用户名: 密码: 验证码:
岩石微孔隙中气体吸附、链状分子运移的计算模拟及其油气地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着常规油气资源勘探难度的增加,煤层气、页岩气等非常规油气资源在能源结构中的地位越来越重要。认识和了解煤层和页岩孔隙中甲烷和二氧化碳的吸附特征及岩石形变规律,对于煤层气、页岩气的资源评价和开发有着十分重要的意义。本文在借鉴前人岩石孔隙表征结果的同时,采用氮气探针气体吸附法分析了4个煤岩样品和11个页岩样品的孔隙结构的特征,发现纳米尺度(<50 nm)孔隙较为丰富。鉴于纳米级孔隙所独有的纳米尺寸效应及其对气体吸附的重要作用,本研究针对这类孔隙-气体的相互作用开展了一系列计算模拟工作,淬火固体密度泛函理论(Quenched solid density functional theory, QSDFT)和DPD方法是本文采用的主要研究方法。
     首先,本文采用淬火固体密度泛函理论(Quenched solid density functional theory, QSDFT)研究了地质条件下甲烷和二氧化碳在煤层中的吸附行为。研究的重点是吸附过程中温度,压力以及孔径分布对于煤岩变形的影响。研究结果包括,0.5到50nm的煤层孔在298K和360K下100MPa的压力范围内的吸附量,密度分布曲线以及溶剂化压力曲线。研究发现甲烷吸附导致的溶剂化压力对孔径的变化曲线存在两种主要类型:类型Ⅰ表现为在整个压力范围内的单调膨胀。这种类型在最小的孔中<1.3σff(0.5nm)中最为典型。这类孔的特点是不能容纳超过一层的甲烷分子。类型Ⅱ表现为在低压下的收缩,而后膨胀。类型Ⅱ在能容纳整数倍层数甲烷分子(2-6层)的孔中最为常见。360K下的二氧化碳吸附导致的溶剂化压力与外压的依存关系也存在两种类型的变形行为:第Ⅰ类形变表现为在全压力范围内的单调膨胀,但在极高压下(100MPa)又会表现出收缩或者继续膨胀。该类行为在最小的孔(<0.5nm)中较为典型,该类孔不能容纳超过一层的二氧化碳分子,见0.5nm的密度分布曲线。第Ⅱ类变形行为在低压下表现出收缩,而后膨胀。高压下,该类变形行为也可以出现或膨胀或收缩的现象。第Ⅱa类行为出现在0.6和0.9nm的孔中。所有>0.9nm的孔都表现出第Ⅱb的形变。通过与文献中甲烷和二氧化碳吸附导致形变的实验数据的对比,验证了QSDFT模型的有效性。通过对一个假定模型盆地中甲烷和二氧化碳吸附行为的研究,建立了甲烷和二氧化碳吸附量、溶剂化压力与煤层孔结构以及埋藏深度之间的联系,并对二氧化碳对甲烷的驱替行为进行了初步的探讨。研究发现煤层的变形对于埋藏深度有很强的依赖性,在不同的埋藏深度膨胀或者收缩的发生依赖于煤样品孔径分布的情况。通过对地质条件下煤层中二氧化碳驱替甲烷的模拟,探讨了增强的甲烷开采方案(ECBM)中二氧化碳储量以及二氧化碳注入过程中煤层孔隙结构变化的情况。研究发现,微孔在驱替过程中的应变变化比较大,而介孔的变化较小。不同微孔应变达到极值的深度也不尽相同。对于介孔来说,5nm的孔表现出最小的区别(<0.6%)。而对于微孔来说,体相应变的差异在1nm孔径100m的情况下可以达到1.7%。这么大的应变差异将有可能导致储层渗透率的降低。
     其次,本文采用同样的方法研究了甲烷和二氧化碳在页岩中的吸附储量及由吸附研究的变形行为,相应地获得了甲烷和二氧化碳吸附量、溶剂化压力与页岩孔结构以及埋藏深度之间的联系。深度浅的时候,微孔比介孔表现出更大的单位吸附能力。小于1nm的孔的甲烷吸附能力随深度增加而快速增加,到埋藏为1500m时吸附量达到8 mmol/cm3左右的极大值。而2nm和5nm的孔的甲烷吸附量在到达6000m之前一直在持续增加,其对吸附量的贡献在3000m深度之后超过微孔。本文发现甲烷的吸附导致了三种不同的应变-深度关系。第一种,在整个深度范围内都表现为先膨胀后收缩,例如0.5nm和0.7nm的孔。在达到膨胀极值之前(0.5nm的孔1000m下的0.11%,0.7nm的孔为2000m下的0.12%),体相应变随埋藏深度快速增长,之后收缩。第二种,1nm的孔,在极浅部随深度增加表现为收缩,至100m达到一个极小值后缓慢增长,最后在6000m时膨胀至0.11%。第三种,对于≥2 nm的孔,在整个深度范围内其体积应变的变化≤0.04%,与微孔相比其影响可以忽略不计。在将二氧化碳封存到页岩中时,当深度小于1000m的时候,微孔中的所吸附的二氧化碳占主导地位,但当深度大于1000m时,介孔中的存储将变得更加重要。如果页岩层有大量的≤1nm的孔,那么其在6000m的深度之内的形变都有较大变化,有可能对二氧化碳注入过程中页岩孔结构产生影响。
     通过对甲烷和二氧化碳在煤层及页岩中的吸附研究,本文发现由流体分子导致的纳米孔隙的吸附变形行为可能存在一定的规律。为了进一步认识形变与流体分子的吸附行为的关系,本文采用QSDFT的方法定量得研究了表面粗糙程度对流体吸附和颗粒之间的相互作用的影响。表面的不均一性对于固体的润湿性和粘着性质有着很重要的影响。然而,大多数计算固体与流体相互作用的理论和模拟方法都假设存在一个标准的平滑的Gibbs流体固体分界面。这个假设导致了靠近固体表面的流体相出现人为的分层现象。具体的表现就是密度分布曲线的明显波动。这种流体密度的成层性导致了溶剂化压力以离孔壁的距离为函数发生波动,但是溶剂化压力的这种明显的波动性却在试验中极少见到。在QSDFT中,表面粗糙成分采用粗糙度参数来定量表示,该粗糙度参数代表了固体表面松散层的厚度。通过对LJ流体在平行板状孔中吸附(模拟了氮气在石墨中的吸附)的例子,本文发现在饱和状态,溶剂化压力随孔径有规律的波动。这种波动随表面粗糙度的增加(从0增加到1/2倍的分子直径)而快速减小。溶剂化压力的波动性与流体密度在匹配孔中流体密度的最大值以及不匹配孔中流体密度的最小值有很好的对应。后者以松散排列和流体的密度减小为特征。该分析表明分子尺度上的表面粗糙度对局限流体的成层排列以及成层性都有很大的抑制作用。另外,本文计算了在吸附过程中溶剂化压力随外压的变化情况,其变化随孔径和粗糙度的不同可以分为几种不同的机制。由于溶剂化压力决定了多孔介质的吸附变形性质,溶剂化压力随外压变化的非单调性很好的对应了石墨等微孔材料的在不同压力下的收缩膨胀性质。
     第三,本文采用三维DPD的模拟方法研究了链状大分子在不同外力场的作用下穿越狭窄孔道时链长的行为,以期对链状分子的运移行为进行深入理解。研究发现外力与平均穿越时间存在着反比关系,链长对穿越时间有很大影响,其在良溶剂下的指数关系为1.56,在不良溶剂下的指数关系为1.76。这与τtrans~N1+v的理论计算结果很接近。模拟观测表明穿越过程中的平均回旋半径主要受其初始状态的平衡值的影响。在穿越过程结束的时候,其指数关系为1,这与其受相同外力在无限空间中的运动行为一致。这可能是受到的外力力场强度大以及带电电荷之间相互作用较强造成的(在带电链状大分子穿越静电力场的情况下)
Unconventional energy (e.g. coal bed methane, shale gas) now is playing more important roles in the whole energy system. Understanding the adsorption capacity and deformation change during adsorption of methane and CO2 on coal and shale, may help the exploitation and resoure evaluation. Four coal samples and eleven shale samples were measured by N2 adsorption method. Isotherms as well as pore size distrubtions of these samples were obtained. Base on these exmperimental data, a systematic simulation work were carried out.
     Firstly, the quenched solid density functional theory (QSDFT) is employed to study the adsorption of methane and CO2 on coal at geological conditions. The main focus is made on coal deformation in the course of adsorption that may result either in expansion/swelling or contraction, depending on pressure, temperature, and pore size. The results of methane adsorption capacity, density profile and salvation pressure on coal in pores from 0.5nm to 50nm at 298 K and 360 K with pressure up to 100 MPa are given. Two qualitatively different types of deformation behavior are found depending on the pore width:Type I shows a monotonic expansion in the whole pressure range. This behavior is characteristic for the smallest pores<1.3σff (0.5nm) that cannot accommodate more than one layer of methane. Type II displays contraction at low pressures followed by expansion. Type II behavior is found for several groups of pores, which can accommodate dense packing with integer number (from 2 to 6) of adsorbed layers. Two typical deformation behaviors at 360 K could be summarized from the CO2 solvation pressure dependence on the external pressure. Type I behavior shows a monotonic expansion in the whole pressure range, but at high pressures it may either continue to expand or contract. This behavior is typical for the smallest pores<1.3σff (0.5 nm) that cannot accommodate more than one layer of CO2, as shown by the density profile in 0.5 nm pore. Type II behavior displays contraction at low pressures followed by expansion. At high pressure, it also may expand or contract again. Type Ha is found for 0.6 nm and 0.9 nm pores. All other pores>0.9 nm present the typeⅡb behavior.Then, the results of QSDFT model arecompared with literature experimental data, and the model is then employed to study the adsorption behavior of model coals at elevated pressures and temperatures. An instructive example of CO2 sequestration into coal bed is given. We established the relationships between the methane and CO2 capacity and the solvation pressure it exerts on the coal matrix and the depth of coal bed for pores of different sizes. The replacement process of methane by CO2 is discussed. We found that the coal deformation depends on the bed depth, and at different depths it either swell or contract depending on the pore size distribution. Through calcualtion on the replacement of methane by CO2 under geological condition, CO2 capcity and the structure change in the ECBM scenario were discussed. The difference in the volumetric strain induced by adsorption of CO2 and methane is the smallest in the case of 5nm pore (0.6%). For micropores (≤2nm), the volumetric strain difference can be as large as 1.7% in the case of 0.7 nm pore at 100 m depth, which may cause significant reduction in permeability of the reservoir through deformation.
     Secondly, similiar model is employed to study the adsorption capacity of methane and CO2 in shale and the adsorption induced deformation behavior. Correspondingly, the relationships between the methane and CO2 capacity and the solvation pressure it exerts on the shale matrix and the depth of shale for pores of different sizes is discussed. When the depth is small, the adsorption capacity (per unit volume) of micropore is bigger than that of mesopore. Methane adsorptin capacity in pores     From the study on adsorption behavior of methane and CO2 in coal bed and shale, I found that the adsorption induced deformation behavior may have some internal relatinship with pore width. In order to better understanding this relationship, I present a quantitative description of the effects of surface roughness on fluid adsorption and inter-particle interactions based on the quenched solid density functional theory (QSDFT). Surface heterogeneity affects significantly wetting and adhesion properties. However, most of the theories and simulation methods of calculating solid-fluid interactions assume a standard thermodynamic model of the Gibbs'dividing solid-fluid interface, which is molecularly smooth. This assumption gives rise to an artificial layering of the fluid phase near the surface that is displayed in oscillating density profiles. This layering brings about oscillations of the solvation (or disjoining) pressure as a function of the gap distance, which are rarely observed in experiments. In QSDFT, the surface roughness is quantified by the roughness parameter, which represents the thickness of the surface "corona" -the region of varying solid density. Drawing on the example of a LJ fluid confined to slit pores with the parameters mimicking nitrogen at its boiling temperature on carbon, it shows that while the solvation pressure at saturation conditions oscillates with the pore width in the case of smooth surfaces, these oscillations rapidly diminish with the increase of the roughness parameter from 0 to just 1/2 of the molecular diameter. The solvation pressure oscillations are correlated with the respective oscillations of the fluid density with maxima corresponding to the pore widths commensurate to the ordered layering in confined fluid and minima corresponding to the incommensurate pore widths. The latter are characterized by a loose packing and reduced density. This analysis demonstrates that the molecular scale roughness on the level of one molecular diameter frustrates the order and hinders the layering in confined fluid. Further, I calculate the variation of solvation pressure in the course of adsorption in pores and show qualitatively different regimes depending of the pore width and degree of roughness. Since the solvation pressure determines the adsorption-induced deformation of compliant porous bodies, the non-monotonic dependence of the solvation pressure corresponds to alternating stages of contraction and expansion that is typical for carbons and other microporous materials.
     Finally, this study used 3D DPD approach to study the behavior of a polymer chain translocating through a nanopore under different external fields in order to better understanding the expellling process of hydrocarbon from source rock. An inversed linear scaling relationship was found between the external force and average translocation time. For the chain length effect, the scaling exponent under good solvent condition is 1.56, under bad solvent is 1.76, close toτtrans~N1+v. The observation reveals that the average radius of gyration is still dominated by its equilibrium value at the beginning of the translocation process. At end of the translocation process, the scaling is close to 1, which indicates a pure pulling condition by the external force. This might be due to the large magnitude of the external force and strong electrostatic interaction between charged bead (in the case of charge polymer chain and electrostatic force).
引文
Alberts, B. and Bray, D.,1994. Molecular Biology of the Cell. Garland, New York.
    Astashov, A. V., Belyi, A. A., and Bunin, A. V.,2008. Quasi-equilibrium swelling and structural parameters of coals. Fuel 87,3455-3461.
    Bae, J.-S. and Bhatia, S. K.,2006. High-Pressure Adsorption of Methane and Carbon Dioxide on Coal. Energy & Fuels 20,2599-2607.
    Bakaev, V.,1995. Rumpled graphite basal plane as a model heterogeneous carbon surface. Journal of Chemical Physics 102,1398-1404.
    Balbwna, P. B., Berry, D., and Gubbins, K. E.,1993. Solvation Pressures for Simple Fluids in Micropores. Journal of Chemical Physics 97,937-943.
    Banerjee, B. and Dhar, B.,1997. Issues and options for reducing methane emission to the atmosphere from Indian coal mining. Energy Conversion and Management 37,1175-1179.
    Bastos-Neto, M., Canabrava, D. V., Torres, A. E. B., Rodriguez-Castellon, E., Jimenez-Lopez, A., Azevedo, D. C. S., and Cavalcante Jr., C. L.,2007. Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures. Applied Surface Science 253,5721-5725.
    Beck, T. and Mugele, F.,2003. Collapse of molecularly thin lubricant layers between elastic substrates. Journal of Physics:Condensed matter 15, S321-S330.
    Beltzunga, F. and Wittmann, F. H.,2005. Role of disjoining pressure in cement based materials. Cement and Concrete Research 35,2364-2370.
    Bergen, F. v., Krzystolik, P., Wageningen, N. v., Pagnier, H., Jura, B., Skiba, J., Winthaegen, P., and Kobiela, Z.,2009a. Production of gas from coal seams in the Upper Silesian Coal Basin in Poland in the post-injection period of an ECBM pilot site. International Journal of Coal Geology 77,175-187.
    Bergen, F. v., Spiers, C., Floor, G., and Bots, P.,2009b. Strain development in unconfined coals exposed to CO2, CH4 and Ar:Effect of moisture. International Journal of Coal Geology 77, 43-53.
    Bering, B. P., Krasilnikova, O. K., Sarakhov, A. I., Serpinskii, V. V., and Dubinin, M. M.,1977. Alteration of zeolite granule dimensions under krypton adsorption Bull. Acad. Sci. USSR Div. Chem.Sci.26,2258-2261.
    Bernard, S., Horsfield, B., Schulz, H.-M., Schreiber, A., Wirth, R., Vu, T. T. A., Perssen, F., Konitzer, S., Volk, H., Sherwood, N., and Fuentes, D.,2010. Multi-scale detection of organic and inorganic signatures provides insights into gas shale properties and evolution. Chemie Der Erde-Geochemistry 70,119-133.
    Bernaschi, M., Melchionna, S., Succi, S., Fyta, M., and Kaxiras, E.,2008. Quantized Current Blockade and Hydrodynamic Correlations in Biopolymer Translocation through Nanopores: Evidence from Multiscale Simulations. Nano Letters 8,1115-1119.
    Best, M. E. and Katsube, T. J.,1995. Shale permeability and its significance in hydrocarbon exploration. The Leading Edge 14,165-170.
    Bhatia, S.,2002. Density functional theory analysis of the influence of pore wall heterogeneity on adsorption in carbons. Langmuir 18,6845-6856.
    Bhattacharya, A., Morrison, W. H., Luo, K., Ala-Nissila, T., Ying, S.-C., Milchev, A., and Binder, K.,2009. Scaling exponents of forced polymer translocation through a nanopore. The European Physical Journal E 29,423-429.
    Bibler, C. J., Marshall, J. S., and Pilcher, R. C,1998. Status of worldwide coal mine methane emissions and use. International Journal of Coal Geology 35,283-310.
    Bjorlykke, K.,1999. Principal aspects of compaction and fluid flow in mudstones, in A. C. Aplin, A. J. Fleet, and J. H. S. Macquaker, eds., Muds and mudstones. Physical and fluid flow properties 158,73-78.
    Busch, A., Alles, S., Gensterblum, Y., Prinz, D., Dewhurst, D. N., Raven, M. D., Stanjek, H., and Krooss, B. M.,2008. Carbon dioxide storage potential of shales. International Journal of Greenhouse Gas Control 2,297-308.
    Busch, A., Gensterblum, Y., BKrooss, e. M., and Siemons, N.,2006. Investigation of high-pressure selective adsorption/desorption behaviour of CO2 and CH4 on coals:An experimental study. International Journal of Coal Geology 66,53-68. capacity and gas content. International Journal of Coal Geology 38,3-26.
    Bustin, R. M. and Clarkson, C. R.,1998. Geological controls on coalbed methane reservoir
    Carey, V. P. and Wemhoff, A. P.,2006. Disjoining Pressure Effects in Ultra-Thin Liquid Films in Micropassages—Comparison of Thermodynamic Theory With Predictions of Molecular Dynamics Simulations. Transactions of the ASME 128,1276-1284.
    Ceglarska-Stefanska, G. and Czaplinski, A.,1993. Correlation between sorption and dilatometric processes in hard coals. Fuel 72,413-417.
    Chalmers, G. R. L. and Bustin, R. M.,2007a. On the effects of petrographic composition on coalbed methane sorption. International Journal of Coal.Geology 69,288-304.
    Chalmers, G. R. L. and Bustin, R. M.,2007b. The organic matter distribution and methane capacity of the lower Cretaceous strata of northeastern British Columbia, Canada. International Journal of Coal Geology 70,223-239.
    Chalmers, G. R. L. and Bustin, R. M.,2008a. Lower Cretaceous gas shales in northeastern British Columbia, Part Ⅱ:evaluation of regional potential gas resource. Bulletin of Canadian Petroleum Geology 56,22-61.
    Chalmers, G. R. L. and Bustin, R. M.,2008b. Lower Cretaceous gas shales in northeastern British Columbia, Part I:geological controls on methane sorption capacity. Bulletin of Canadian Petroleum Geology 56.
    Chen, Y. C., Wang, C., Zhou, Y. L., and Luo, M. B.,2009. Effect of attractive polymer-pore interactions on translocation dynamics. Journal of Chemical Physics 130,054902.
    Chern, S. S., Cardenas, A. E., and Coalson, R. D.,2001. Three-dimensional dynamic Monte Carlo simulations of driven polymer transport through a hole in a wall. Journal of Chemical Physics 115,7772-7782.
    Chikatamarla, L., Cui, X., and Bustin, R. M.,2004. Implications of volumetric swelling/shrinkage of coal in sequestration of acid gases.2004 International Coalbed Methane Symposium Proceedings, Tuscaloosa, Alabama., paper 0435.
    Christenson, H. K. and Israelachvili, J. N.,1984. Temperature dependence of solvation forces. Journal of Chemical Physics 80,4566-4567.
    Churaev, N. V.,2003. Derjaguin's disjoining pressure in the colloid science and surface phenomena. Advances in Colloid and Interface Science 104, xv-xx.
    Clarkson, C. R.,2003. Application of a new multicomponent gas adsorption model to coal gas adsorption systems. SPE Journal 9,236-251.
    Clarkson, C. R. and Bustin, R. M.,1996a. Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin. Fuel 75, 1483-1498.
    Clarkson, C. R. and Bustin, R. M.,1996b. Variation in micropore capacity and size distribution with compostition in bituminous coal of the Western Canadian Sedimentary Basin. Fuel 75, 1483-1498.
    Clarkson, C. R. and Bustin, R. M.,1999a. The effect of pore structure and gas pressure upon the transport properties of coal:a laboratory and modeling study.1. Isotherms and pore volume distributions. Fuel78,1333-1344.
    Clarkson, C. R. and Bustin, R. M.,1999b. The effect of pore structure and gas pressure upon the transport properties of coal:a laboratory and modeling study.1. Isotherms and pore volume distributions. Fuel 78,1333-1344.
    Claypool, G. E.,1998. Kerogen conversion in fractured shale petroleum systems. AAPG Bulletin 82, Supplement,5.
    Claypool, G.E., and Mancini, E.A.,1989, Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwest Alabama: American Association of Petroleum Geologists Bulletin,73:904-924.
    Clunie, J. S., Goodman, J. F., and Symons, P. C.,1967. Solvation Forces in Soap Films. Nature 216,1203-1204.
    Coasne, B., Hung, F., Pellenq, R., Siperstein, F., and Gubbins, K.,2006. Adsorption of simple gases in MCM-41 materials:the role of surface roughness. Langmuir 22,194-202.
    Colligan, M., Forster, P. M., Cheetham, A. K., Eee,Y.,Vogt, T., and Hriljac, J. A.,2004. Synchrotron X-ray Powder Diffraction and Computational Investigation of Purely Siliceous Zeolite Y under Pressure. Journal of the American Chemical Society 126,12015-12022.
    Crosdale, P. J., Beamish, B. B., and Valix, M.,1998. Coalbed methane sorption related to coal composition. International Journal of Coal Geology 35,147-158.
    Crosdale, P. J., Moore, T. A., and Mares, T. E.,2008. Influence of moisture content and temperature on methane adsorption isotherm analysis for coals from a low-rank, biogenically-sourced gas reservoir. International Journal of Coal Geology 76,166-174.
    Cui, Bustin, R. M., and Chikatamarla, L.,2007. Adsorption-induced coal swelling and stress: Implications for methane production and acid gas sequestration into coal seams. Journal of Geophysical Research 112, B10202.
    Cui, X. and Bustin, R. M.,2005. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams. AAPG Bulletin 89,1181-1202.
    Cui, Y., Li, Y., Zhang, Q., and Jiang, W.,2005. The characteristic curve of methane adsorbed on coal and its role in the coalbed methane storage research. Chinese Science Bulletin 50,86-92.
    Diaz Aguado, M. B. and Gonzalez Nicieza, C.,2007. Control and prevention of gas outbursts in coal mines, Riosa-Olloniego coalfield, Spain. International Journal of Coal Geology 69, 253-266.
    Dai, L. and Toprakcioglu, C.,1991. Forces between End-Adsorbed Trib,ack Copolymer Chains and a Bare Mica Surface in a Good Solvent. Europhysics Letters 16,331-335.
    Darnell, J., Lodish, H., and Baltimore, D.,1995. Molecular Cell Biology. Scientific American Books, New York.
    Dash, R., Chmiola, J., Yushin, G., Gogotsi, Y., Laudisio, G., and Singer, J.,2006. Titanium carbide derived nanoporous carbon for energy-related applications. Carbon 44,2489-2497.
    Day, S., Duffy, G., Sakurovs, R., and Weir, S.,2008a. Effect of coal properties on CO2 sorption capacity under supercritical conditions. International Journal of Greenhouse Gas Control 2, 342-352.
    Day, S., Fry, R., and Sakurovs, R.,2008b. Swelling of Australian coals in supercritical CO2. International Journal of Coal Geology 74,41-52.
    Day, S., Sakurovs, R., and Weir, S.,2008c. Supercritical gas sorption on moist coals. International Journal of Coal Geology 74,203-214.
    de Lazzer, A., Dreyer, M., and Rath, H. J.,1999. Particle-Surface Capillary Forces. Langmuir 15, 4551-4559.
    Derjaguin B., Obuchov E.,1936, Anomalien Dunner Flussigkeitsschichten III, Ultramikrometrische Untersuchungen der Solvathullen und Des elementaren Quellungsaktes, Acta Physicochimica URSS,5,1-22.
    Do, D. and Do, H.,2006. Modeling of adsorption on nongraphitized carbon surface:GCMC simulation studies and comparison with experimental data. J Phys Chem B 110, 17531-17538.
    Dubbeldam, J. L. A., Milchev, A., Rostiashvili, V. G., and Vilgis, T. A.,2007. Driven polymer translocation through a nanopore:A manifestation of anomalous diffusion. Europhysics Letters 79,18002.
    Esteves, I. A. A. C., Lopes, M. S. S., Nunes, P. M. C., and Mota, J. P. B.,2008. Adsorption of natural gas and biogas components on activated carbon. Separation and Purification Technology 62,281-296.
    Evans, R.,1992. Density functionals in the theory of nonuniform fluids. New York:Marcel Dekker.
    Evans, R., Marconi, U., and Tarazona, P.,1986. Capillary condensation and adsorption in cylindrical and slit-like pores. J Chem Soc Faraday Trans Ⅱ 82,1763-1787.
    Faiz, M., Saghafi, A., Sherwood, N., and Wang, I.,2007. The influence of petrological properties and burial history on coal seam methane reservoir characterisation, Sydney Basin, Australia. International Journal of Coal Geology 70,193-208.
    Fitzgerald, J. E., Sudibandriyo, M., Pan, Z., Robinson Jr.R.L., and Gasem, K. A. M.,2003. Modeling the adsorption of pure gases on coals with the SLD model. Carbon.2203-2216.
    Fomkin, A. A.,2005. Adsorption of Gases, Vapors and Liquids by Microporous Adsorbents. Adsorption 11,425-436.
    Forrey, C. and Muthukumar, M.,2007. Langevin dynamics simulations of ds-DNA translocation through synthetic nanopores. Journal of Chemical Physics 127,015102.
    Giirdal, G. and Yalcin, M. N.,2000. Gas adsorption capacity of Carboniferous coals in the Zonguldak basin (NW Turkey) and its controlling.factors. Fuel 79,1913-1924.
    Gaarenstroom, L., Tromp, R. A. J., de Jong, M. C., and Brandenburg, A. M.,1993. Overpressures in the central North Sea:Implications for trap integrity and drilling safety. J. R. Parker Eds., Petroleum Geology of NW Europe. Proceedings of the 4th Conference, Geological Society of London.1305-1313.
    Gathitu, B. B., Chen, W.-Y., and McClure, M.,2009. Effects of Coal Interaction with Supercritical CO2:Physical Structure. Ind. Eng. Chem. Res.48,5024-5034.
    Ghatak, C. and Ayappa, K. G.,2004. Solvation force, structure and thermodynamics of fluids confined in geometrically rough pores. Journal of Chemical Physics 120,9703-9714.
    Gor, G..Y. and Neimark, A. V.,2010. Adsorption-Induced Deformation of Mesoporous Solids. Langmuir 26,13021-13027.
    Groot, R. and Warren, P.,1997. Dissipative particle dynamics:bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics 107,4423-4435.
    Groot, R. D.,2003. Electrostatic interactions in dissipative particle dynamics—simulation of polyelectrolytes and anionic surfactants. Journal of Chemical Physics 118,11265-11277.
    Gruszkiewicz, M. S., Naney, M. T., Blencoe, J. G., Cole, D. R., Pashin, J. C., and Carroll, R. E., 2009. Adsorption kinetics of CO2, CH4, and their equimolar mixture on coal from the Black Warrior Basin, West-Central Alabama. International Journal of Coal Geology 77,23-33.
    Hansen, J. E.,2004. Defusing the global warming time bomb. Scientific American 290,68-77.
    He, J., Shi, Y., Ahn, S., Kang, J. W., and Lee, C.-H.,2010. Adsorption and Desorption of CO2 on Korean Coal under Subcritical to Supercritical Conditions. J. Phys. Chem. B 114,4854-4861.
    He, Y. D., Qian, H. J., Lu, Z. Y., and Li, Z. S.,2007. Polymer translocation through a nanopore in mesoscopic simulations. Polymer 48,3601-3606.
    Herder, C. E., Ninham, B. W., and Christenson, H. K.,1989. Interaction of hydrocarbon monolayer surfaces across n-alkanes:A steric repulsion. Journal of Chemical Physics 90, 5801-5805.
    Hickey, J. J. and Henk, B.,2007. Lithofacies summary of the Mississippian Barnett Shale Mitchell 2 T.P. Sims well, Wise Country, Texas. AAPG Bulletin 91,437-443.
    Hildenbrand, A., Krooss, B. M., Busch, A., and Gaschnitz, R.,2006. Evolution of Methane Sorption Capacity of Coal Seams as a Function of Burial History—a Case Study from the Campine Basin, NE Belgium. International Journal of Coal Geology 66,179-203.
    Hildenbrand, A., Krooss, B. M., and Urai, J.,2005. Relationship between pore structure and fluid transport in argillaceous rocks.1UTAM Symposium on Physicochemical and Electromechanical Interactions in Porous Media.231-237.
    Hildenbrand, A., Schlomer, S., and Krooss, B. M.,2002. Gas breakthrough experiments on fine-grained sedimentary rocks. Geofluids 2,3-23.
    Hildenbrand, A. and Urai, J. L.,2003. Investigation of the morphology of pore space in mudstones-first results. Marine and Petroleum Geology 20,1185-1200.
    Hill, D. G., Lombardi, T. E., and Martin, J. P.,2002. Fractured shale gas potential in New York. Proceedings of the 2002 Ontario-New York Oil and Gas Conference, Ontario Petroleum Institute.London, Ontario, vol.41.
    Hoogerbrugge, P. J. and Koelman, J. M. V. A.,1992. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters 19,155-160.
    Huopaniemi, I., Luo, K., Ala-Nissila, T., and Ying, S.-C.,2006. Langevin dynamics simulations of polymer translocation through nanopores. Journal of Chemical Physics 125,124901.
    Ilnytskyi, J. M. and Holovatch, Y.,2007. How does the scaling for the polymer chain in the dissipative particle dynamics hold? Condensed Matter Physics 10,539-551.
    ISO-15901-3, Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption - Part 3:Analysis of micropores by gas adsorption.,.
    Israelachvili, J. and Pashley, R. M.,1983. Molecular Layering of Water at Surfaces and Origin of Repulsive Hydration Forces. Nature 306,249-250.
    Jakubov, T. S. and Mainwaring, D. E.,2002. Adsorption-induced dimensional changes of solids. Physical Chemistry Chemical Physics 4,5678-5682.
    Jaroniec, M., Kruk, M., and Olivier, J. P.,1999. Standard Nitrogen Adsorption Data for Characterization of Nanoporous Silicas. Langmuir 15,5410-5413.
    Jarvie, D. M., Hill, R. J., Ruble, T. E., and Pollastro, R. M.,2007. Unconventional shale-gas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin 91,475-499.
    Jarvie, D. M. and Lundell, L. L.,2001. Amount, type, and kinetics of thermal transformation of organic matter in the Miocene Monterey Formation. Columbia University Press, New York.
    Jiang, W., Huang, J., Wang, Y., and Laradji, M.,2007. Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics. Journal of Chemical Physics 126, 044901.
    Kaneko, K. and Murata, K.,1997. An analytical method of micropore filling of a supercritical gas. Adsorption 3,197-208.
    Kapahnke, F., Schmidt, U., Heermann, D. W., and Weiss, M.,2010. Polymer translocation through a nanopore:The effect of solvent conditions. Journal of Chemical Physics 132, 164904.
    Karacan, C. O.,2007. Swelling-induced volumetric strains internal to a stressed coal associated with CO2 sorption. International Journal of Coal Geology 72,209-220.
    Kasianowicz, J. J., Brandin, E., Branton, D., and Deamer, D. W.,1996. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93,13770-13773.
    Kelemen, S. R. and Kwiatek, L. M.,2009. Physical properties of selected block Argonne Premium bituminous coal related to CO2, CH4, and N2 adsorption. International Journal of Coal Geology 77,2-9.
    Khandelwal, M. and Singh, T. N.,2009. Correlating static properties of coal measures rocks with P-wave velocity. International Journal of Coal Geology 79,55-60.
    Klein, J. and Kumacheva, E.,1998. Simple liquids confined to molecularly thin layers. I. Confinement-induced liquid-to-solid phase transitions. Journal of Chemical Physics 108, 6996-7009.
    Kowalczyk, P., Ciach, A., and Neimark, A. V.,2008. Adsorption-Induced Deformation of Microporous Carbons:Pore Size Distribution Effect. Langmuir 24,6603-6608.
    Kowalczyk, P., Furmaniak, S., Gauden, P. A., and Terzyk, A. P.,2010. Carbon Dioxide Adsorption-Induced Deformation of Microporous Carbons. J. Phys. Chem. C 114, 5126-5133.
    Krasilnikova, O. K., Bering, B. P., Serpinskii, V. V., and Dubinin, M. M.,1977. Deformation of zeolite CaNaX during xenon adsorption. Bull. Acad. Sci. USSR Div. Chem. Sci.26, 1099-1101.
    Krooss, B. M., Bergen, F. v., Gensterblum, Y., Siemons, N., Pagnier, H. J. M., and David, P., 2002. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals. International Journal of Coal Geology 51,69-92.
    Krooss, B. M., Busch, A., Alles, S., and Hildenbrand, A.,2003. Experimental investigation of molecular diffusion of CO2 in coals and shales. International Conference on Gas-Water-Rock Interactions Induced by Reservoir Exploitation, CO2 Sequestration, and other Geological Storage, Rueil-Malmaison, France.
    Kurniawan, Y., Bhatia, S. K., and Rudolph, V.,2006. Simulation of Binary Mixture Adsorption of Methane and CO2 at Supercritical Conditions in Carbons. AICHE Journal 52,957-967.
    Laxminarayana, C. and Crosdale, P.J.,1999. Role of Goal Type and Rank on Methane Sorption Characteristics of Bowen Basin, Australia coals. International Journal of Coal Geology 40: 309-325.
    Lehtola, V. V., Linna, R. P., and Kaski, K.,2008. Critical evaluation of the computational methods used in the forced polymer translocation. Physcial Review E 78,061803.
    Leng, Y., Lei, Y., and Cummings, P. T.,2010. Comparative studies on the structure and diffusion dynamics of aqueous and nonpolar liquid films under nanometers confinement. Modelling and Simulation in Materials Science and Engineering 18,034007.
    Levine, J. R.,1996. Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoirs. Geological Society, London, Special Publications 109,197-212.
    Levy, J. H., Day, S. J., and Killingley, J. S.,1997. Methane capacities of Bowen Basin coals related to coal properties. Fuel 76,813-819.
    Leythaeuser D, L ittke R, Radke M, et al.1988. Geochemical effects of petroleum migration and expulsion from Toarcian source rock s in the Hils syncline area, NW Germany. Org. Geochem.,13 (1-3):489-502.
    Lindgreen, H.,1987. Experiments on adsorption and molecular sieving and inferences on primary migration in Upper Jurassic claystone source rocks, North Sea. AAPG Bulletin 71,308-321.
    Liu, G. and Smirnov, A. V.,2008. Modeling of carbon sequestration in coal-beds:A variable saturated simulation. Energy Conversion and Management 49,2849-2858.
    Liu, G. and Smirnov, A. V.,2009. Carbon sequestration in coal-beds with structural deformation effects. Energy Conversion and Management 50,1586-1594.
    Liu, X. and Lu, X.,2006. A Thermodynamic Understanding of Clay-Swelling Inhibition of Potassium ion. Angew. Chem. Int. Ed 45,6300-6303.
    Loebl, H. C., Randel, R., Goodwin, S. P., and Matthai, C. C.,2003. Simulation studies of polymer translocation through a channel. Physcial Review E 67,041913.
    Loucks, R. G., Reed, R. M., Ruppel, S. C., and Jarvie, D. M.,2009. Morphology, genesis, and distribution of nanometre-scale pores in siliceous mudstones of the Mis- sissippian Barnett Shale. Journal of Sedimentary Research 79,848-861.
    Lu, X. C., Li, F. C., and Watson, A. T.,1995. Adsorption measurements in Devonian Shales. Fuel 74,599-603.
    Luo, K., Huopaniemi, I., Ala-Nissila, T., and Ying, S.-C.,2006. Polymer translocation through a nanopore under an applied external field. Journal of Chemical Physics 124,114704.
    Maddox, M., Olivier, J., and Gubbins, K.,1997. Characterization of MCM-41 using molecular simulation:heterogeneity effects. Langmuir 13,1737-1745.
    Maex, K., Baklanov, M. R., Shamiryan, D., Lacopi, F., Brongersma, S. H., and Yanovitskaya, Z. S.,2003. Low dielectric constant materials for microelectronics. Applied Physics Reviews 93, 8793-8841.
    Majewska, Z., Ceglarska-Stefanska, G., Majewski, S., and Zietek, J.,2009. Binary gas sorption/desorption experiments on a bituminous coal:Simultaneous measurements on sorption kinetics, volumetric strain and acoustic emission. International Journal of Coal Geology 77,90-102.
    Majewska, Z. and Zietek, J.,2008. Acoustic emission and volumetric strain induced in coal by the displacement sorption of methane and carbone dioxide. Acta Geophysica 56,372-390.
    Mares, T. E., Radlinski, A. P., Moore, T. A., Cookson, D., Thiyagarajan, P., Ilavsky, J., and Klepp, J.,2009. Assessing the potential for CO2 adsorption in a subbituminous coal, Huntly Coalfield, New Zealand, using small angle scattering techniques. International Journal of Coal Geology 77,54-68.
    Marmur, A.,1993. Tip-Surface Capillary Interactions. Langmuir 9,1922-1926.
    Martini, A. M., Walter, L. M., Ku, T. C. W., Budai, J. M., McIntosh, J. C., and Schoell, M.,2003. Microbial production and modification of gases in sedimentary basins:A geochemical case study from a Devonian shale gas play, Michigan Basin. AAPG Bulletin 87,1355-1375.
    Mastalerz, M., Drobniak, A., and Rupp, J.,2008. Meso- and Micropore Characteristics of Coal Lithotypes:Implications for CO2 Adsorption. Energy & Fuels 22,4049-4061.
    Mastalerz, M., Gluskoter, H., and Rupp, J.,2004. Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA. International Journal of Coal Geology 60, 43-55.
    Matysiak, S., Montesi, A., Pasquali, M., Kolomeisky, A. B., and Clementi, C.,2006. Dynamics of Polymer Translocation through Nanopores:Theory Meets Experiment. Physcial Review Letters 96,118103.
    Mazzotti, M., Pini, R., and Storti, G.,2009. Enhanced coalbed methane recovery. The Journal of Supercritical Fluids 47,619-627.
    McAuliffe, C. D.,1979. Oil and gas migration:Chemical and physical constraints. American Association of Petroleum Geologists Bulletin 63:761-781.
    Meakin, P. and Tartakovsky, A. M.,2009. Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Reviews of Geophysics 47, RG3002.
    Medhurst, T. P.,1996. Estimation of the In-situ Strength and Deformability of Coal for Engineering Design, The University of Queensland, Australia.
    Meissner F F.1978. Petroleum geology of the Bakken Formation, Williston basin, North Dakota and Montana. In the economic geology of the W illiston Basin:Montana Geological Society, Williston Basin Sympo sium,207-227.
    Meller, A. and Branton, D.,2002. Single molecule measurements of DNA transport through a nanopore. Electrophoresis 23,2583-2591.
    Meller, A., Nivon, L., and Branton, D.,2001. Voltage-Driven DNA Translocations through a Nanopore. Physcial Review Letters 86,3435-3438.
    Melnichenko, Y. B., Radlinski, A. P., Mastalerz, M., Cheng, G., and Rupp, J.,2009. Characterization of the CO2 fluid adsorption in coal as a function of pressure using neutron scattering techniques (SANS and USANS). International Journal of Coal Geology 77,69-79.
    Milchev, A., Binder, K., and Bhattacharya, A.,2004. Polymer translocation through a nanopore induced by adsorption:Monte Carlo simulation of a coarse-grained model. Journal of Chemical Physics 121,6042-6051.
    Milewska-Duda, J., Duda, J., Nodzenski, A., and Lakatos, J.,2000. Absorption and Adsorption of Methane and Carbon Dioxide in Hard Coal and Active Carbon. Langmuir 16,5458-5466.
    Miller T W.1995. New insights on natural hydraulic fractures induced by abnormally high pore pressures. AA PG Bulletin,79(7):1005-1018.
    Mizukami, M. and Kurihara, K.,2006. Macrocluster Formation of Alcohol on Silica Surface in Cyclohexane:Analysis of Interfacial Energy between Adsorption Layer and Bulk Solution. e-Journal of Surface Science and Nanotechnology 4,244-248.
    Moeendarbary, E., Ng, T. Y., Pan, H., and Lam, K. Y.,2010. Migration of DNA molecules through entropic trap arrays:a dissipative particle dynamics study. Microfluid Nanofluid 8, 243-254.
    Moffat, D. H. and Weal, K. E.,1955. Sorption by coal of methane at high pressures. Fuel 34,449-462.
    Mohammad, S. A., Chen, J. S., Robinson Jr., R. L., and Gasem, K. A. M.,2009. Generalized Simplified Local-Density/Peng-Robinson Model for Adsorption of Pure and Mixed Gases on Coals. Energy & Fuels 23,6259-6271.
    Movileanu, L.,2009. Interrogating single proteins through nanopores:challenges and opportunities. Trends in Biotechnology 27,333-341.
    Muthukumar, M.,1999. Polymer translocation through a hole. Journal of Chemical Physics 111, 10371-10374.
    Muthukumar, M.,2003. Polymer escape through a nanopore. Journal of Chemical Physics 118: 5174-5184.
    Muthukumar, M. and Kong, C. Y.,2006. Simulation of polymer translocation through protein channels. Proc. Natl. Acad. Sci. USA 103,5273-5278.
    Neimark, A. and Ravikovitch, P.,2001. Capillary condensation in MMS and pore structure characterization. Micropor Mesopor Mater,697-707.
    Neimark, A., Ravikovitch, P., and Vishnyakov, A.,2003. Bridging scales from molecular simulations to classical thermodynamics:density functional theory of capillary condensation in nanopores. JPhys:Condens Matter 15.347-365.
    Neimark, A. V., Lin, Y., Ravikovitch, P. I., and Thommes, M.,2009. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47, 1617-1628.
    Nguyen, T. X. and Bhatia, S. K.,2005. Characterization of activated carbon fibers using argon adsorption. Carbon 43,775-785.
    Olivier, J.,1998. Improving the models used for calculating the size distribution of micropore volume of activated carbons from adsorption data. Carbon 36.
    Ottiger, S., Pini, R., Storti, G., and Mazzotti, M.,2008a. Competitive adsorption equilibria of CO2 and CH4 on a dry coal. Adsorption 14,539-556.
    Ottiger, S., Pini, R., Storti, G., and Mazzotti, M.,2008b. Measuring and Modeling the Competitive Adsorption of CO2, CH4, and N2 on a Dry Coal. Langmuir 24,9531-9540.
    Ottiger, S., Pini, R., Storti, G., Mazzotti, M., Bencini, R., Quattrocchi, F., Sardu, G., and Deriue, G.,2006. Adsorption of Pure Carbon Dioxide and Methane on Dry Coal from the Sulcis Coal Province (SW Sardinia, Italy). Environmental Progress 25,355-364.
    Ozdemir, E. and Schroeder, K.,2009. Effect of Moisture on Adsorption Isotherms and Adsorption Capacities of CO2 on Coals. Energy & Fuels 23,2821-2831.
    Pan, Z. and Connell, L. D.,2007. A theoretical model for gas adsorption-induced coal swelling. International Journal of Coal Geology 69,243-252.
    Park, J. L., Richetti, P., Kekicheff, P., and Sarman, S.,1992. Direct Measurement of Structural Forces in a Supermolecular Fluid. Physical Review Letters 68,1955-1958.
    Park, P. J. and Sung, W.,1998. Polymer translocation induced by adsorption. Journal of Chemical Physics 108,3013-3018.
    Parker, J. L. and Christenson, H. K.,1988. Measurements of the forces between a metal surface and mica across liquids. Journal of Chemical Physics 88,8013-8014.
    Pepper, A. S.,1992. Estimating the petroleum expulsion behavior of source rocks:A novel quantitative approach. In:England, W. A. and Fleet, A. L. Eds.), Petroleum migration: Geological Society (London) Special Publication.
    Perla B. Balbwna, D. B., and Keith E. Gubbins,1993. Solvation Pressures for Simple Fluids in Micropores. Journal of Chemical Physics 97(4):937-943.
    Perret, E., Nygard, K., Satapathy, D. K., Balmer, T. E., Bunk, O., Heuberger, M., and van der Veen, J. F.,2010. Molecular liquid under nanometre confinement:density profiles underlying oscillatory forces. Journal of Physics:Condensed matter 22,235102.
    Peterson, B., Heffelfinger, G., Gubbins, K., and van Swol, F.,1990. Layering transitions in cylindrical pores. Journal of chemical physics 93,679-685.
    Pini, R., Ottiger, S., Burlini, L., Storti, G., and Mazzotti, M.,2009. Role of adsorption and swelling on the dynamics of gas injection in coal. Journal of Geophysical Research 114, B04203.
    Pone, J. D. N., Hile, M., Halleck, P. M., and Mathews, J. P.,2009. Three-dimensional carbon dioxide-induced strain distribution within a confined bituminous coal. International Journal of Coal Geology 77,103-108.
    Porcheron, F., Schoen, M., and Fuchs, A-H.,2002. Monte Carlo simulation of a complex fluid confined to a pore with nanoscopically rough walls. Journal of Chemical Physics 116, 5816-5824.
    Prinz, D. and Littke, R.,2005. Development of the micro- and ultramicroporous structure of coals with rank as deduced from the accessibility to water. Fuel 84,1645-1652.
    Qin, Y. and Fichthorn, K. A.,2006. Solvation forces between colloidal nanoparticles:Directed alignment. Physcial Review E 73,020401.
    Rabinovich, Y. I., Derjaguin, B. V., and Churaev, N. V.,1982. Direct measurements of long-range surface forces in gas and liquid media. Advances in Colloid and Interface Science 16,63-78.
    Radlinski, A. P., Busbridge, T. L., Gray, E. M. A., Blach, T. P., and Cookson, D. J.,2009. Small angle X-ray scattering mapping and kinetics study of sub-critical CO2 sorption by two Australian coals. International Journal of Coal Geology 77,80-89.
    Radovic, L. R., Menon, V. C., Leon, C. A. L. Y., Kyotani, T., Danner, R. P., Anderson, S., and Hatcher, P. G.,1997. On the Porous Structure of Coals:Evidence for an Interconnected but Constricted Micropore System and Implications for Coalbed Methane Recovery. Adsorption 3,221-232.
    Raut, U., Fama, M., and Teolis, B. D.,2007. Characterization of porosity in vapor-deposited amorphous solid water from methane adsorption. Journal of Chemical Physics 127,1-6.
    Ravikovitch, P., Vishnyakov, A., Russo, R., and Neimark, A.,2000. Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16,2311-2320.
    Ravikovitch, P. I. and Neimark, A. V.,2006a. Density Functional Theory Model of Adsorption Deformation. Langmuir 22,10864-10868.
    Ravikovitch, P. I. and Neimark, A. V.,2006b. Density Functional Theory Model of Adsorption on Amorphous and Microporous Silica Materials. Langmuir 22,11171-11179.
    Ravikovitch, P. I., Vishnyakov, A., and Neimark, A. V.,2001. Density functional theories and molecular simulations of adsorption and phase transitions in nanopores. Physical Review E 64,011602.
    Raviv, U. and Klein, J.,2002. Healing of Adsorbed Polymer Layers in a Narrow Gap Following Removal by Shear. Polymer for Advanced Technologies 13,1032-1038.
    Reeves, S. R.,2004. The Coal-Seq project:key results fromfield, laboratory, and modeling studies. Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada.
    Reucroft, P. J. and Sethuraman, A. R.,1987. Effect of pressure on carbon-dioxide induced coal swelling. Energy & Fuels 1,72-75.
    Romiszowski, P. and Sikorski, A.,2007. Monte Carlo study of polymer translocation through a hole. Computational Materials Science 38,533-537.
    Rosenfeld, Y.,1989. Free-energy model for the inhomogeneous hardsphere fluid mixture and density-functional theory of freezing. Physical Review Letters 63,980-983.
    Rosenfeld, Y., Schmidt, M., Lowen, H., and Tarazona, P.,1997. Fundamentalmeasure free-energy density functional for hard spheres:dimensional crossover and freezing. Physical Review E 55,4245-4263.
    Ross, D. J. K. and Bustin, R. M.,2006. Sediment geochemistry of the Lower Jurassic Gordondale Member, northeastern British Columbia. Bulletin of Canadian Petroleum Geology 54, 337-365.
    Ross, D. J. K. and Bustin, R. M.,2008. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin:Application of an integrated formation evaluation. AAPG Bulletin 92,87-125.
    Sakurovs, R., Day, S., Weir, S., and Duffy, G.,2007. Application of a Modified Dubinin-Radushkevich Equation to Adsorption of Gases by Coals under Supercritical Conditions. Energy & Fuels 21,992-997.
    Sakurovs, R., Day, S., Weir, S., and Duffy, G.,2008. Temperature dependence of sorption of gases by coals and charcoals. InternationalJournal of Coal Geology 73,250-258.
    Sandvik, E. I., Young, W. A., and Curry, D. J.,1992. Expulsion from hydrocarbon sources:the role of organic absorption. Organic Geochemistry 19,77-87.
    Sarman, S.,1990. The influence of the fluid-wall interaction potential on the structure of a simple fluid in a narrow slit. Journal of Chemical Physics 92,4447-4455.
    Scherer, G. W.,1986. Dilatation of Porous Glass. Journal of the American Ceramic Society 69, 473-480.
    Schmoker, J. W.,1995. Method for assessing continuous-type (unconventional) hydrocarbon accumulations. National assessment of United States oil and gas resources-Results, methodology, and supporting data:U.S. Geological Survey Digital Data Series 30.
    Seaton, N., Walton, J., and Quirke, N.,1989. A new analysis method for the determination of the pore-size distribution of porous carbons from nitrogen adsorption measurements. Carbon 27, 853-861.
    Shevade, A. V., Jiang, S., and Gubbins, K. E.,2000. Molecular simulation study of water-methanol mixtures in activated carbon pores. Journal of Chemical Physics 113,6933-6942.
    Sinayuc, C. and Gumrah, F.,2009. Modeling of ECBM recovery from Amasra coalbed in Zonguldak Basin, Turkey. International Journal of Coal Geology 77,162-174.
    Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., and Siemieniewska, T.,1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem.57,603-619.
    Siriwardane, H. J., Gondle, R. K., and Smith, D. H.,2009. Shrinkage and swelling of coal induced by desorption and sorption of fluids:Theoretical model and interpretation of a field project. International Journal of Coal Geology 77,188-202.
    Sizov, V. V., Piotrovskaya, E. M., and Brodskaya, E. N.,2003. Influence of a Surface Microheterogeneity on the Disjoining Pressure of Adsorbed Lennard-Jones Fluid. Computer Simulation. Colloid Journal 65,772-777.
    Snook, I. K. and van Megen, W.,1980. Solvation forces in simple dense fluids.1. Journal of Chemical Physics 72,2907-2913.
    Spenley, N. A.,2000. Scaling laws for polymers in dissipative particle dynamics. Europhysics Letters 49,534-540.
    St. George, J. D. and Barakat, M. A.,2001. The change in effective stress associated with shrinkage from gas desorption in coal. International Journal of Coal Geology 45,105-113.
    Stainforth, J. G. and Reinders, J. E. A.,1990. Primary migration of hydrocarbons by diffusion through organic matter networks and its effects on oil and gas generation. Advances in Organic Geochemistry 16,61-74.
    Storm, A. J., Storm, C., Chen, J., Zandbergen, H., Joanny, J.-F., and Dekker, C.,2005. Fast DNA Translocation through a Solid-State Nanopore. Nano Letters 7,1193-1197.
    Striolo, A., Chialvo, A. A., Cummings, P. T., and Gubbins, K. E.,2003. Water Adsorption in Carbon-Slit Nanopores. Langmuir 19,8583-8591.
    Sung, W. and Park, P. J.,1996. Polymer Translocation through a Pore in a Membrane. Physcial Review Letters 77,783-786.
    Talaga, D. S. and Li, J.,2009. Single-Molecule Protein Unfolding in Solid State Nanopores. J. Amer. Chem. Soc 131,9287-9297.
    Talukdar S.1987. Observation on primary migration of oil in the La Luna source rocks of Maracaibo Basin, Venezula. In:Brigitte D, eds. Migration of hydrocarbons in sedimentary basins. Paris:Editions Technip,59-77.
    Tian, P. and Smith, G. D.,2003. Translocation of a polymer chain across a nanopore:A Brownian dynamics simulation study. Journal of Chemical Physics 119,11475-11483.
    Tsuchiya, S. and Matsuyama, A.,2007. Translocation and insertion of an amphiphilic polymer. Physcial Review E 76,011801.
    Ustinov, E. A. and Do, D. D.,2006. Effect of adsorption deformation on thermodynamic characteristics of a fluid in slit pores at sub-critical conditions. Carbon 44,2652-2663.
    Walker, P. L., Verma, S. K., Rivera-Utrilla, J., and Jr.M.R., K.,1988. A direct measurement of expansion in coals and macerals induced by carbon dioxide and methanol. Fuel 67,719-726.
    Wang, G. X., Massarotto, P., and Rudolph, V.,2009. An improved permeability model of coal for coalbed methane recovery and CO2 geosequestration. International Journal of Coal Geology 77,127-136.
    Wang, J. C. and Fichthorn, K. A.,2000. A method for molecular dynamics simulation of confined fluids. Journal of Chemical Physics 112,8252-8259.
    Wang, J. C. and Fichthorn, K. A.,2002. Molecular dynamics studies of the effects of chain branching on the properties of confined alkanes. Journal of Chemical Physics 116, 410-417.
    Waples, D. W.,2000. The kinetics of in-reservoir oil destruction and gas formation:Constraints from experimental and empirical data, and from thermodynamics. Organic Geochemistry 31, 553-575.
    Warlick, D.,2006. Gas shale and CBM development in North America. Oil and Gas Financial Journal,3,1-5.
    Wei, D., Yang, W., Jin, X., and Liao, Q.,2007. Unforced translocation of a polymer chain through a nanopore:The solvent effect. Journal of Chemical Physics 126,204901.
    White, C. M., Smith, D. H., Jones, K. L., Goodman, A. L., Jikich, S. A., LaCount, R. B., DuBose, S. B., Ozdemir, E., Morsi, B. I., and Schroeder, K. T.,2005. Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane Recovery - A Review. Energy & Fuels 19, 659-724.
    Wong, S., Law, D., Deng, X., Robinson, J., Kadatz, B., Gunter, W. D., Ye, J., Feng, S., and Fan, Z.,2006. Enhanced coalbed methane—micro-pilot test at South Qinshui, Shanxi, China. Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies, Trondheim, Norway.
    Yang, Y. and Aplin, A. C.,2010. A permeability-porosity relationship for mudstone. Marine and Petroleum Geology 21,1692-1697.
    Yao, Y., Liu, D., Tang, D., Tang, S., Che, Y., and Huang, W.,2009. Preliminary evaluation of the coalbed methane production potential and its geological controls in the Weibei Coalfield, Southeastern Ordos Basin, China. International Journal of Coal Geology 78,1-15.
    Yin, Y., McEnaney, B., and Mays, T.,1998. Dependence of GCEMC simulations of nitrogen adsorption on activated carbons on input parameters. Carbon 36,1425-1432.
    Zarebska, K. and Ceglarska-Stefanska, G.,2008. The change in effective stress associated with swelling during carbon dioxide sequestration on natural gas recovery. International Journal of Coal Geology 14,167-174.
    Zarrouk, S. J. and Moore, T. A.,2009. Preliminary reservoir model of enhanced coalbed methane (ECBM) in a subbituminous coal seam, Huntly Coalfield, New Zealand. International Journal of Coal Geology 77,153-161.
    陈春琳,林大杨,2005.等温吸附曲线方法在煤层气可采资源量估算中的应用.中国矿业大学学报34,679-683.
    陈振宏,贾承造,岩,宋.,王红岩,王一兵,2008.高煤阶与低煤阶煤层气藏物性差异及其成因.石油学报29,179-184.
    崔荣国,2005.国内外煤层气开发利用现状.国土资源情报,22-26.
    傅雪海,秦勇,叶建平,2000.中国部分煤储层解吸特征及甲烷采收率.煤田地质与勘探28,19-21.
    胡爱军,潘一山,唐巨鹏等,2007.型煤的甲烷吸附以及NMR试验研究.洁净煤技术13,37-40.
    胡文瑄,符琦,陆现彩等,1996.含(油)气流体体系压力及相变规律初步研究.高校地质学报,2(4),458-465.
    李斌,1996.煤层气非平衡吸附的数学模型和数值模拟.石油学报17,42-49.
    李新景,胡素云,程克明,2003.北美裂缝性页岩气勘探开发的启示.石油勘探与开发34,392-400.
    梁卫国,吴迪, 赵阳升,2010.CO2驱替煤层CH4试验研究.岩石力学与工程学报29,665-673.
    刘庆,张林晔,沈忠民,孔祥星,王茹.2004.东营凹陷富有机质烃源岩顺层微裂隙的发育与油气运移.地质论评50(6):593-598.
    刘延锋,李小春, 白冰,2005.中国CO2煤层储量初步评价.岩石力学与工程学报24,2947-2952.
    刘文斌,陆现彩,秦建中,姚素平.2005.海带热模拟实验的固体残余物研究及其石油地质意义.南京大学学报(自然科学版),41(3):234-244.
    陆现彩,胡文瑄,周光甲,洪志华等.1999.胜利油田低熟烃源岩中可溶有机质与粘土矿物的结合关系.地质科学,34.(1):69-77.
    陆现彩,尹琳,赵连泽,熊飞.2003.常见层状硅酸盐矿物的表面特征.硅酸盐学报31(1):59-65.
    路长春,陆现彩,刘显东,杨侃,陆志均.2008.基于探针气体吸附等温线的矿物材料表征技术4:比表面积的测定与应用.矿物岩石地球化学通报27(1):28-34.
    聂海宽,张金川,张培先等,2009.福特沃斯盆地Barnett页岩气藏特征及启示.地质科技情报28,87-93.
    秦勇,吴财芳,胡爱梅,杨兆彪,范志强, 叶建平,2007.煤炭安全开采最高允许含气量求算模型.煤炭学报32,1009-1013.
    宋岩,张新民,柳少波,2005.中国煤层气基础研究和勘探开发技术新进展.天然气工业25,1-7.
    隋凤贵,刘庆,张林哗.2007.济阳断陷盆地烃源岩成岩演化及其排烃意义。石油学报28(6):12-16.
    唐书恒,韩德鑫,2002.用多元气体吸附成果评价煤层气开发潜力.中国矿业大学学报31,630-634.
    许广明,武强, 张燕君,2003.非平衡吸附模型在煤层气数值模拟中的应用.煤炭学报28,380-384.
    薛会,张金川,刘丽芳等,2006.天然气机理类型及其分布.地球科学与环境学报28,53-57.
    闫宝珍,王延斌,倪小明,2008.地层条件下基于纳米级孔隙的煤层气扩散特征.煤炭学报33,657-660.
    杨侃,陆现彩,刘显东等,2006.基于探针气体吸附等温线的矿物材料表征技术:Ⅱ多孔材料的孔隙结构.矿物岩石地球化学通报25,362-368.
    于洪观,范维唐,孙茂远, 叶建平,2005.煤对CH4/CO2二元气体等温吸附特性及其预测.煤炭学报30,618-622.
    翟光明,何文渊,2004.煤层气是天然气的现实接替资源.天然气工业24,1-3.
    张健汪志明,2008.煤层应力对裂隙渗透率的影响.中国石油大学学报(自然科学版) 32,92-95.
    张金川,薛会,张德明等,2003.页岩气及其成藏机理.现代地质17,466.
    张林晔,李政,朱日房.页岩气的形成与开发.天然气工业,2009,29(1):1-5
    张林晔,李政,朱日房,李钜源,张林彦.济阳坳陷古近系存在页岩气的可能性.天然气工业,2008,28(12):26-31.
    张晓东,秦勇,桑树勋,2005.煤储层吸附特征研究现状及展望.中国煤田地质17,16-22.
    张雪芬,陆现彩, 张林晔等,2010.页岩气的赋存形式研究及其石油地质意义.地球科学进展25,597-604.
    赵庆波,李五忠,孙粉棉,1997.中国煤层气分布特征及高产富集因素.石油学报18,1-6.
    钟玲文,张慧,员争荣等,2002.煤的比表面积孔体积及其对煤吸附能力的影响.煤田地质与勘探30,26-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700