64]王奖臻,李朝阳,李泽琴等.2001.川滇地区密西西比河谷型铅锌矿床成矿地质背景及成因探讨[J].地质地球化学,29(2):41-45
    [65]张志斌,李朝阳,涂光炽等.2006.川滇黔接壤地区铅锌矿床产出的大地构造演化背景及成矿作用[J].大地构造与成矿学,30(3):343-354
    [66]沈苏,金明霞,陆元法.1988.西昌—滇中地区主要矿产成矿规律及找矿方向[M].重庆:重庆出版社.125-142
    [67]柳贺昌.1995.峨眉山玄武岩与铅锌成矿[J].地质与勘探,31(4):1-6
    [68]杨敏之.2008.分散元素矿床成矿区划、分布规律、找矿-综合利用方向[J].地质找矿论丛,23(1):1-10
    [69]谷团,刘玉平,李朝阳.2000.分散元素的超常富集与共生[J].矿物岩石地球化学通报,19(1):60-63
    [70]涂光炽.2002.我国西南地区两个别具一格的成矿带(域)[J].矿物岩石地球化学通报,21(1)1-2
    [71]张乾,刘志浩,战新志等.2003.分散元素铟富集的矿床类型和矿物专属性[J].矿床地质,22(1):309-316
    [72]张乾,朱笑青,高振敏等.2005.中国分散元素富集与成矿研究新进展[J].矿物岩石地球化学通报,24(4):342-349
    [73]顾雪祥,王乾,付绍洪等.2004.分散元素超常富集的资源与环境效应:研究现状与发展趋势[J].成都理工大学学报(自然科学版),31(1):15-21
    [74]付绍洪,顾雪祥,王乾等.2004.扬子地块西南缘铅锌矿床Cd、Ge与Ga富集规律初步研究[J].矿物岩石地球化学通报,23(2):105-108
    [75]司荣军,顾雪祥,庞绪成等.2006.云南省富乐铅锌多金属矿床闪锌矿中分散元素地球化学特征[J].矿物岩石,26(1):75-80
    [76]胡瑞忠,彭建堂,马东升等.2007.扬子地块西南缘大面积低温成矿时代[J].矿床地质,26(6):583-596
    [77]耿元生,杨崇辉,王新社等.2008.扬子地台西缘变质基地演化[M].北京:地质出版社.137-156
    [78]涂光炽.1984.中国层控矿床地球化学(第一卷)[M].北京:科学出版社,13-69
    [79]中华人民共和国国土资源部.2003.铜、铅、锌、银、镍、钼矿地质勘查规范[S].19
    [80]吕志诚主编.2004.国内外铅锌矿床成矿理论与找矿方法[M].中国地质调查局发展研究中心.1-36
    [81]Leach D L and Sangster D F.1993. Mississippi Valley-type lead-zinc deposits [J]. In:Kirkham R V, Sinclair W D, Thorpe R L et al Eds. Mineral deposits modeling. Geological Association of Canada Special Paper, 40:289-314
    [82]Leach D L, Bradley D C, Lewchuk M T et al.2001. Mississippi Valley-type lead-zinc deposits through geological time:implications from recent age-dating research [J]. Mineraliurn Deposita,36:711-740
    [83]Leach D L, Sangster D F, Kelley K D et al.2005. Sediment-hosted lead-zink deposit:A global perspective [J]. Economic Geology 100th Anniversary Volume:561-607
    [84]张长青,余金杰,毛景文等.2009.密西西比型(MVT)铅锌矿床研究进展[J].矿床地质,28(2):195-210
    [85]Bradley D C and Leach D L.2003. Tectonic controls of Mississippi Valley -type lead-zinc mineralization in orogenic forelands [J]. Mineralium Deposita,38:652-667
    [86]Kasler S E, Chesley J T, Christensen J N et al.2004. Discussion of "Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands" by Bradley D. C. and Leach D. L. (2003) [J]. Mineralium Deposita,34:512-514
    [87]Hitzman M W and Beaty D W.1996. The Irish Zn-Pb(-Ba) ore field [A]. In:Sangster D F, ed. Carbonate-hosted lead-zinc deposits [C]. Soc. Econ. Geol. Spec. Pub.4:112-143
    [88]Rowan E L, Thibidroz J, Bethke C W et al.1996. Geochemical and hydrologic conditions for fluorite mineralization in regions of continental extension:An example from the Albigeois district, France [A]. In: Sangster D F, ed. Carbonate-hosted lead-zinc deposits [C]. Soc. Econ. Geol. Spec. Pub.4:448-464
    [89]Megaw P K M, Barton M D and Falce J I.1996. Carbonate-hosted lead-zinc (Ag, Cu, Au) deposits of Northern Chihuaha, Mexico [A]. In:Sangster D F, ed. Carbonate-hosted lead-zinc deposits [C]. Soc. Econ. Geol. Spec. Pub.4:277-289
    [90]Smith D M.1996. Sedimentary basins and origin of intrusion-related carbonate-hosted Zn-Pb-Ag deposits [A]. In:Sangster D F, ed. Carbonate-hosted lead-zinc deposits [C]. Soc. Econ. Geol. Spec. Pub.4:255-263
    [91]Titley S R.1996. Characteristics of high temperature, carbonate-hosted replacement ores and some comparisons with Mississippi Valley-type ores [A]. In:Sangster D F, ed. Carbonate-hosted lead-zinc deposits [C]. Soc. Econ. Geol. Spec. Pub.4:448-464
    [92]李文博,黄智龙,许德如等.2002b.铅锌矿床Rb-Sr定年研究综述[J].大地构造与成矿学,26(4):436-441
    [93]黄智龙.2003.大规模流体运移与“麒麟厂式”铅锌矿床成矿[R].中国科学院地球化学研究所
    [94]李发源,顾雪祥,付绍洪等.2003.MVT铅锌矿定年方法评述[J].地质找矿论丛,18(3):163-167
    [95]刘英超,侯增谦,杨竹森等.2008.密西西比河谷型(MVT)铅锌矿床:认识与进展[J].矿床地质,27(2):253-264
    [96]刘建明,沈洁,赵善仁等.1998.金属矿床同位素精确定年的方法和意义[J].有色金属矿产与勘查,7(2):107-113
    [97]Shepherd T J and Darby shire D P F.1981. Fluid inclusion Rb-Sr isochrones for dating mineral deposits [J]. Nature,290:578-579
    [98]Nakai S, Halliday AN, Kesler S E et al.1990. Rb-Sr dating of sphalerites from Tennessee and the genesis of Mississippi Valley-type (MVT) ore deposits [J]. Nature,346:354-357
    [99]Nakai S, Halliday A N, Kesler S E et al.1993. Rb-Sr dating of sphalerites from MVT ore deposits [J]. Geochimica et Cosmochimica Acta,57:417-427
    [100]Brannon J C, Podosek F A and Mclimans R K.1992. Alleghenian age of the Upper Mississippi Valley zinc-lead deposits determined by Rb-Sr dating of sphalerite [J]. Nature,356:509-511
    [101]Christensen J N, Halliday A N, Leigh K E, et al.1995a. Direct dating of sulfides by Rb-Sr:A critical test using the Polaris Mississippi Valley-type Zn-Pb deposit [J]. Geochimica et Cosmochimica Acta, 59:5191-5197
    [102]Christensen J N, Halliday AN, Vearncombe J R et al.1995b. Tesing models of large-scale crustal fluid flow using direct dating of sulfides:Rb-Sr evidence for early dewatering and formation of Mississippi Valley-type deposits, Canning Basin, Australia [J]. Econ Geol,90:877-884
    [103]Cathles L and Smith A T.1983. Thermal constraints on the formation of Mississippi Valley-type lead-zinc deposits, and their implications for episodic dewatering and deposit genesis [J]. Econ. Geol.,78:948-956
    [104]Bethke C M.1985. A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basin [J]. Journal of Geophysical Research, 90:6817-6828
    [105]Oliver J.1986. Fluids expelled tectonically from orogenic belts:their role in hydrocarbon migration and other geologic phenomena [J]. Geology,14:99-102
    [l]刘肇昌,李凡友,钟康慧等.1996.扬子地台西缘构造演化与成矿[M].成都:电子科技大学出版社,1-69
    [2]王宝禄,李丽辉,曾普胜.2004a.川滇黔菱形地块地球物理基本特征及其与内生成矿作用的关系.东华理工学院学报,27(4):301-308
    [3]王宝禄,吕世琨,胡居贵.2004b.试论川滇黔菱形地块[J].云南地质,23(2):140-153
    [4]张志斌,李朝阳,涂光炽等.2006.川滇黔接壤地区铅锌矿床产出的大地构造演化背景及成矿作用[J].大地构造与成矿学,30(3):343-354
    [5]刘福辉.1984.攀西地区断块构造特征的初步分析[J].成都地质学院学报,2:33-43
    [6]柳贺昌,林文达.1999.滇东北铅锌银矿床规律研究[M].昆明:云南大学出版社,1-426
    [7]韩润生,陈进,黄智龙等.2006.构造成矿动力学及隐伏矿定位预测-以云南会泽超大型铅锌(银、锗)矿床为例[M].北京:科学出版社.1-170
    [8]李兴唐,黄鼎成.1981.攀西裂谷区域地质构造[J].地质科学,1:20-28
    [9]冯本智.1989.论扬子准地台西缘前震旦纪基底及其成矿作用[J].地质学报,63(4):338-348
    [10]杨应选,柯成熙,林方成等.1994.康滇地轴东缘铅锌矿床成因及成矿规律[M].成都:四川科技大学出版社.1-175
    [11]王奖臻,李朝阳,李泽琴等.2001.川滇地区密西西比河谷型铅锌矿床成矿地质背景及成因探讨[J].地质地球化学,29(2):41-45
    [12]耿元生,杨崇辉,王新社等.2008.扬子地台西缘变质基地演化[M].北京:地质出版社.1-215
    [13]崔作舟,卢德源,陈纪平等.1987.攀西地区的深部地壳结构和构造[J].地球物理学报,30(6):566-580
    [14]腾吉文.1994.康滇构造带岩石圈物理与动力学[M].北京:科学出版社.1-256
    [15]黄智龙,陈进,韩润生等.2004.云南会泽超大型铅锌矿床地球化学及成因-兼论峨眉山玄武岩与铅锌成矿的关系[M].北京:地质出版社.1-145
    [16]张云湘,骆耀南,杨崇喜.1988.攀西裂谷[M].北京:地质出版社.
    [17]侯增谦,卢红仁,汪云亮等.1999.峨眉火成岩省:结构、成因与特色[J].地质论坪,45(增刊):885-891
    [18]宋谢炎,侯增谦,曹志敏,卢纪仁,汪云亮,张成江,李佑国.峨眉大火成岩省的岩石地球化学特征及时限[J].地质学报,2001,75(4):498-506
    [19]宋谢炎,张成江,汪云亮等.2002.峨眉山玄武岩的地幔热柱成因[J].矿物岩石,22(4):27-32
    [20]宋谢炎,张成江,胡瑞忠等.2005.峨眉火成岩省岩浆矿床成矿作用与地幔柱动力学过程的耦合关系[J].矿物岩石,25(4):35-44
    [21]朱炳泉,常向阳,胡耀国,张正伟.滇-黔边境鲁甸沿河铜矿床的发现与峨眉山大火成岩省找矿新思路[J].地球科学进展,2002,17(6):912-917
    [22]朱炳泉,常向阳,胡耀国,张正伟.地球化学急变带与地幔柱资源系统[J].矿物岩石地球化学通报,2003,22(4):287-293
    [23]朱炳泉,戴橦谟,胡耀国,张正伟,陈广浩,彭建华,涂湘林,刘德汉,常向阳.滇东北峨眉山玄武岩中两阶段自然铜矿化的40Ar/39Ar与U-Th-Pb年龄证据[J].地球化学,2005,34(3):235-247
    [24]董云鹏,朱炳泉,常向阳,张国伟.滇东师宗-弥勒带北段基性火山岩地球化学及其对华南大陆构造格局的制约[J].岩石学报,2002,18(1):37-46
    [25]朱炳泉.大陆溢流玄武岩成矿体系与基韦诺(Keweenaw)型铜矿床[J].地质地球化学,2003,31(2):1-8
    [26]范蔚茗,王岳军,彭头平等.2004.桂西晚古生代玄武岩Ar-Ar和U-Pb年代学及其对峨眉山玄武岩省喷发时代的约束[J].科学通报,49(18):1892-1900
    [27]张正伟,程占东,朱炳泉,张乾,朱笑青,胡耀国.峨眉山玄武岩组铜矿化与层位关系研究[J].地球学报,2004,25(5):503-508
    [28]胡瑞忠,陶琰,钟宏等.2005.地幔柱成矿系统:以峨眉山地幔柱为例[J].地学前缘,12(1):42-54
    [29]谢静,常向阳,朱炳泉.滇东南建水二叠纪火山岩地球化学特征及其构造意义[J].中国科学院研究生院学报,2006,23(3):349-356
    [30]许连忠,张正伟,张乾等.2006.威宁宣威组底部硅质页岩Rb-Sr古混合线年龄及其地质意义[J].矿物学报,26(4):387-394
    [31]陆彦.1998.川滇南北向构造带的两开两合及成矿作用[J].矿物岩石,18(增刊):26-32
    [32]何斌,徐义刚,肖龙等.2003.攀西裂谷存在吗?[J].地质论评,49(6):572-582
    [33]李献华,李正祥,周汉文等.2002.川西新元古代玄武质岩浆岩的锆石U-Pb年代学、元素和Nd同位素研究:岩石成因与地球动力学意义[J].地学前缘,9(4):329-338
    [1]柳贺昌,林文达.1999.滇东北铅锌银矿床规律研究[M].昆明:云南大学出版社,1-426
    [2]韩润生,陈进,黄智龙等.2006.构造成矿动力学及隐伏矿定位预测—以云南会泽超大型铅锌(银、锗)矿床为例[M].北京:科学出版社.1-170
    [3]刘淑文,魏宽义,许拉平.2002.云南会泽铅锌矿田控矿构造体系及成矿预测[J].西北地质,35(3):84-89
    [4]孙家骢.1986.矿田地质力学导论(上册)[M].昆明:昆明理工大学地质系(内部教材)
    [5]韩润生,马德云,刘丛强等.2003.陕西铜厂矿田构造成矿动力学[M].昆明:云南科技出版社.1-164
    [6]黄智龙,陈进,韩润生等.2004.云南会泽超大型铅锌矿床地球化学及成因-兼论峨眉山玄武岩与铅锌成矿的关系[M].北京:地质出版社.1-145
    [7]李波.2008a.云南巧家松梁铅锌矿床地质特征及构造地球化学异常模式[D].昆明理工大学
    [8]李波,韩润生,邹海俊等.2008b.巧家松梁铅锌矿床Ⅰ号矿体分布区1260中段构造岩地球化学特征[J].地质与勘探,44(5):47-52.
    [9]李波,韩润生,钟康惠等.云南巧家县松梁铅锌矿床成矿预测标志与成矿潜力分析[J].2009.孟宪来主编,中国地质学会2009年学术年会论文摘要汇编.北京:中国大地出版社.343-345.
    [10]李兴唐,黄鼎成.1981.攀西裂谷区域地质构造[J].地质科学,1:20-28
    [11]刘福辉.1984.攀西地区断块构造特征的初步分析[J].成都地质学院学报,2:33-43
    [12]孙家骢.1988.云南省主要构造体系的成生发展及某些矿产的分布规律[J].昆明工学院学报,13(3):88-102
    [13]张志斌,李朝阳,涂光炽等.2006.川滇黔接壤地区铅锌矿床产出的大地构造演化背景及成矿作用[J].大地构造与成矿学,30(3):343-354
    [14]王小春.1992.天宝山铅锌矿床成因分析[J].成都地质学院学报,19(3):10-20
    [15]朱赖民,袁海华.1995.四川底苏、大梁子铅锌矿床同位素地球化学特征及成矿物质来源探讨[J].矿物岩石,15(1):72-79
    [16]张长青,毛景文,吴锁平等.2005.川滇黔地区MVT铅锌矿床分布、特征及成因[J].矿床地质,24(3):336-348
    [17]晏子贵,夏传见,贺光兴等.2006.四川省宁南县跑马铅锌矿地质特征及找矿前景分析[J].地质找矿论丛,21(B10):77-80
    [18]贺胜辉,荣惠锋,尚卫等.2006.云南茂租铅-锌矿床地质特征及成因研究[J].矿产与地质,20(4):397-402
    [19]旦贵兵,杨大宏,沈史日.2007.四川宁南雀珠山地区铅锌矿床特征与找矿远景[J].四川地质学报, 27(2):96-98
    [20]张自洋.2003.乐红铅锌矿矿床地质与成因分析[J].云南地质,22(1):97-106
    [21]周云满.2003.滇东北乐红铅锌矿床地质特征及找矿远景[J].地质地球化学,31(4):16-21
    [22]胡彬,韩润生,马德云等.2003.云南毛坪铅锌矿区Ⅰ号矿体分布区断裂构造岩稀土元素地球化学特征及找矿意义[J].地质地球化学,31(4):22-28
    [23]董家龙.2005.黔西北猫猫厂-榨子厂铅锌矿区地质特征及找矿方向[J].矿产与地质,19(1):29-33
    [24]刘幼平,张伦尉,杭家华.2006.黔西北猫猫厂-榨子厂铅锌矿床深部找矿潜力分析[J].矿物岩石地球化学通报,26(2):163-168
    [11]谢奕汉,范宏瑞.2001.矿物包裹体的成因矿物学标型意义[J].现代地质,15(2):202-204
    [2]卢焕章,范宏瑞,倪培等.2004.流体包裹体[M].北京:科学出版社,132-143.
    [3]何知礼,杜加锋.1996.流体包裹体研究的某些进展与发展趋势[J].地学前缘,3(3-4):306-312
    [4]张文淮,陈紫英.1993.流体包裹体地质学[M].武汉:中国地质大学出版社,1-230
    [5]黄典豪.1999.热液脉型铅-锌-银矿床富铁闪锌矿中硫化物包裹体成因探讨[J].矿床地质,18(3):244-252
    [6]倪培,蒋少涌,凌洪飞等.2001.流体包裹体面的研究背景、现状及发展前景[J].地质论评,47(4):398-403
    [7]倪培,田京辉,朱筱婷等.2005.江西永平铜矿下盘网脉状矿化的流体包裹体研究[J].岩石学报,21(5)5:1339-1346
    [8]祁进平,陈衍景,倪培等.2007.河南冷水北沟铅锌银矿床流体包裹体研究及矿床成因[J].岩石学报,23(9):2119-2130
    [9]蒋映德,邱华宁,肖慧娟.2006.闪锌矿流体包裹体40Ar-39Ar法定年探讨—以广东凡口铅锌矿为例[J].岩石学报,22(10):2425-2430
    [10]刘耀辉,吴烈善,莫江平等.2006.锡铁山铅锌矿床流体包裹体特征及成矿环境研究[J].地质与勘探,42(6):47-51
    [11]杨巍然,张文淮.1996.构造流体—一个新的研究领域[J].地学前缘,3(3-4):124-130
    [12]曹青.2005.新疆三塘湖盆地流体包裹体研究[D].西安:西北大学.
    [13]张振亮.2003.德兴铜厂铜矿非常温常压条件下的流体包裹体拉曼光谱特征及其成矿意义[D].武汉:中国地质大学.
    [14]霍艳.2005.西藏马攸木金矿床成矿流体地球化学[D].成都:成都理工大学.
    [15]孙莉.2006.胶东谢家沟金矿床流体包裹体研究[D].北京:中国地质大学.
    [16]陆三明.2007.安徽铜陵狮子山铜金矿田岩浆作用与流体成矿[D].合肥:合肥工业大学.
    [17]刘斌.2008.地壳构造流体[M].北京:科学出版社,1-62,426-506.
    [18]芮宗瑶,李荫清,王龙生等.2003.从流体包裹体研究探讨金属矿床成矿条件[J].矿床地质,22(1):13-23
    [19]范宏瑞,谢奕汉,王英兰.1997.流体包裹体与金矿床的成矿及勘探评价[J].贵金属地质,6(3):204-213
    [20]芮宗瑶,李宁,王龙生.1991.关门山铅锌矿床:盆地热卤水成矿及铅同位素打靶[M].北京:地质出版社.
    [21]薛春纪,陈毓川,杨建民等.2002.滇西北兰坪铅锌银铜矿田含烃富CO2成矿流体及其地质意义[J].地质学报,76(2):244-253
    [22]曾荣,薛春纪,高永宝等.2006.云南金顶铅锌矿床成矿流体的微量元素研究[J].矿物岩石,26(3):38-45
    [23]张文淮,张德会,刘敏.2003.江西银山铜铅锌金银矿床成矿流体及成矿机制研究[J].岩石学报,19(2): 242-250
    [24]高文亮,詹国年.2006.赣北张十八铅锌矿流体包裹体研究[J].东华理工学院学报,增刊,132-138
    [25]肖晓牛,喻学惠,杨贵来等.2008.滇西沧源铅锌多金属矿集区流体包裹体研究[J].矿床地质,27(1):101-112
    [26]Campbell A R, Hackbarth Cj, Plumlee G S and Petersen U.1984. Internal features of ore minerals seen with the infrared microscope [J]. Econ. Geol.,79:1387-1392
    [27]Luders V.1996. Contribution of infrared microscopy to fluid inclusion studies in some opaque minerals (wolframite, stibnite, bournonite):Metallogenic implications [J]. Economic Geology and the Bulletin of the Society of Economic Geologists,91:1462-1468
    [28]朱霞,倪培,黄建宝等.2007.显微红外测温技术及其在金红石矿床中的应用[J].岩石学报,23(9):2052-2058.
    [29]Pei Ni, Xia Zhu, Rucheng Wang et al.2008. Constraining ultrahigh-pressure (UHP) metamorphism and titanium ore formation from an infrared microthermometric study of fluid inclusions in rutile from Donghai UHP eclogites, eastern China[J]. Geological Society of America Bulletin,120(9/10):1296-1304.
    [30]Campbell A R and Panter KS.1990. Comparison of fluid inclusions in coexisting (cogenetic?) wolframite, cassiterite and quartz from St. Michel's Mount and Cligga Head, Cornwall, England [J]. Geochim. Cosmochim. Acta,54:673-683
    [31]周朝宪.滇东北麒麟厂锌铅矿床成矿金属来源、成矿流体特征和成矿机理研究.矿物岩石地球化学通报,1998,17(1):34-36
    [32]Zhou C X, Wei C S, Guo J Y et al.2001. The source of metals in the Qilinchang Pb-Zn deposit, Northeastern Yunnan, China:Pb-Sr isotope constraints [J]. Economic Geology,96:583-598
    [33]柳贺昌,林文达.1999.滇东北铅锌银矿床规律研究[M].昆明:云南大学出版社,1-426
    [34]Han R S, Liu C Q, Huang Z L et al.2004. Fluid inclusions of calcite and sources of ore-forming fluids in the Huize Zn-Pb-(Ag-Ge) district, Yunnan, China [J]. Acta Geoscientica Sinica,78:583-591
    [35]Han R S, Zou H J, Hu B et al.2007a. Features of fluid inclusions and sources of ore-forming fluid in the Maoping carbonate-hosted Zn-Pb-(Ag-Ge)deposit, Yunnan, China [J]. Acta Petrologica Sinica,23(9):2109-2118
    [36]R S Han, C Q Liu, Z L Huang et al.2007b. Geological features and origin of the Huize carbonate-hosted Zn-Pb-(Ag) district, Yunnan, South China [J]. ore geology reviews,31:360-383
    [37]张振亮,黄智龙,饶冰等.2005.会泽铅锌矿床的成矿流体浓缩机制[J].地球科学-中国地质大学学报,30(4):443-450
    [38]张振亮.2006.云南会泽铅锌矿床成矿流体性质和来源-来自流体包裹体和水岩反应实验的证据[D].中国科学院地球化学研究所
    [39]张长青,毛景文,余金杰等.2007.四川甘洛赤普铅锌矿床流体包裹体特征及成矿机制初步探讨[J].岩石学报,23(10):2541-2552
    [40]张长青.2008.中国川滇黔交界地区密西西比型(MVT)铅锌矿床成矿模型[D].中国地质科学院.
    [41]王天刚,倪培,王国光等.2008.甘肃厂坝铅锌矿富甲烷流体包裹体的发现及其意义[J].岩石学报,24(9):2105-2112.
    [42]韩润生,陈进,黄智龙等.2006.构造成矿动力学及隐伏矿定位预测-以云南会泽超大型铅锌(银、锗)矿床为例[M].北京:科学出版社.1-170
    [43]刘斌,沈昆等.1999.流体包裹体热力学[M].北京:地质出版社,1-137.
    [44]卢焕章,李秉伦,沈昆等.1990.包裹体地球化学[M].北京:地质出版社,56-228.
    [45]何知礼.1982.包体矿物学[M].北京:地质出版社,37-170.
    [46]T. J. Shepherd, A. H. Rankin, D. H. M. Alderton et al.1990. A practical guide to fluid inclusion studies [M]. 张恩世,张文淮,高怀忠等译.武汉:中国地质大学出版社,92-102.
    [47]李文博,黄智龙,张冠.2006.云南会泽铅锌矿田成矿物质来源:Pb、S、C、H、O、Sr同位素制约[J].岩石学报,22(10):2567-2580
    [48]高文亮,詹国年.2006.赣北张十八铅锌矿流体包裹体研究[J].东华理工学院学报,增刊,132-138
    [49]卢焕章.1997.成矿流体[M].北京:北京科学技术出版社,1-202.
    [50]卢焕章,池国祥王中刚等.1995.典型金属矿床的成因及其构造环境[M].北京:地质出版社,177-181.
    [51]中国科学院地球化学开放研究实验室.1997.矿床地球化学[M].北京:地质出版社.373-401,480-484
    [52]黄智龙,陈进,韩润生等.2004.云南会泽超大型铅锌矿床地球化学及成因-兼论峨眉山玄武岩与铅锌成矿的关系[M].北京:地质出版社.1-145
    [1]韩润生,陈进,黄智龙等.2006.构造成矿动力学及隐伏矿定位预测—以云南会泽超大型铅锌(银、锗)矿床为例[M].北京:科学出版社.1-170
    [2]黄智龙,陈进,韩润生等.2004.云南会泽超大型铅锌矿床地球化学及成因-兼论峨眉山玄武岩与铅锌成矿的关系[M].北京:地质出版社.1-145
    [3]付绍洪.2004.扬子地块西南缘铅锌成矿作用与分散元素镉镓锗富集规律[D].成都理工大学.
    [4]李连举,刘洪滔,刘继顺.1999.滇东北铅、锌、银矿床矿源层问题探讨[J].有色金属矿产与勘查,8(6):333-339
    [5]谢学锦.2004.中国东部与全球大陆地壳化学成分的比较[J].地质通报,23(11):1057-1058
    [6]李厚民,毛景文,徐章宝等.2004.滇黔交界地区峨眉山玄武岩铜矿化蚀变特征[J].地球学报,25(5):495-502
    [7]温春齐.2005.矿床学研究方法[M].成都理工大学(内部资料).
    [8]王中刚,于学元,赵振华.1989.稀土元素地球化学[M].北京:科学出版社.
    [9]芮宗瑶,李宁王龙生.1991.关门山铅锌矿床盆地热卤水成矿及铅同位素打靶[M].北京:地质出版社.1-178
    [10]柳贺昌,林文达.1999.滇东北铅锌银矿床规律研究[M].昆明:云南大学出版社,1-426
    [11]李文博,黄智龙,张冠.2006.云南会泽铅锌矿田成矿物质来源:Pb、S、C、H、O、Sr同位素制约[J].岩石学报,22(10):2567-2580.
    [12]胡彬.2003.云南昭通毛坪铅锌矿床地质地球化学特征及隐伏矿定位预测[D].昆明理工大学
    [13]韩润生.2004.云南昭通毛坪铅锌矿床地质地球化学特征及隐伏矿定位预测[R].昆明理工大学:1-121
    [14]卢焕章,李秉伦,沈昆等.1990.包裹体地球化学[M].北京:地质出版社,56-228.
    [15]陈士杰.1986.黔西滇东北铅锌矿成因探讨[J].贵州地质,8(3):211-222
    [16]Zhou C X, Wei C S, Guo J Y et al.2001. The source of metals in the Qilinchang Pb-Zn deposit, Northeastern Yunnan, China:Pb-Sr isotope constraints [J]. Economic Geology,96:583-598
    [17]Han R S, Liu C Q, Huang Z L et al.2004. Fluid inclusions of calcite and sources of ore-forming fluids in the Huize Zn-Pb-(Ag-Ge) district, Yunnan, China [J]. Acta Geoscientica Sinica,78:583-591
    [18]Han R S, Zou H J, Hu B et al.2007a. Features of fluid inclusions and sources of ore-forming fluid in the Maoping carbonate-hosted Zn-Pb-(Ag-Ge)deposit, Yunnan, China [J]. Acta Petrologica Sinica,23(9):2109-2118
    [19]R S Han, C Q Liu, Z L Huang et al.2007b. Geological features and origin of the Huize carbonate-hosted Zn-Pb-(Ag) district, Yunnan, South China [J]. ore geology reviews,31:360-383
    [20]刘建明,刘家军.1998.盆地流体及其成矿作用.欧阳自远主编,世纪之交矿物学岩石学地球化学回顾与展望[M].北京:原子能出版社.384-389
    [21]何明勤,刘家军,李朝阳等.2004.兰坪盆地铅锌铜大型矿集区的流体成矿作用机制-以白秧坪铜钻 多金属地区为例[M].北京:地质出版社.1-108
    [22]韩润生,刘丛强,黄智龙等.2001.论云南会泽富铅锌矿床成矿模式[J].矿物学报,21(4):674-680
    [23]黄智龙,陈进,刘丛强等.2001.峨眉山玄武岩与铅锌成矿:以云南会泽铅锌矿为例[J].矿物学报,31(4):691-688
    [24]李连举,刘洪滔,刘继顺.1999.滇东北铅、锌、银矿床矿源层问题探讨[J].有色金属矿产与勘查,8(6):333-339
    [25]廖文.1984.滇东、黔西铅锌金属区硫、铅同位素组成特征与成矿模式探讨[J].地质与勘探,(1):1-6
    [26]陈进.1993.麒麟厂铅锌硫化物矿床成因及成矿模式探讨[J].有色金属矿产与勘查,(2):85-90
    [27]李文博,黄智龙,陈进,等.2002.云南会泽超大型铅锌矿床成矿物质来源-来自矿区外围地层及玄武岩成矿元素含量的证据[J].矿床地质,21(增刊):413-416
    [28]涂光炽.1988.中国层控矿床地球化学(第三卷)[M].北京:科学出版社,1-26,95-130
    [29]李文博,黄智龙,陈进,等.2004b.云南会泽超大型铅锌矿床成矿时代研究[J].矿物学报,24(2):112-116
    [30]李文博,黄智龙,王银喜等.2004a.会泽超大型铅锌矿田方解石Sm-Nd等时线年龄及其地质意义[J].地质论评,50(2):189-195
    [31]张长青,毛景文,刘峰等.2005.云南会泽铅锌矿床粘土矿物K-Ar测年及其地质意义[J].矿床地质,24(3):317-324
    [32]宋谢炎,张成江,汪云亮等.2002.峨眉山玄武岩的地幔热柱成因[J].矿物岩石,22(4):27-32
    [33]朱炳泉.2003.大陆溢流玄武岩成矿体系与基韦诺(Keweenaw)型铜矿床[J].地质地球化学,31(2):1-8
    [34]范蔚茗,王岳军,彭头平等.2004.桂西晚古生代玄武岩Ar-Ar和U-Pb年代学及其对峨眉山玄武岩省喷发时代的约束[J].科学通报,49(18):1892-1900
    [35]中国科学院地球化学开放研究实验室.1997.矿床地球化学[M].北京:地质出版社.226-247
    [36]冉崇英,胡煜昭,吴鹏等.2010.学习实践“改造成矿作用”理论—以滇中砂岩铜矿为例兼论改造作用的上、下限问题[J].地学前缘,17(2):35-44.
    [1]孙岩,徐士进,刘德良等.1998.断裂构造地球化学导论[M].北京:科学出版社.9-66
    [2]吴学益.2000.构造地球化学学科的前缘问题[J].地学前缘,7(1):122
    [3]黄德智,戴塔根,孔华等.2002.安徽张八岭构造带小庙山金矿容矿断裂构造地球化学研究[J].大地构造与成矿学,26(1):69-74
    [4]张国林,何国朝.2002.东乡铜矿断裂带构造地球化学及找矿标志[J].地质与勘探,38(6):22-24
    [5]韩润生,刘丛强,马德云等.2001a.陕西铜厂地区断裂构造地球化学及定位成矿预测[J1.地质地球化学,29(3):158-163
    [6]韩润生,陈进,李元等.2001b.云南会泽麒麟厂铅锌矿床八号矿体的发现[J].地质地球化学,29(3):191-195
    [7]钱建平.2006.构造地球化学方法找矿的基本问题[A].云南地质,25(4):384-386
    [8]黄瑞华.1996.大地构造地球化学[M].北京:地质出版社.1-11
    [9]罗孝桓.1993.烂泥沟金矿区F3控矿断裂特征及构造成矿作用机理探讨[J].贵州地质,10(1):26-34
    [10]韩润生,马德云,刘丛强等.2003.陕西铜厂矿田构造成矿动力学[M].昆明:云南科技出版社.1-164
    [11]孙岩,韩克从.1985.断裂构造岩带的划分[M].北京:科学出版社.1-40
    [12]胡彬.2003.云南昭通毛坪铅锌矿床地质地球化学特征及隐伏矿定位预测[D].昆明理工大学
    [13]韩润生.2004.云南昭通毛坪铅锌矿床地质地球化学特征及隐伏矿定位预测[R].昆明理工大学:1-121
    [14]韩润生,陈进,黄智龙等.2006.构造成矿动力学及隐伏矿定位预测—以云南会泽超大型铅锌(银、锗)矿床为例[M].北京:科学出版社.1-170
    [15]温春齐.2005.矿床学研究方法[M].成都理工大学(内部资料).
    [16]欧阳宗圻,李惠,刘汉忠.1990.典型有色金属矿床地球化学异常模式[M].北京:科学出版社.3-15
    [17]邵跃.1997.热液矿床岩石测量(原生晕法)找矿[M].北京:地质出版社.1-142
    [18]李波,韩润生,邹海俊等.2008.巧家松梁铅锌矿床Ⅰ号矿体分布区1260中段构造岩地球化学特征[J].地质与勘探,44(5):47-52
    [19]王学仁.1982.地质数据的多变量统计分析[M].北京:科学出版社.1-40
    [20]李波.2008.云南巧家松梁铅锌矿床地质特征及构造地球化学异常模式[D].昆明:昆明理工大学
    [21]黄智龙,陈进,刘丛强等.2001.峨眉山玄武岩与铅锌成矿:以云南会泽铅锌矿为例[J].矿物学报,31(4):691-688
    [22]韩润生,刘丛强,黄智龙等.2001.论云南会泽富铅锌矿床成矿模式[J].矿物学报,21(4):674-680
    [23]张振亮,黄智龙,饶冰,等.2005.会泽铅锌矿床的成矿流体来源:来自水岩反应的证据[J].吉林大学学报:地球科学版,35(5):587-592.
    [24]Runsheng Han, Congqiang Liu, Zhilong Huang et al.2007. Geological features and origin of the Huize carbonate-hosted Zn-Pb-(Ag) District, Yunnan, South China[J]. Ore geology reviews,31:360-383.
    [25]张长青,李向辉,余金杰,等.2008.四川大梁子铅锌矿床单颗粒闪锌矿铷-锶测年及地质意义[J].地质论评,54(4):532-538.
    [1]韩润生,陈进,黄智龙等.2006.构造成矿动力学及隐伏矿定位预测—以云南会泽超大型铅锌(银、锗)矿床为例[M].北京:科学出版社.1-170
    [2]胡彬.2003.云南昭通毛坪铅锌矿床地质地球化学特征及隐伏矿定位预测[D].昆明理工大学
    [3]邵跃.1997.热液矿床岩石测量(原生晕法)找矿[M].北京:地质出版社.1-142
    [4]田锋.2005.谢家沟金矿元素地球化学特征及原生晕叠加模型[D].中国地质大学.
    [5]朴寿成,贾洪杰,翟玉峰等.2003.金厂沟梁金矿床矿脉原生地球化学特征及深部含矿性评价[J].地质地球化学,31(1):47-51
    [6]李惠,张国义,王支农等.2004.小秦岭石英脉型金矿床的构造叠加晕模式[J].地质与勘探,40(4):51-54
    [7]王超,孙华山,曹新志等.2006.山东招远上庄金矿原生晕特征及深部成矿预测[J].金属矿山,11:54-56
    [8]马立成,杨兴科,王磊等.2006.东天山石英滩金矿田控矿构造与原生晕深部预测[J].地质与勘探,42(2):24-28
    [9]李惠,高祥海.2000.山东乳山初家沟金矿床的原生叠加晕模式[J].黄金地质,6(2):55-60
    [10]王支农,李惠,张国义等.2003.构造叠加晕在某些金矿区深部预测的效果[J].黄金,24(2):10-13
    [11]李惠,张国义,禹斌.2006.金矿区深部盲矿预测的构造叠加晕模型及找矿成果[M].北京:地质出版社.1-48
    [12]柳贺昌,林文达.1999.滇东北铅锌银矿床规律研究[M].昆明:云南大学出版社,1-426
    [13]黄智龙,陈进,韩润生等.2004.云南会泽超大型铅锌矿床地球化学及成因-兼论峨眉山玄武岩与铅锌成矿的关系[M].北京:地质出版社.1-145
    [14]谈树成,高建国,晏建国等.2001.云南个旧矿区南部矿床原生晕垂直分带研究[J].矿物学报,21(4):596-601
    [15]刘英俊,曹励明,李兆麟.1984.元素地球化学[M].北京:科学出版社.90-176
    [16]李惠,王支农.2002.金矿床(体)深部盲矿预测的构造叠加晕前、尾晕共存准则[J].地质找矿论丛,17(3):195-197
    [17]刘崇民.1993.隐伏矿的地球化学找矿方法技术研究.物探与化探[J].17(6):474-475
    [18]刘崇民,徐外生.1994.蔡家营铅锌银矿床原生异常模式[J].物探与化探,18(5):378-391
    [19]刘崇民.2006.金属矿床原生晕研究进展[J].地质学报,80(10):1528-1538

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700