用户名: 密码: 验证码:
云南老君山成矿区成矿系列及成矿规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
老君山成矿区位于云南省的东南部,以盛产锡、锌、钨、银著称。在1380km2的范围内已探明曼家寨特大型矿床一处,铜街、新寨、南秧田大型矿床三处,辣子寨、水洞厂、南当厂、戈岭、老寨中型矿床五处,以及一系列小型多金属矿床(点)二十余处,是滇东南多金属成矿带(个旧—薄竹山—老君山)的重要组成部分。
     本文以喷流沉积和成矿系列理论做指导,主要进行了老君山成矿区地层、矽卡岩与花岗岩的岩石学、岩石化学、地球物理、地球化学分析;矿床地质特征、矿石矿物学和组构学研究;岩(矿)石的微量元素、稀土元素、稳定同位素地球化学等方面的研究工作。在系统分析研究区成矿机理的基础上,完成了成矿系列的划分;并总结了老君山成矿区有利的成矿地质因素、建立了成矿模式及找矿模型。在全面分析研究区地层、构造、花岗岩及地球物理、地球化学特征与成矿的关系的基础上,总结了成矿规律,完成了成矿远景评价。论文的研究成果与创新主要体现在以下几个方面:
     (1)老君山成矿区以老君山为中心,加里东期为扬子地台前缘海盆凹陷中心,沉积厚度较大,加里东晚期开始隆起,海西构造阶段总体上隆,周围局部残存浅海,在早中泥盆世部分地区沉积了碳酸盐岩和砂泥岩,燕山构造阶段沿隆起核心形成陆壳改造重熔花岗岩并部分上升侵位,最终形成弯隆构造格局。
     (2)老君山地区经历了多期地质作用,区内变形变质作用极其复杂,围绕老君山花岗岩体由外到内以次形成了绿片岩相带、角闪岩相带、混合岩相带三个变质相带。本文结合变质岩的形态产状特征、矿物岩石学特征及岩石化学特征,进行了变质原岩恢复,证明老君山成矿区含矿矽卡岩、角岩、石英岩等变质类岩石的原岩为一套海底火山—喷流沉积岩石。研究区矽卡岩传统上划分为复杂矽卡岩和简单矽卡岩(角岩)两类,作者认为复杂矽卡岩距花岗岩体较近,由火山—喷流沉积—叠加改造作用形成;简单矽卡岩(角岩)分布在距岩体较远的区域,由火山—喷流沉积—改造作用形成。岩(矿)石同位素测年结果显示,印支期是老君山地区变形变质作用的峰期。
     (3)在老君山成矿区发现了火山—喷流沉积及其若干证据:①多金属硫化物矿体呈层状分布,且与围岩呈渐变过渡关系、互层状产出,含矿地层层位稳定,单层延长可达数十公里;②岩(矿)石的结构、构造中发现了大量的变余斑状结构、变余间粒结构、柱状变晶结构,变余气孔、杏仁构造、鲕状构造、结核状构造等,为喷流沉积型矿床的特征结构、构造;③矿石铅同位素测年结果主要为早加里东期、印支期,早于燕山期花岗岩侵入阶段,与花岗岩成矿理论相矛盾;④对硫化物矿石及矽卡岩进行了岩石化学分析,大量样品点投影在火山岩区域。证明了老君山地区早加里东期火山—喷流沉积作用的存在,喷流沉积层位集中在下寒武统冲庄组和中寒武统田蓬组,是多金属硫化矿床的集中产出地层。
     (4)老君山成矿区矿床的形成是一个复杂的地质演化过程,主体层状多金属硫化物矿床属多源、多成因的复生矿床,大致经历了三个阶段:即火山—喷流沉积阶段→区域变质阶段→岩浆岩热液叠加阶段。在海底火山—喷流沉积阶段形成了分布广泛的多金属硫化物沉积层,在区域变质阶段喷流沉积物质普遍受到变质,老君山花岗岩体为铝过饱和型陆壳重熔花岗岩,岩体中成矿元素丰富,不但形成了多处伟晶岩矿床,对周边大型多金属硫化物矿床的形成也具有一定的叠加改造作用。
     (5)以成矿演化的观点,结合不同矿床的主导成矿因素,在老君山成矿区厘定了3大成矿系列。在空间分布上以花岗岩为中心由内向外依次为:Ⅲ、燕山晚期花岗岩伟晶—气成高温热液成矿系列;Ⅱ、加里东早期火山喷流沉积—印支期变质—燕山期花岗岩热液叠加改造成矿系列;Ⅰ、加里东早期火山喷流沉积—印支期区域变质成矿系列。归纳了各成矿系列所包含的矿床类型,并结合典型矿床详细研究了各系列矿床的矿体产出特征、岩(矿)石结构、构造特征及地球化学特征。
     (6)老君山多金属成矿区众多矿床为多来源、多期叠加成矿模式,是早加里东期火山—喷流沉积、印支期区域变质作用和燕山期花岗岩叠加改造共同作用的结果。
     (7)老君山成矿区控矿规律:①地层、岩相控矿特征明显,花岗岩体以外几乎所有的多金属硫化物矿床(点)均分布在寒武系,下寒武统冲庄组和中寒武统田蓬组是主要赋矿地层,在由下部碎屑岩相带向上部大理岩相过渡的层位有利于矿体产出。②文山—麻栗坡、马关—都龙深大断裂控制着矿床的分布,在老君山穹窿体周围形成的一系列断裂、裂隙往往成为后期脉状矿体的赋存部位。③老君山成矿区地层受到了强烈的变形变质作用,绿片岩相带是主要的矿床产出相带,矽卡岩是主要赋矿岩石。④燕山期花岗岩控制了气成高温热液矿床的形成,并与多金属硫化矿床紧密相依。
Laojunshan Metallogenic Belt is in the Southeast of Yunnan province, it is famous for the abundant ore resources of tin, zinc, ungsten and silver. In which one giant large scale (Man jiazhai) deposit, three large scale(Tongjie, Xinzhai and Nanyangtian) deposits, five medium scale(Lazizhai, Shuidongchang, Nandangchang, Gel ing, and Laozhai) deposits, and more than twenty other ore deposits (points) were proven. Laojunshan Metallogenic Belt is an important part of the southeastern metallogenic belt(Gejiu, Bozhushan and Laojunshan)of Yunnan.
     This dissertation was guided by the theories of exhalative sedimentary mineralization and metallogenic series, the petrology, petrochemistry and geothemistry of the stratum, skarn and granite were analysised; the geological characteristics of the deposits, the mineralogy, texture and structure of the ores were studied; the microelement, rare earth element and stable isotope of the rocks and ores have been studied. On the basis of examining the relationship between the metal mineralization and strata, structure, granites and geophysics, geochemical, metallogenic regularities were summarized. Based on analyses of metallogenic mechanism, metallogenic series were formed. Ore-forming Geological Conditions were analysed, the metallogenic model and prospecting model were established, ore formation prospect evaluation was given. The main research findings and new viewpoints achieved in this dissertation are as follows:
     (1)Laojunshan metallogenic belt with the central of Laojunshan mountain, as a front seabasin of Yangtze platform during Caledonian epoch, with thicker sedimentary cover, During late Caledonian epoch the belt was gradually uplift, and was integral uplift during Hercynian, only shallow sea left in the belt. The sequence of Early and Middle Devonian strata, mainly carbonate, sandstone and mudstone. Crust remelting granites formed in the central of the uplift belt during Yanshanian, and the dome like shape was formed during the same period.
     (2)The region has a complex geological structure and strong metamorphism, metamorphic lithologies include greenschist, amphibolite and migmatite. Based on the petrographic and mineralogical characteristics of metamorphic rocks, and the petrochemical characteristics, that the metamorphic rocks are marine volcanic exhalation-sedimentary origin. There are two kinds of skarns:complex skarn and simple skarn. Complex skarns are close to the granite, that were formed by volcano-exhalative-sedimentation-superimposition and reformation. Simple skarns are far from the granite, that were formed by volcano-exhalative-sedimentation-reformation. According to the isotopic dating, Indo-chinese epoch was the peak metamorphic period of Laojunshan Metallogenic Belt.
     (3)There are some evidences of volcanic exhalation-sedimentary:①Polymetallic sulfide orebodies are beded, have a gradual transitional contact and interbeded with the wall rocks, the ore-bearing strata occur steadily, and the along strike can be length up to more than 10 kilometres.②Blastoporphyritic texture, intergranular texture, crystalloblastic texture and vesicular structure, amygdaloidal structure, oolitic structure, nodule structure are widespread in the belt.③Isotopic dating of ore-forming events showed that Early caledonian and Indosinian period were the main mineralization stages in Laojunshan Metallogenic Belt, earlier than Yenshanian granite intrusion period, which is in contradiction with granitic genesis.④REE patterns and La/Yb—REE diagram showed the marine volcanic exhalation-sedimentary origin of the skarns and ores. The volcanic exhalation-sedimentary deposits are mainly occurred in Lower cambrian chongzhuang formation and middle cambrian tianpeng formation.
     (4)The ore generation process is experienced multi-period metamorphism and complex geological evolution process, that could mainly divide into three mineralization stages:Volcanic exhalation-sedimentary stage→Regional metamorphic stage→magmatic hydrothermal superimposition stage. During volcanic exhalation-sedimentary stage, source beds were formed in the sedimentary strata, and most of the source beds were skarnized in regional metamorphic stage, Laojunshan granite belongs to aluminium supersaturation and continental crust remelting type. The granites are rich in ore-forming elements, not only formed many pegmatite deposits nearby, but also the magmatic pneumato-hydrothermal effects are superimposed on preexisting polymetallic sulfide deposits.
     (5)Three metallogenic series are classified in Laojunshan metallogenic belt. From center to perimeter:Ⅲ. Granitic superimposed metallogenic series of the late Yanshanian epoch,Ⅱ.Volcanic exhalation sedimentary in early Caledonian—regional metamorphism in Indo-chinese epoch—granitic superimposed in late Yanshanian epoch metallogenic series,Ⅰ. Volcanic exhalation sedimentary in early Caledonian—regional metamorphism in Indo-chinese epoch metallogenic series. The deposit types devided, the occurrence of ore bodies, texture and structure of the ore bodies and the wall rocks, and geochemical characteristics of each metallogenic series was studied.
     (6)The metallogenic models of Laojunshan metallogenic belt were mainly multiple sources and multistage superposition, the formation of ore belt may result from the combination of the volcanic exhalation sedimentary of early Caledonian, the regional metamorphism of Indo-chinese epoch and the granitic superimposed of late Yanshanian epoch.
     (7)The ore-controlling regularities:①Almost all of the polymetallic sulfide deposits were formed in the Cambrain stratum, lower Cambrian chongzhuang formation, middle Cambrian tianpeng formation and middle Cambrian longha formation were the main ore-hosting stratas in the belt, Lithofacies changes zone from clastic to marble had the favorable condition for the ore formation.②Nearly all of the deposits are restricted between Wenshan-Malipo fault and Maguan-dulong fault, and fault system around the tectonic dome always have good condition for the mineralization of vein ore bodies.③Ore-bearing rocks of the belt always associated with high-grade metamorphism, greenschist is one of the most important ore-bearing facies belts, skarn is one of the most important ore-bearing rock types.④Yenshanian granite was the source of rich metal-bearing fluids that formed hypothermal deposits in the belt, and also important for the polymetallic sulfide deposit.
引文
[1]宋焕斌,金世昌,滇东南都龙锡矿的控矿因素及区域找矿方向,云南地质,1987,6(4):298-304
    [2]宋焕斌,云南东南部都龙锡石-硫化物型矿床的成矿特征,矿床地质,1989,8(4):29-38
    [3]忻建刚,袁奎荣,云南都龙隐伏花岗岩的特征及其成矿作用,桂林冶金地质学院学报,1993,13(2):121-129
    [4]刘玉平,一个受后期改造和热液叠加的块状硫化物矿床-都龙超大型锡锌多金属矿床,矿物岩石地球化学通报,1998,17(1):22-24
    [5]刘玉平,李朝阳,王金良,都龙锡锌多金属矿床热水沉积成矿作用的确定,中国科学院地球化学研究所等编,资源环境与可持续发展—庆祝涂光炽院士从事革命及地学工作六十周年暨八十华诞.北京:科学出版社,1999,128-130
    [6]周建平,徐克勤,华仁民,赵懿英,朱金初,滇东南喷流沉积快状硫化物特征与矿床成因,矿物学报,1998,18(2):158-168
    [7]翟裕生,成矿系列研究问题,现代地质,1992,5(3):301-308
    [8]安保华,老君山岩体特征、成因及其找矿意义探讨,西南矿产地质,1990,4(1):30-35
    [9]官容生,滇东南构造岩浆带花岗岩体的含矿性探讨,矿物岩石,1991,11(1):92-101
    [10]罗君烈,滇东南锡、钨、铅锌、银矿床的成矿模式,云南地质,1995,14(4):319-332
    [11]张洪培,刘继顺,李晓波,章霞林,滇东南花岗岩与锡、银、铜、铅、锌多金属矿床的成因关系,地质找矿论丛,2006,21(2):87-90
    [12]柳贺昌,云南马关老君山锡-钨多金属成矿区的成矿控制因素,矿产与勘查,1989,(2):1-7
    [13]晏建国,云南都龙锡多金属矿床及厚大矿体控矿地质特征,西南矿产地质,1992,(2):618-202
    [14]付国辉,云南都龙锡多金属矿床地质特征及成矿规律,西南矿产地质,1992,(2):618-205
    [15]王学煜,麻栗坡新寨锡矿床地质地球化学特征,云南地 质,1994,13(1):618-440
    [16]罗君烈,云南超大型矿床的形成特征,云南地质,1995,14(4):276-280
    [17]周建平,徐克勤,华仁民,赵懿英,滇东南锡多金属矿床成因商榷,云南地质,1997,16(4):109-349
    [18]曹文书,刘继顺,滇东南三保银多金属矿床地质特征,有色金属矿产与勘查,1998,7(2):6-91
    [19]曾志刚,李朝阳,刘玉平,涂光炽,滇东南南秧田两种不同成因类型白钨矿的稀土元素地球化学特征,地质地球化学,1998,26(2):618-670
    [20]曾志刚,李朝阳,刘玉平,涂光炽,老君山成矿区变质成因夕卡岩的地质地球化学特征,矿物学报,1999,19(1):48-55
    [21]刘玉平,李朝阳,曾志刚,王金良,都龙锡锌矿床单矿物Rb-Sr等时线年龄测定,昆明冶金高等专科学报,1999,15(2):5-8
    [22]刘玉平,李朝阳,刘家军,都龙矿床含矿层状夕卡岩成因的地质地球化学证据,矿物学报,2000,20(4):378-383
    [23]刘玉平,李朝阳,谷团,王金良,都龙锡锌多金属矿床成矿物质来源的同位素示踪,地质地球化学,2000,28(4):75-82
    [24]刘玉平,李正祥,李惠民,郭利果,徐伟,叶霖,李朝阳,皮道会,都龙锡锌矿床锡石U-Pb年代学:滇东南白垩纪大规模花岗岩-成矿事件,岩石学报,2007,23(5):967-976
    [25]秦德先,近年在我国三个特大型锡矿床中相继发现的火山(成矿)作用及其科学意义,昆明理工大学学报(理工版),2008,33(1):Ⅰ-Ⅱ
    [26]张世涛,冯明刚,吕伟,滇东南南温河变质核杂岩解析,中国区域地质,1998,17(4):390-397
    [27]李东旭,许顺山,变质核杂岩的旋扭成因—滇东南老君山变质岩的构造解析,地质评论,2000,46(2):113-119
    [28]刘玉平,李朝阳,谷团,王金良,滇东南老君山中—深变质岩系铅同位素特征及时代归属,矿物学报,2000,20(3):228-232
    [29]吕伟,冯明刚,胡长寿,滇东南南温河地区猛垌岩群变质作用特征,云南地质,2001,20(1):25-33
    [30]刘玉平,徐伟,廖震,叶霖,郭利果,李朝阳,老君山变质核杂岩隆升的热历 史解析与动力学机制探讨,矿物岩石地球化学通报,2007,21(z1):87-88
    [31]峨问天,海底热液沉积成矿,地质与勘探,1985,6(1):22-28
    [32]Hekinia R, Fevrier et al. Sulfur deposits from the East Pacific Rise 21°N. Science,1980,207:1433-1444
    [33]CYAMEX Sentific Team. First manned submersible dives on the East Pacific Rise at 21°N(Project RITA). General results.geolorys Res,1981, (4):345-379
    [34]翟裕生,金属成矿学研究的若干进展,地质与勘探,1997,33(1):5-8
    [35]P. A. Rona. Hydrothermal mineralization at oceanic ridges. Journal of the mineralogical association of Canada,1988,266 (3); 431-465
    [36]刘家军,郑明华,硅岩的新成因—热水沉积作用,四川地质学报,1991,12(4):11,251-254
    [37]田毓龙,秦德先,林幼斌,沈振兴,喷流热水沉积矿床研究的现状与进展,昆明理工大学报,1999,24(1):150-156
    [38]Rogers, T. D. S, Hodkinson, R. A, Cronan, D. S, Hydrothermal manganese Deposits from the Tonga-Kermadec Ridge and Lau BASIN Region, southwest Pacifie. Marine Georesources & Geotechnology,2001,19 (4):245-268
    [39]Lavelle, J. W, Baker, E. T, Embley, R. W, Prospecting for Hydrothermal Vents Using Moored Current and Temperature Data:Axial Volcano on the Juan de Fuca Ridge. Northeast Pacific. Journal of Physical Oceanography,2001,31 (3):827-838
    [40]Company, Rui,Serafim, Angela,Cosson, Richard, Fiala-Me dioni, Aline, Dixon, David R., Bebianno, Maria Joao. Adaptation of the antioxidant defence system in hydrothermal-vent mussels (Bathymodiolus azoricus) transplanted between two Mid-Atlantic Ridge sites. Marine Ecology,2007,31 (3):93-99
    [41]Singh, Satish C.Crawford. Wayne C. Carton. H e 1 e ne. Seher,Tim, Combier, Violaine, Cannat, Mathilde, Canales, Juan Pablo, Dusunur, Doga,Escartin, Javier, Miranda, J. Miguel. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field. Nature, 2006,442(7106):1029-1032
    [42]Watabe, Hajime. Hashimoto, Jun. A New Species of the Genus Rimicaris (Alvinocaridisae:Caridea:Decapoda) from the Active Hydrothermal Vent Field,'Kairei Field,'on the Central Indian Ridge, the Indian Ocean. Zoological Science (VSP International Science Publishers), 2002,19(10):1167-1174
    [43]Edmonds, H. N. Michael, P. J. Baker, E. T. Connelly, D. P. Snow, J. E. Langmuir, C. H. Dick, H. J. B. Muhe, R. German, C. R. Graham, D. W. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature,2003,421 (6920):252-256
    [44]Hugenholtz P, Pitulle C, Hershberger KL, Pace NR.1998. Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol,1998,421 (6920):366-376
    [45]Gieger, S. Haggerty, R. Dilles, J. H. Reed, M. H.; Matthai, S. K. New insights from reactive transport modelling:the formation of the sericitic vein envelopes during early hydrothermal alteration at Butte, Montana. Geofluids,2002,2 (3):185-201
    [46]Thorkelson, Derek J. Abbott, J. Grant Mortensen, James K. Creaser, Robert A. Villeneuve, Michael E. McNicoll, Vicki J. Layer, Paul W. Early and Middle Proterozoic evolution of Yukon, Canada. Canadian Journal of Earth Sciences,2005,42(6); 1045-1071
    [47]Birney De Wet, Carloc C. Hubert, John F. The Scots Ray formation, Nova Scotia, Canada, a Jurassic carbonate lake with Silica-rich hydrothermal springs. Sedimentology,1989,36 (5); 857-873
    [48]Krapez, Bryan. Barley, Mark E. Pickard, April L. Hydrothermal and resedimented origins of the precursor sediments to banded iron formation:sedimentological evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia. Sedimentology,2003,50(5); 979-1011
    [49]Hatton,O. J. Davidson, G. J. Soldiers Cap Group iron-formations, Mt Isa Inlier, Australia, as windows into the hydrothermal evolution of a base-metal-bearing Proterozoic rift basin. Australian Journal of Earth Sciences,2004,51 (1);87-108
    [50]Amend JP, Amend AC, Valenza M.1998. Determination of volatile fatty acids in the hot springs of Vulcano, Aeolian Islands, Italy. Org Geochem, 1998,266(3); 699-705
    [51]Glamoclija, Mihaela; Garrel, Laurence; Berthon, Jonathan; Purif icaci 6 n L 6 pez-Garc f a. Biosignatures and Bacterial Diversity in Hydrothermal Deposits of Solfatara Crater, Italy. Geomicrobiology Journal,2004,21 (8); 529-541
    [52]Little, Crispin T. S.; Maslennikov, Valeriy V.; Morris, Noel J.; Gubanov, Alexander P.. Two Palaeozoic Hydrothermal Vent Communities from the Southern Ural Mountains, Russia. Palaeontology,1999,42 (6); 1043-1079
    [53]Nd, Sr and Pb isotopic and REE geochemical study of some Miocene submarine hydrothermal deposits (Kuroko deposits) in Japan. By: Terakado, Yasutaka; Walker, Richard. Contributions to Mineralogy & Petrology,2005,149(4); 388-399
    [54]Glasby, G. P.; Iizasa, K.; Yuasa, M.; Usui, A..Submarine Hydrothermal Mineralization on the Izu-Bonin Arc, South of Japan:An Overview. Marine Georesources & Geotechnology,2000,18(2); 141-176
    [55]汪劲草,彭恩生,孙振家,青海锡铁山铅锌矿床喷流沉积后的构造再造过程,大地构造与成矿学,2000,(02):163-169
    [56]邓达文,孔华,奚小双,青海锡铁山热水沉积型铅锌矿床的地球化学特征,矿物岩石地球化学通报,2003,(04):310-313
    [57]李进文,裴荣富,梅燕雄,铜陵矿集区矿田构造垂直分带,矿床地质,2004,(02):206-215
    [58]曾普胜,蒙义峰,杨竹森,裴荣富,王训诚,安徽铜陵矿集区与块状硫化物矿 床有关的热水沉积岩,矿床地质,2004,(03):334-343
    [59]张国林,蔡宏渊,广西大厂锡多金属矿床成因探讨,地质论评,1987,33(05):426-435
    [60]韩发,R.W.哈钦森,大厂锡多金属矿床热液喷气沉积的证据——含矿建造及热液沉积岩,矿床地质,1989,8(02):25-40
    [61]秦德先,陈健文,田毓龙,广西大厂长坡锡矿床地质及成因,岩土工程界,1998,7(03):146-151
    [62]余阳先,秦德先,秦来勇,大厂长坡-铜坑锡多金属矿床地质特征及其层控性,矿产与地质,2004,18(05):455-459
    [63]秦德先,田毓龙,燕永锋,林幼斌,刘伟,云南易门狮子山铜矿的地球化学,地质学报,2000,74(01):72-84
    [64]秦德先,燕永锋,田毓龙,刘伟,大红山铜矿床的地质特征及成矿作用演化,地质科学,2000,35(02):129-139
    [65]李峰,张富良,滇西大平掌铜多金属矿床火山喷流沉积成因,地质与勘探,2001,37(04):5-8
    [66]王京彬,李朝阳,陈晓钟,金顶超大型铅锌矿喷流沉积成因初探,矿物岩石地球化学通报,1990,(04):359-365
    [67]秦德先,个旧锡矿的矿床成因与找矿新发现,昆明理工大学学报(理工版),2001,26(06):38
    [68]秦德先,谈树成,范柱国,黎应书,陈爱兵,李连举,刘光亮,党玉涛,童祥,武俊德,李玉新,个旧一大厂地区地质构造演化及锡多金属成矿,矿物学报,2004,24(02):117-123
    [69]黎应书,秦德先,党玉涛,薛传东,谈树成,洪托,云南个旧锡矿的玄武岩成矿,吉林大学学报(地球科学版),2006,36(03):326-335
    [70]宋叔和,中国一些主要金属矿床类型及其时空分布规律问题,矿床地质,1991,10(1):10-17
    [71]郑仁贤,龙岩小娘坑锰铅锌矿床地质特征与海底(火山)喷流—热水沉积机制浅析,地质找矿论丛,1994,9(2):28-40
    [72]徐克勤,王鹤年,周建平,朱金初,论华南喷流—沉积块状硫化物矿床,高校地质学报,1996,2(3):241-256
    [73]秦德先,洪托,田毓龙,陈健文,广西大厂锡矿92号矿体矿床地质与技术经济.北京:地质出版社,2002
    [74]芮宗瑶,海底喷气沉积矿床研究的新进展,国外矿床地质,1989,(2):1-5
    [75]Large R.,R. Lithgoeochemical halos and geochemical vectors to stratiform sediment hosted Zn-Pb-Ag deposits,1 Lady Loretta Deposits, Queensland.Journal of Geochemical Exploration 1998,63; 37-56
    [76]Zawk., Gemmell J. B, Large. R. R. Evolution and source of ore fluids in the stringer system,Hellyer VHMS deposit, Tasmania, Ausrralia:evidence from fluid inclusion microthermometry and geochemistry. ore Grology Review 1996,10,251-278
    [77]Gemmel, J. B., Herrmann, W., Preface A Special Issue Devoted to alteration associated with volcanic-hosted massive sulfide deposits and its exploration significane. Economic Geology,2001,96
    [78]Zengqian H, Liquan. w, Zaw. K. Post-collisional crustal extension setting and VHMS mineralizationin the Jinshajiang orogenic belt, southwestern China. Ore Geology Reviews 2003,22,177-199
    [79]R.W.哈钦森,层控矿床在地质历史中的地位,国外矿床地质,1988,(3):1-81
    [80]徐克勤,朱金初,任启江,中国东部几个断裂拗陷带中某些铁铜矿床成因,国际交流地质学术论文集(三)北京:地质出版社,1980:49-58
    [81]吴误,广西泥盆系火山岩及其分布特征,广西地质,1991,4(4):17-25
    [82]卢记仁,峨眉地幔热柱的动力学特征,地球学报,1996,17(4):424-438
    [83]徐义刚,种孙霖,峨眉山大火成岩省:地幔柱活动的证据及其熔融条件,地球化学,2001,30(1):1-9
    [84]高振敏,张乾,陶琰,罗泰义,峨眉山地幔柱成矿作用分析,矿物学报,2004,24(2):99-104
    [85]Bischoff J L. Red Sea geochemical brines deposits,their mineralogy,chemistry and genesis.In,degens B T& Ross D A (eds.).Hot brines and rccent heavy metal deposits of the Red sea.Springer-Verlag,1969,:639-549
    [86]Heiken, G., Goff, F., Stix, J., Tamanyu, S., Shaf iqullah, M., Garcia, S., and Hagan,R,1986,Intracaldera volcanic activity, Toledo caldera and embayment, Jemez Mountains, New Mexico:Journal of Geophysical Researchm, v.91, p.1799-1815
    [87]Wohletz, K., and Heiken, G.,1992, Volcanology and geothermal energy;Berkeley, University of California Press,432
    [88]郜兆典,海相热水沉积矿床问题讨论,广西地质,2000,(2):23-29
    [89]Butterfield D. A. Deep ocean hydrothermal vents. In:Sigurdsson H. ed. Encyclopedia of Volcanoes,2000:857-875
    [90]Ohmoto, H. Submarine calderas:A key to the formation of volcanogenic massive sulfide deposits:Mining Geology,1978(28):219-231
    [91]秦来勇,秦德先,余阳先,广西大厂细脉带锡矿体富集规律及隐伏矿体预测,华南地质与矿产,2005,(1):24-30
    [92]魏君奇,陈开旭,云南羊拉地区铜矿成矿系列,地质科技情报,2004,23(2):21-24
    [93]郭文魁,金属矿床地质的发展—纪念《矿床地质》创刊十周年,矿床地质,1991,10(01):1-9
    [94]刘洪波,关广岳,金成洙,中国古代矿床(物)学思想的认识问题,科学技术与辩证法,1992,9(3):14-18
    [95]程裕淇,陈毓川,赵一鸣,初论矿床的成矿系列问题,中国地质科学院院报,1979,1(1):32-58
    [96]程裕淇,陈毓川,赵一鸣,宋天锐,再论矿床的成矿系列问题,中国地质科学院院报,1983,(6):3-64
    [97]陈毓川,矿床的成矿系列,地质前缘(中国地质大学,北京),1994,1(3-4):90-94
    [98]陈毓川,裴荣富,望登红,三论矿床的成矿系列问题,地质学报,2006,80(10):1501-1508
    [99]程裕淇,中国大百科全书(地质卷),北京:中国大百科全书出版社,1993
    [100]吴功建,高锐,在中国用物探和化探方法找锡矿床的成果和展望,锡矿地质讨论会论文集.北京:地质出版社,1987
    [101]范柱国,谈树成,丽江—大理地区新构造运动特征及环境效应,大地构造与成矿学,2002,26(1):6-9
    [102]董云鹏,朱炳泉,常向阳,张国伟,滇东师宗—弥勒带北段基性火山岩地球化学及其对华南大陆构造格局的制约,岩石学报,2002,18(1):37-46
    [103]文兴裘,晏建国,云南老君山锡锌多金属矿床地质.北京:中国有色金属总公司出版,1997
    [104]黄华盛,矽卡岩矿床的研究现状.北京:中国地质大学出版社,1994
    [105]涂光炽,矿床地球化学.北京:地质出版社,1997
    [106]杜光数,姚鹏,潘凤雏,喷流成因矽卡岩与成矿.成都:四川科学技术出版社,1998
    [107]潘凤雏,姚鹏,西藏甲马喷流矽卡岩型铜多金属矿床地质特征,西藏地质,1997(2):62-73
    [108]German C R, Palmer M, Edmond J M, Geochemistry of a hydrothermal sediment core from the OBS Vent-field,21° N East Pacific Rise, Chemical Geology,1999,155 (1-2):65-75
    [109]丁振举,姚书振,刘丛强,周宗桂,杨明国,东沟坝多金属矿床喷流沉积成矿特征的稀土元素地球化学示踪,岩石学报,1993,19(4):792-798
    [110]Michard A, Albarede F, Michard G, Minster JF,Charlou JL, Rare earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N), Nature,1983,303:795-797
    [111]Campbell, A. C, Palmer, M. R., Klinkhammer, G. P., Bowers, T. S., Edmond, J. M., Lawrence, J. R., Casey, J. F., Thompson, G., Humphris, S., Rona, P., Karson, J. A., Chemistry of hot springs on the Mid-Atlantic Ridge, Nature,1988,335:514-519
    [112]Mitra A, Elderfield H, and Greaves M. J., Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic Ridge, Marine Chemistry,1994,46:217-235
    [113]Douville E, Bienvenu P, Charlou JL, Douville E, Bienvenu P, Charlou JL, Donval JP, Fouquest Y, Appriou P, Gamo T, Yttrium and rate earth elements influids from various deep-sea hydrothermal system, Geochimica et Cosmochimica Acta,1999,63:627-643
    [114]Elderfield H, Greaves M. J., The rare earth elements in seawater, Nature,1982,296:214-219
    [115]Shikazono N., Rare earth geochemistry of Kuroko ores and hydro thermally altered rocks:implication for evolution of submarine hydrothermal system at back arc basin, Res. Geol. Spec. Issue,1999, 20:23-30
    [116]Barrett T, Jarvis I, Jarvis K. E., Rare earth element geochemistry of massive sulfide-sulfates and gossans on the Southern Explorer Ridge, Geology,1990,18:583-586
    [117]Mills R, Elderfield H., Rare earth element geochemistry of hydrothermal deposits from the active TAG Mount,26°N mid-Atlantic Ridge, Geochim. Cosmochim. Acta.,1995 (17):3511-3524
    [118]李文尧,云南麻栗坡新寨锡矿物化探异常特征,云南地质,2002,21(01):72-82
    [119]杨世瑜,云南锡矿遥感地质找矿模型及成矿区带预测,地质地球化学,1996(04):64-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700