用户名: 密码: 验证码:
沂沭断裂带构造演化与金矿成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对沂沭断裂带的研究现状和金矿勘查取得的成果,应用大陆动力学研究方法与成矿理论,采用野外调查与资料研究相结合、重点金矿区解剖与重要样品测试相结合的方法,从解析构造研究的基础入手,对沂沭断裂带的控矿规律进行了探讨,对成矿物质来源和成矿作用提出了新的认识。
     沂沭断裂带是由四条主干断裂组成的具“二堑夹一垒”构造样式的组合型断裂。航磁△T异常图显示为一系列北北东-北东向线状和串珠状异常带,在布格重力异常图上表现为北北东走向的重力梯度带。带内结晶基底的构造线方向与带两侧基底岩系具完全不同的构造特征,并控制着地层的展布和岩浆岩的发育程度。
     通过详细的构造剖面研究,沂沭断裂带活动方式于不同时期不同区段表现出明显的多样性,造成兼具韧性与脆性、挤压与引张、左旋与右旋等性质复杂的构造变形特征。结合地球物理探测资料,沂沭断裂带既具有深大断裂的切幔特征,又表现为浅层次的铲式断裂,在经历了漫长而多期的构造运动后,使之构造形态变得极为复杂。
     沂沭断裂带形成始于新元古代,当时具有古沂沭裂谷的性质,晋宁运动使古沂沭裂谷闭合,形成鲁东、鲁西统一的古陆。断裂带两侧地壳产生差异运动,鲁东地区长期隆起,以剥蚀为主,仅局部有些海相沉积。海西-印支期运动之后,原东西向构造线改变为北东向、北北东向的构造型式。中生代时期,中国东部开始了由中亚-特提斯构造域向滨太平洋构造域转化阶段,中生代是我国滨太平洋构造体系强烈活动阶段,致使中国东部发生地幔置换作用与中生代岩石圈减薄。同时华北板块与扬子板块夹持下的秦-祁-昆洋盆消亡碰撞造山,使沂沭断裂带发生强烈的构造活化并发生大规模的左行平移,以及其后的推覆、右行平移及张裂作用。在这一大的构造背景下,沂沭断裂对该地区的构造格局、沉积作用、岩浆活动以及矿产的形成与分布等产生了重要影响。由于太平洋板块不断俯冲,沂沭断裂带处在大陆活动边缘裂谷中。上地幔深熔岩浆不断由该带涌出,为成矿送来矿源和热源。而在它的东侧由于板块热作用,地壳物质重熔形成大量的多期次的花岗质岩石,成为胶东金矿成矿的重要母体。’沂沭断裂带在古近纪时以左行平移为主伴有张裂,后期演化成裂谷;新近纪为左行平移,伴有强烈的火山活动。第四纪则表现为差异性升降运动。
     沂沭断裂带强烈活动的大陆动力学环境起源于中亚—特提斯构造域向滨太平洋构造域转化、太平洋板块的俯冲。在三大板块即华北板块与扬子板块碰撞造山、太平洋板块向NWW俯冲的大背景下,导致了沂沭断裂带的活化并发生左行平移,其最大平移距离超过300Km。新生代则以拉张、挤压(兼扭动)交替进行为特征,形成具裂谷特征的构造格架。
     沂沭断裂带内金矿按成因可分为岩浆期后热液破碎带蚀变岩型、岩浆期后热液裂隙充填石英脉型、接触交代矽卡岩型、潜火山热液爆发角砾岩型和沉积型五种类型。蚀变岩型金矿主要分布于沂水-汤头断裂带内,矿(化)体多赋存于糜棱岩化花岗岩、花岗质碎裂岩和绿泥片岩中,矿与非矿界线不清,矿体的圈定由样品分析结果确定,矿体形态多受断裂构造及韧性剪切带控制。石英脉型金矿产于基底岩系或中生代岩体内的断裂裂隙中,矿体与围岩界线清晰,矿体为含金黄铁矿化石英脉。接触交代型金矿床成矿的母岩为中生代燕山期多阶段侵入的复杂岩体,为中偏基性或中偏酸性-酸性偏碱性组分的岩浆岩,成矿围岩主要为寒武-奥陶纪灰岩,矿体产在燕山期岩浆岩与碳酸盐岩的接触带内,矿体形态复杂多变,主要为似层状和透镜状,其次有扁豆状、囊状等。潜火山热液型金矿床分布于胶莱盆地与沂沭断裂带的交汇处,矿体主要产于青山群次火山岩、火山岩中,少量产于侵入岩中,矿化围岩为石英闪长玢岩-花岗闪长斑岩、闪长岩、闪长玢岩、安山凝灰质角砾岩、安山岩等,矿体产出于隐爆角砾岩筒中,与次火山杂岩体关系密切,次火山杂岩体是重要的导矿、容矿地质体。铜、铅锌矿主要为中低温热液裂隙充填型,多分布于区域性深大断裂旁侧次级断裂构造中,形成于燕山晚期;蓝宝石矿产于沂沭断裂带内,多位于新近纪玄武质岩浆喷发中心部位。从成矿时序上,不同成因的矿床产出的构造部位、地质环境及成矿时间不同,总体上由老到新表现为金、铜、铅锌和蓝宝石的成矿序列。
     不同时期的构造-岩浆作用形成了不同的矿床类型,燕山期是区内重要的金矿成矿期,它形成了山东独具特色的金矿类型和成矿系列。按照成矿作用特征,可划分为3个矿床成矿系列组合和15个矿床成矿系列。
     沂沭断裂带内金矿床主要产于沂水-汤头断裂主裂面下盘的糜棱岩化碎裂岩和花岗质碎裂岩中。主要地质体中以泰山岩群与燕山期花岗岩金含量为高,其标准离差和变异系数较大,是区内金矿主要的成矿母岩,尤其是燕山期岩浆活动,是导致区内金矿成矿的重要因素。黄铁矿化、硅化、绢英岩化与金矿关系密切。载金矿物主要为黄铁矿和脉石英,其中早期黄铁矿为金矿物的主载矿物。金有自然金、银金矿两种,以角粒状为主,次长角粒状、树枝状、枝叉状及线状等,.金矿物的成色平均为816。
     通过对蚀变岩型和石英脉型金矿中方解石、石英包裹体的研究表明:包裹体有单一液相包裹体、气液两相包裹体和富气相包裹体3种类型。其冰点温度变化于-2~-8.6℃之间,盐度在3.39wt%~12.39wt%之间,即中等盐度的岩浆流体(或深源流体)和低盐度的深循环的大气水流体;方解石中流体的盐度相对较低,推测为岩浆流体与大气水混合的结果。包裹体均一温度变化范围较宽,在107℃~550℃之间,可分为125℃~160℃、177℃~230℃和260℃~330℃三个温度峰值集中区,分别反映了早期以中温石英为代表的早期成矿阶段(260℃~330℃),以中低温石英和方解石为代表的中期成矿阶段(177℃~260℃)和以低温方解石为代表的晚期成矿阶段(125℃~160℃)。
     对区内典型金矿床硫、氢、氧、碳和铅等稳定同位素的研究资料表明:黄铁矿的δ34S值的变化为+2.7~+4.4‰,δ180H20值为-1.78~4.07‰,δD(SMOW)值为-74~77‰,δ13C平均值为-4.18~-5.1‰,铅同位素具有正常铅的特点,说明区内金矿的成矿物质来源于地下深处,成矿流体以岩浆水为主,大气降水为辅。
     蚀变矿物石英和长石的稀土元素特征具有一些相似的特点,二者均为向右倾斜的平滑曲线,属轻稀土元素富集型。但二者的差别也是明显的,长石中稀土元素的总量高,轻稀土元素富集更为明显,且表现为Eu的负异常;石英的稀土总量低,轻稀土元素富集不够明显,且表现为Eu的正异常。
     对南小尧金矿矿石中的锆石进行U-Pb同位素年龄测定,上交点2438±13Ma基本代表了岩体的形成年龄,下交点116±20Ma可能代表了区域成矿的大致时限。对龙泉站金矿、南小尧金矿和牛家小河金矿石中的钾长石矿物进行K-Ar法测定,其年龄值分别为141.92±2.06 Ma、94.29±1.38 Ma、95.92±1.40 Ma,本区金矿的形成应在早白垩世中-晚期。沂南铜井地区测定的20件全岩及单矿物K-Ar测年数据,年龄值在110-126Ma间,另外有一组Rb-Sr等时线测年数据为113.4Ma。这些资料反映了金矿成矿时代应为白垩纪。
     通过对区内金矿成矿规律进行了概略总结,认为基底富含金质的矿源岩、晋宁期强烈的韧性剪切作用、燕山期大规模的火山-岩浆热事件是导致区内金矿成矿的因素。根据地质基础资料和对成矿物质来源的研究,建立了区内金矿的成矿模式。
Pointing to present condition of research and achievements gained in gold exploration, by using continental dynamics research method and mineralization theory, combining field survey with information study, combing important gold mines anatomy with test samples, and on the basis of analyzing structure, ore controlling rule of Yishu fault belt is studied in this paper. New recognition of ore-forming materials and ore mineralization are put forward as well.
     Yishu fault belt is composed of four main faults with the type of "two faulted troughs with one horst".△T aeromagnetic anomalies appear as a series of linear type anomaly belts with the trend of north-north-east to north-east and beaded anomaly belt. They showed as gravity gradient belts with the trend of north-north-east in Bouguer gravity anomaly map. The structural line directions of the crystalline basement have different characteristics with those on both sides of the basement rocks, and controlled the strata distribution and the development level of magmatic rocks.
     Through detailed study on profiles of the structures, it is showed that activity styles of Yishu fault belt in different sections in different stages have obvious diversity. It caused complicated metamorphic characteristics of structures, such as toughness and brittle, squeeze and stretch, left rotating and right rotating. Combining with geophysical detection information, it is regarded that Yishu fault belt both has the cutting mantle characteristics of the deep fault, and spade fracture performance in shallow part. After experiencing long and multi-phase tectonic movements, its structures have become very complicated.
     Yishu fault belt was formed in Neoproterozoic period with the property of ancient Yishu rift. The ancient Yishu rift was closed due to Jinning movement and formed unified ancient land in Ludong (eastern Shandong province) and Luxi (western Shandong province) areas. Crusts on both sides of the fault occurred differences in movements. Ludong area uplift in long time, and erosion was its major movement and deposition only occurred in partial areas. After the Hercynian and Indo-China movement, the former structure line changed from north-east trend to north-north-east trend. In Mesozoic period, eastern China started the change from central Asia and Tethys tectonic domain to the Pacific tectonic domain stage. The Mesozoic and Cenozoic periods were strong movement stages. They would cause the mantle replacement in eastern China and the lithosphere thinning in Mesozoic and Cenozoic period. At the same time, the Qin-Qi-Kunyang basin clamping between the north China plate and the Yangtze plate occurred collision and orogenic movement. It would cause strong activation of the Yishu fault belt and a large-scale shift to the left, the subsequent napping, translating to the right side and splitting. Under this structural background, structural pattern, sedimentation, magmatic activities and the form and distribution of minerals were effected by Yishu fault belt obviously. Due to subduction of the Pacific plate, Yishu fault belt located in marginal rift of continental movement. Magmatic lava in the upper part of the mantle pulped out from this area and provided sources and heat for mineralization. Due to thermal function of the plate in east part, a large number of multi-phase granite rock were formed after crust material remelting, which became important parent of gold mineralization in Jiaodong area. Yishu fault belt were translated to left accompanying with splitting in Paleogene, and evoluted to rift in later period. The movement in Neogene would translate at the left side with strong magmatic movement, while the movement in Quaternary showed differences in movements for the campaign.
     The continental dynamics environment with strong activities in Yishu fault belt originated from the transformation of central Asia-Tethys tectonic domain to the foreshore Pacific tectonic domain, and the Pacific plate subduction. Under the background of north China plate and the Yangtze plate collision orogenic activity, and the subduction of Pacific plate to the NWW trend, the activation of Yishu fault belt and its translation to the left occurred. The largest translation distance was over 300km. The Cenozoic had the characteristics of extension and squeeze in turn, and the structural framework with rift characteristics was formed.
     Gold deposits in Yishu fault belt can be divided into 5 types according to its origins; they are post-magmatic hydrothermal alteration with broken rock type, post-magmatic hydrothermal fracture filling quartz vein, contact skarn type, and the outbreak of crypto-volcanic hydrothermal breccia sedimentary rock type. Altered rock type gold deposits were mainly distributed in Yishui-Tangtao fault belt, and mineralization mainly occurs in mylonite granite, granite rock fragmental and green schist. The boundary between ore and non-ore was not very clear. The definition of ore bodies was determined by sample analysis result, and the ore body shapes were controlled by faults and ductile shear belts. Quartz vein type gold deposits occurred in basement rocks or Mesozoic rocks in the fault fissures. Ore bodies were gold-bearing pyritiferous quartz vein which had clear boundaries with country rocks. Parent rock of contact type gold deposit was the intruded complex in multi-stage Mesozoic Yanshan period. Its components were partial basis or partial acid to basis magmatic rocks. It was majorly composed of stratoid or phacoidal type, accompanying with lenticular and sackform type. Crypto-volcanic hydrothermal gold deposit located in the intersection part of Jiaolai basin and Yishu fault belt. Ore bodies mainly occurred in crypto-volcanic rocks and volcanic rocks of Qingshan group, while a small amount occurred in intrusive rocks. The mineralization rocks were quartz diorite porphyry-granite porphyry, diorite, diorite porphyry, Anshan tuffaceous breccia and andesite, etc. Ore bodies occurred in crypto-explosive breccia pipes which have close relation with volcanic complex. The crypto-volcanic complex was important ore leading and ore bearing geological bodies. Copper and lead-zinc deposits were mainly low-medium thermal fracture filling type, and were mainly distributed in sub-faults in both sides of regional deep faults. They were formed in late Yanshan period. Sapphire deposit occurred in Yishu fault belt. They were mainly occurred in central part of volcanic eruption of Neogene basalt. According to mineralization time, deposits caused by different origins occurred in different structural sections, different geological environment and different ore-forming times. The whole mineralization sequence was gold, copper, lead-zinc and sapphire from old to new.
     Different types of deposits were formed by different tectonic and magmatic function in different stages. Yanshan period is an important gold mineralization period. It formed a unique gold mineralization and ore-forming series in Shandong province. According to the mineralization characteristics, it can be divided into three deposit forming series combinations and 15 deposit series.
     Gold deposits in Yishu fault belt mainly occurred in mylonitic fragmental and granite rocks in lower part of main fracture in Yishui-Tangtao fault belt. Gold content in granite of major geological ore bodies is higher in Taishan group and Yanshan group. Its standard deviation and variation coefficient is large. They are major parent gold mineralization rocks, particularly the magmatic activities in Yanshan period are important factors for gold mineralization in this area. Pyritization, silication and beresite have close relation with gold deposit. Gold was composed of natural gold and silver gold. Gold ores were mainly showed as brecciform, accompanying with sub-brecciform, branched and line types, and the average component of gold mineral is 816.
     Through study on calcite inclusions and quartz inclusions in altered rock type and quartz vein type gold deposits, it is showed that inclusions have three types, such as single liquid phase inclusion, gas-liquid phase inclusion and gas-rich inclusion. Its freezing temperature varies between-2℃~-8.6℃, the salinity is between 3.39 wt%~12.39wt%, that is medium degree salinity (or deep source fluid) and low degree salinity deep water circulation of the atmosphere fluid; salinity in calcite fluid is relatively low, which is estimated as the result mixing magmatic fluids and atmospheric water. Uniform temperature of inclusions has a wide variation range between 107℃~550℃, and can be divided into 3 peak temperatures as 125℃~160℃,177℃~230℃and 260℃~330℃. They respectively reflect the early mineralization stage which regarded quartz as the representative (260℃~330℃), medium mineralization stage which regarded low-temperature quartz and calcite as the representatives (177℃~260℃), and late mineralization stage which regarded low-temperature calcite as the representative (125℃~160℃).
     As showed by stable isotope data of sulfur, hydrogen, oxygen, carbon and lead in typical gold deposits in this region,δ34 S value of pyrite varies between+2.7~+4.4‰,δ18O H2O value varies between-1.78~4.07‰,δD (SMOW) value varies between-74~-77‰, and the average value ofδ13 C is-4.18~-5.1‰. Isotope of lead has the characteristics of normal lead, which showed that gold-forming minerals are from deep part of underground. Ore-forming fluids are majorly composed of magma water accompanying with air precipitation.
     Rare earth elements of altered quartz and feldspar have some similar characteristics. They both are smooth curves with right tilt, and belong to light rare earth element concentration type. However, the difference between the two is obvious, the total content of rare earth element in feldspar is the highest, and light rare earth element concentration is even more evident with negative performance of the Eu anomaly; total content of rare earth element in quartz is low, and light rare earth element concentration is not evident, and the performance of the Eu is abnormal.
     U-Pb isotopic dating of zircon in Nanxiaoyao gold deposit is determined. The age of 2438±13Ma can represent the forming age of basic rocks, and 116±20Ma may represent a general time limit of regional mineralization. K-feldspar minerals in Longquanzhan gold deposit, Nanxiaoyao gold deposit and Niujiaxiaohe gold deposit are determined by using K-Ar method. Their ages are 141.92±2.06 Ma,94.29±1.38 Ma and 95.92±1.40 Ma respectively. The gold deposits in this area were formed in early and late Cretaceous period.20 whole-rock and single ore in Tongjing area of Yinan county are determined by using K-Ar dating method, the age is between 110~126 Ma. The age of other groups determined by Rb-Sr isochronal dating is 113.4 Ma. These data reflect that gold mineralization age should be in the Cretaceous period.
     Through primary summary on gold mineralization rule in this area, it is regarded that the ore-rich source rocks, strong ductile shear function in Jinning group, and large scale of volcano-magma thermal incident are factors for causing gold mineralization in this region. According to geological data and study on ore-forming minerals, gold ore-forming model is set up in this area.
引文
①山东省地质调查院.山东省沂南县龙泉站地区金矿普查报告.2004年.
    ①山东黄金集团沂南金矿.山东省沂源县牛家小河金矿区普查报告.2005年.
    ①临沂地区地质勘探队.山东省沂水县南小尧金矿区详查地质报告.1990年7月.
    [1]卢作祥.范永香等.成矿规律与成矿预测学[M],武汉:中国地质大学出版社,1991,P1~2.
    [2]王小凤.李中坚.陈柏林等.郯庐断裂带[M].北京:地质出版社,2005,P1~2.
    [3]国家地震局地质研究所.郯庐断裂[M].北京:地震出版社,1987,P1~7.
    [4]黄汲清指导.任纪舜.姜春发编写.中国大地构造及其演化[M].北京:地质出版社.1980.
    [5]安徽地矿局.安徽省区域地质志.北京:地质出版社.1987.
    [6]郭振一.郯城-庐江断裂带的形成演化与应力场分析.见:国际地质力学研讨会论文集.北京:地质出版社,1986,38.
    [7]国家地震局地学断面委员会.江苏响水至内蒙古满都拉地学断面.北京:地质出版社.1991.
    [8]国家地震局地质研究所.郯庐断裂.北京:地震出版社.1987.
    [9]黄汲清.中国地质构造基本特征的初步总结.地质学报,1960,40(1):1~37.
    [10]任纪舜,姜春发.中国大地构造及其演化.北京:地质出版社.1980.
    [11]商玉强.胶东地体碰撞与沂沭断裂带的演化.中国地质科学院南京地质矿产研究所所刊,1989,10(1):65~74.
    [12]李四光.新华夏还之起源.见:区域地质构造分析.北京:科学出版社,1974,49~58.
    [13]李四光.地质力学概论.北京:科学出版社.1973.
    [14]李希霍芬.山东的地质结构(胶州)及有用矿床.应用地质杂志,1898.(3).
    [15]刘占生.郯庐断裂带中段地质[M].吉林科学技术出版社,1995.12.
    [16]马杏垣.中国东部前寒武纪大地构造基本轮廓.科学通报,1960.(16).
    [17]山东地质矿产局.山东省区域地质志.北京:地质出版社.1991.
    [18]万天丰.郯庐断裂带的演化与古应力场.地球科学—中国地质大学学报,1995.20(5):526~534.
    [19]徐嘉炜,马国烽.郯庐断裂带研究的十年回顾.地质论评,1992.38(4):316~324.
    [20]徐嘉炜.郯城-庐江平移断裂系统.见:构造地质论丛(3).北京:地质出版社,1984.18~32
    [21]徐嘉炜.试论郯-庐断裂带的平移及其地质与找矿意义.地质矿产研究,1978,(5).
    [22]徐嘉炜.郯-庐断裂带的平移运动及其地质意义.见:国际地质学术论文集—为二十六届国际地质大会撰写(1),构造地质-地质力学.北京:地质出版社,1980.129~142.
    [23]徐嘉炜.郯庐断裂带巨大的平移运动.合肥工业大学学报,1980.(1).
    [24]许志琴.张巧大等.郯庐断裂带中段古裂谷的基本特征.中国地质科学院院报,1982,4:17~44.
    [25]许志琴.郊庐裂谷系概述.见:构造地质论丛(3).北京:地质出版社,1985.39-46.
    [26]许志琴.谈谈裂谷.地质论评,1980.26(3):260~264.
    [27]Akira Haseqawa, Dapeng Zhao, Shuichro Hori, et al.Deep structure of the northeastern Japan area and its relationship to seismic and volcanic activity.Nature,1991,352(6337):683-689.
    [28]Ames L,Tilton GR and Zhou GZ.Timing of collisional of the Sino-Korean and Yangtze Craton:U-Pb Ziron dating of coesite-bearing eclogites.Geology,1993,21:339~342.
    [29]Allen FM, Smith Bk and Buseck PR.Direct observation of dissociated dislocations in garnet.Science,1987,238:1695~1697.
    [30]谭锡畴.山东中生代及第三纪.见:地质汇报1923.(5),第二册.
    [31]李捷.中国地质图南京开封幅(1:100万)说明书.北京:商务印书馆.1929.
    [32]张文佑.从中国大地构造的特征谈中国大地构造单位的命名.科学通报,1959.(2).
    [33]张文佑.中国X型断裂与新构造运动的关系.见:中国科学院第一次新构造运动座谈会发言记录.北京:科学出版社.1957.
    [34]陈毓川.常印佛.裴荣富.任纪舜.汤中立.翟裕生.中国成矿体系与区域成矿评价.北京,地质出版社.2006.2~12.
    [35]陈毓川.朱裕生.中国矿床成矿模式.北京,地质出版社.1993.3~8.
    [36]陈毓川.裴荣富.宋天锐.邱小平.中国矿床成矿系列初论.北京,地质出版社.1998.1~22.
    [37]朱裕生.强化成矿规律研究,提高调查评价效益.国中地质,2000.277:18~40.
    [38]卢作祥.范永香等.成矿规律与成矿预测学[M],武汉:中国地质大学出版社,1991,P7~12.
    [39]P.Routhier. Where are the metals for the future?(BRGM),1983.
    [40]普.阿.舍赫特曼等,热液矿床详细构造预测,石准立等译,北京.地质出版社.1982.
    [41]米.伊.伊齐克松.太平洋区成矿分带.刘浩龙译.北京.地质出版社.1985.
    [42]李春昱.郭令智.朱夏.板块构造基本问题.北京.地震出版社.1986.402~425.
    [43]Dewey,J.K&K.Burke, Hotspots and continental break-up:Implications for collisional orogeny.Geol., 1974,No.2,57~60.
    [44]Garson,M.S.& A.H.G.Mitchell, Precambrian ore deposits and plate tecnics.In book:Precambrian metallogeny and plate tecnics,ed.by A.Kroner,Elsevier,Amsterdam,1981,689~731.
    [45]Hanssan,M.A.& J.S.Al-sulaimi, Copper mineralization in the northern part of Oman Mountains near Al Fujairah,United Arab Emirates.Econ. Geol.,1979, No.74,919~924.
    [46]Mitchell. A.H.G., Tecnic settings for emplacement of subduction-related magmas and associated mineral deposits.Spec.Paps. Geol.Associ.Can.,1976,No.14,3~12.
    [47]Mitchell. R.H., The alleged kimberlite-carbonbnatits relationship:Additional contrary mineralogical evidence.Amer.J.Sci.,1979,No.279,570~589.
    [48]Mitchell. A.H.G.,& M.S.Garson, Mineral deposits and global tecnic settings.Academic Press,London. 1981.
    [49]Sillitoe.R.H., Tin mineralization above mantle hot spots.Nat., London.,1974, No.248,497~499.
    [50]Sillitoe.R.H., Some thoughts on gold-rich porphyry copper deposits.Miner.Deposit,1979, No.14,161~ 174.
    [51]Sillitoe.R.H., Types of porphyry deposits.Min.Mag.,June,1980,550~551.
    [52]Uydea,S.& C.Nishiwaki, Stress field,matallogenesis and mode of subduction.Spac.Pap.Geol.Ass.can., 1980,20.
    [53]Aoki K I, Fujimaki H and kitamura M.Exsolved garnet-bearing pyroxene megacrysts from South African Kimberlite.Lithos,1980,13:269-279.
    [54]Uydea,S.& Miyashiro,A., Plate tectonics and structureal history of Japanese Archipelago..Geol.Soc.Amer.Bull.,1974,Vol.85.
    [55]山东招金集团公司.招远金矿集中区地质与找矿系[M].北京.地震出版社,2002.4,P3~15.
    [56]Robert E W, et aL. The San Andreas fault System, California. Washington:United States Government Printing Office.1990.
    [57]Ross J V. Ave Lallemant H. G. and Carter N. L.. Stress dependence of recrystallized grain and subgain size in olivine.Tectonophys,1980,70:39~61.
    [58]陈沪生.周雪清.李道琪等.中国东部灵璧-奉贤地学断面图.北京:地质出版社.1993.
    [59]李四光.中国的造山历史和构造轮廓.见:新西兰举行的第7次太平洋科学会议的会议录1949.(2).26~44.
    [60]李四光.天文、地质、古生物资料摘要(初稿).北京:科学出版社.1972.
    [61]李四光.旋卷构造及其他有关中国西北部大地构造体系复合问题.北京:科学出版社.1955.
    [62]张文佑.地堑形成的力学机制.中国科学院院报,1980.2(1).
    [63]徐嘉炜.郯城-庐江深断裂带的平移运动.华北地质,1964.(5).
    [64]徐嘉炜,朱光,吕培基等.郯庐断裂带平移年代学研究的进展.安徽地质,1995.5(1):1~12.
    [65]徐嘉炜,崔可锐,刘庆等.东亚大陆边缘中生代的左行平移断裂作用.海洋地质与第四纪地质,1985.5(2):51~64.
    [66]徐嘉炜.刘德良.李秀新.中国东部中生代南北陆块的对接—论大别山碰撞带及其意义.见:中新生代地质学术讨论会论文集.北京:地质出版社.1987.
    [67]徐嘉炜.王拌.秦仁高等.郯庐断裂带南段深层次的塑性变形特征及区域应变场.地震地质,1984.6(4):1~16.
    [68]万天丰.朱鸿.赵磊.林建平.程捷.陈进.郯庐断裂带的形成与演化:综述,现代地质,1996.6,第10卷第2期,P159~168.
    [69]朱光.牛漫兰.刘国生.王勇生等.郯庐断裂带肥东段走滑运动的40Ar/39Ar法定年,地质学报,2005.6,第79卷第3期,P303~316.
    [70]Ling Chen,Tianyu Zheng, and Weiwei Xu, A thinned lithospheric image of the Tanlu Fault Zone, eastern China:Constructed from wave equation based receiver function migration, Journal Of Geophysical Research,2006, Vol.111,P1~15.
    [71]Ling Chen, Tianyu Zheng, and Weiwei Xu, Receiver function migration image of the deep structure in the Bohai Bay Basin, eastern China, Geophysical Research Letters,2006,Vol.33, P1~5.
    [72]李春昱.亚洲地质图说明书.北京:地质出版社.1984.
    [73]李春昱.用板块构造学对中国部分地区构造发展的初步分析.地球物理学报.1975.18(1):52~ 76.
    [74]Okay.A.I and Sengor.A.M.C. Ebidence for intracontinental thrust-related exhumation of the ultra-high-pressure rocks in China. Geology.,1992,20:411-414.
    [75]Okay.A.I, Xu S, Sengor.A.M.C. Coesite from the Dabie Shan eclogites, Central China. Eur. J. Mineral, 1989, (1):595-598.
    [76]Yin A and Nie S Y. An indentation model for thenorth and south China collision and the development of the Tan-Lu and Honam fault systems, east Asia. Tectonics,1993,12(4):801~813.
    [77]Zhang Ruyuam. Takaon. Shoher Banno, Arich Ishiwatari, et al.. Coesiteclogite from Donghai area, Jiangsu Province,China.In the 15th General Meeting of the International Mineralogical Association,Abstracts,vol..2,923-924.
    [78]Zhang Z M,Liou J G and Coleman R. An outline of the plate tectonics of China. Geological Society of America Buletin,1984,95:295~312.
    [79]Zhao X and Coe R S. Paleomagnetic Constraints on the collision and rotation of North and South China. Nature 1987,327:141~144.
    [80]Chang Whan Oh. A new concept on tectonic correlation between Korea,China and Japan:Histories from the late Proterozoic to Cretaceous,science direct,2005, P41-46.
    [81]Rixiang Zhua. Kenneth A. Hoffman.Yongxin Pan.Ruiping Shi. Daming Li. Evidence for weak geomagnetic field intensity prior to the Cretaceous normal superchron, science direct,2003,P187~ 189.
    [82]马杏垣,游振东,谭应佳等.中国大地构造的几个基本问题.地质学报,1961.(1).
    [83]马杏垣.中国及邻近海域岩石圈动力学图集.北京:地质出版社.1986.
    [84]许志琴.扬子板块北缘的大型深层滑脱构造及动力学分析.中国区域地质.1987.6(4):289~300.
    [85]许志琴,卢一伦,汤耀庆等.东秦岭造山带的变形特征及构造演化.地质学报,1986.60(3):237~247.
    [86]高维明.李家灵.孙竹友.沂沭大陆裂谷的生成与演化.地震地质.1980.2(3):11~18.
    [87]郭振一.胶莱坳陷南缘晚侏罗世鲕状灰岩砾石有孔虫、蜒化石的发现及其大地构造意义.地质论评,1985.31(2):179~182.
    [88]乔秀夫.对郯庐断裂巨大平移之质疑.地质论评,1981.22(3).
    [89]陈文寄,计凤桔,李齐等.沂沭断裂带断层泥中K-Ar、FT和T1体系年代学含义的初步研究.地震地质,1988.10(4):191~198.
    [90]承娟英.郯-庐断裂带在渤海海域的构造特征.辽宁地质学报,1983.(2):28~37.
    [91]邓乃恭.中生代华夏类型构造和郯庐断裂体系的特征与形成机制.见::构造地质论丛(3).北京:地质出版社,1984.33~38.
    [92]汤加富,侯明金,高天山.郯庐断裂带的主要特征与性质讨论.安徽地质:1995.5(3):60~65.
    [93]王小凤.李中坚.陈柏林等.郯庐走滑断裂系的形成演化及其地质意义.见:郑亚东主编.构造地质学-地质力学.第三十届国际地质大会论文集(第14卷).北京:地质出版社.1998.176~196.
    [94]徐学思.郯庐断裂的平移.见:构造地质论丛(3).北京:地质出版社,1984.56~65.
    [95]Ling Chen,l Tianyu Zheng,l and Weiwei Xul. A thinned lithospheric image of the Tanlu Fault Zone, eastern China:Constructed from wave equation based receiver function migration. JOURNAL OF GEOPHYSICAL RESEARCH, VOL.2006,111,312~317.
    [96]王小凤.李中坚.陈柏林等.郯庐断裂带[M].北京:地质出版社,2005,P329~338.
    [97]郑建平著.中国东部地幔置换作用与中新生代岩石圈减薄[M].武汉.中国地质大学出版社,1999.12.94~110.
    [98]徐贵忠.蔡燕杰.周瑞等.山东胶莱盆地形成的动力学条件及其与金成矿作用的相关性讨论.现代地质.2004.3,第18卷第1期,P8~16.
    [99]沈远超.曾庆栋.刘铁兵等.郯庐断裂与金矿成矿.世界地质.2003.3,第22卷第1期,P41~44.
    [100]邓军.王庆飞.杨立强等.胶西北金矿集区成矿作用发生的地质背景.地学前缘(中国地质大学,北京).2004.10.第11卷第4期,P527~533.
    [101]黄汲清.中国东部大地构造分区及其特点的新认识.地质学报,1959.39(2).
    [102]卢造勋.夏怀宽.牛雪等.内蒙古东乌珠穆沁旗至辽宁东沟地学断面.见:国家地震局地学断面编委会编.北京:地震出版社.1992.P7.
    [103]卢造勋.张国臣.李竟志等.爆破地震研究辽南地区地壳与上地幔结构的初步研究.见:中国大陆深部构造的研究与进展.北京:地质出版社.1988.
    [104]卢造勋.东北地区的深部构造与地震.长春地质学院学报,1983.(1):113~122.
    [105]卢造勋主编.纪念海城地震成功预报20周年学术讨论会论文集.北京:地震出版社,1995.215~222.
    [106]金旭,杨宝俊主编.中国满洲里—绥汾河地学断面地球物理场及深部构造特征研究.北京:地震出版社.1994.
    [107]魏斯禹,滕吉文,张志和等.中国东部郯城-庐江裂谷带及邻近地区的地球物理场特征.见:构造地质论丛(3).北京:地质出版社.1984.
    [108]Cameron M and Papike J J. Structural and chemical Variations in pyroxenes.Am.Miner., 1981,66:1~50.
    [109]Desnoyers C. Exsolutions d'amphibole, de garnet et de spinelle dans les pyroxenes de roches ultrabasiques:peridotites et Pyroxenolites.Bull.Soc.Fr.Mineral Cristalogr,1975,98:65~72.
    [110]魏斯禹.滕吉文.王谦身等.中国东部大陆边缘地带的岩石圈结构与动力学.北京:科学出版社.1990.
    [111]张碧秀,汤永安.沂沭断裂带地壳结构特征.中国地震.1988.
    [112]唐新功.陈永顺.唐哲.应用布格重力异常研究郯庐断裂构造,地震学报,2006.11,第28卷第6期,P603~610.
    [113]滕吉文.闫雅芬.中国东南大陆和陆缘地带板内构造界带的地磁异常场响应,大地构造与成矿 学,2004.5,第28卷第2期,P105~117.
    [114]张家声.郯庐剪切带的性质和意义.地球科学,1992.17(4):363~371.
    [115]张家声.沂沭断裂带中段基底韧性变形带.地震地质,1983.5(2):11~24.
    [116]朱光,徐嘉炜,孙世群.郯庐断裂带平移时代的同位素年龄证据,地质论评,1995.41(5):462~456.
    [117]刘占生.郯庐断裂带中段地质[M].吉林科学技术出版社.1995.12.
    [118]王小凤.李中坚.陈柏林等.郯庐断裂带[M].北京:地质出版社.2005,P329~338.
    [119]沈其韩、沈昆等著.山东沂水杂岩的组成与地质演化[M].地质出版社,2000.6.P3~4.
    [120]王萍.李国昌.山东蓝宝石包裹体的研究[J].矿产与地质.1996.10(4):251.
    [121]张学云.李加贵.郭继香.蓝宝石的蓝色色调差异之初探[J].矿产与地质.2002.(6):34~38.
    [122]董树文.孙先如.张勇等.大别山造山带基本结构.科学通报,1993.3,8(6):542~545.
    [123]董树文.王小凤.黄德志.大别山超高压变质带内浅变质岩片发现及意义.科学通报,1996,41(9):815~820.
    [124]樊祺诚.刘若新,马宝林.苏北胶南高压变质超镁铁质岩.岩石学报,1992,8(1):90~95.
    [125]韩郁青.陈云兰.秦岭造山带核部两期同碰撞花岗岩的确定及其意义.见:游振东,索书田主编.造山带核部杂岩变质过程与构造解译.武汉:中国地质大学出版社.1992.
    [126]韩宗珠,盛兴土,袁棨林.大别山地区榴辉岩及伴生石榴石橄榄岩.矿物岩石,1989.9(4):30~39.
    [127]黄德志,董树文,叶朝晕等.大别与胶南造山带北缘地层对比意义.见:中国科协首届青年学术讨论会“兴皖之光”卫星会议论文选集.合肥:安徽科学技术出版社,1992,52~58.
    [128]李曙光.Hart S. R.郑双根等.中国华北、华南陆块碰撞时代的钐-钕同位素年龄证据.中国科学(B辑),1989.(3):312~319.
    [129]李曙光.葛宁洁.刘德良等.1989.大别山北翼大别群中C型榴辉岩的Sm-Nd同位素年龄及其构造意义,科学通报,34(7):522~525.
    [130]李曙光.刘德良.陈移之等.中国中部蓝片岩的形成时代.地质科学,1993.28(1):21~27.
    [131]李曙光.肖益林.刘德良.大别山石马地区石榴黑云片麻岩的Sm-Nd, K-Ar年龄及冷却速率.地质科学,1995.30(2):174~181.
    [132]李曙光.刘德良.陈移之等.大别山南麓含柯石英榴辉岩的Sm-Nd同位素年龄.科学通报.1992.37(4):346~34.
    [133]刘德良.李曙光.肖越辉等.秦岭构造带东段与郊庐断裂带南段古应力.见:中国东南海陆岩石圈结构与演化研究.北京:中国科技出版社,1992.55~64.
    [134]王小凤.王治顺.李继忠.郯庐断裂带南段构造岩的基本特征.见:中国地质科学院地质力学所所刊(3).北京:地质出版社,1982.141~153.
    [135]Dong SW, Wang X F,Xue L J, et al. Discovery and implication of "Shiqiao structural window" within the UHP metamorphic belt in northern.Jiangsu province, China.Abstracts for IGCP-283 symposium (Kurean).1994.
    [136]Li Z X. Collision between the north and south China blocks:a crustal detachment model for suturing in the region east of the Tan-Lu fault.Geology,1994,22:739-742.
    [137]Wazlg X M and Liou J G.:The Largee displacement of the Tan-Lu fault:Evidence from the distribution of the coesitebearing ec-logite blet in eastern China. Eos. Trans.,1989,1312~1313.
    [138]Kai-Jun Zhang, Granulite xenoliths from Cenozoic basalts in SE China provide geochemical fingerprints to distinguish lower crust terranes from the North and South China tectonic blocks: comment,science direct,2004,P127~134.
    [139]ZhouJianbo, TakaoMiyata, WangZeli, Anearly Cretaceous pull-Apart Basin In The Middle Section, OF The Tan-Lu Fault Zone,地震地质,21(2),1999.6, P185~192.
    [140]王小凤.李中坚.陈柏林等.郯庐断裂带[M].北京:地质出版社,2005,P1~5.
    [141]R.W.博伊尔.金的地球化学与金矿床[M].地质出版社,1984.12.371~403.
    [142]沈保丰、孙继源等著.五台山—恒山绿岩带金矿床地质[M].地质出版社.1998.5.
    [143]李洪奎、杨永波等.山东省胶莱盆地东北缘宋家沟金矿地质特征及其成因初探[J].前寒武纪研究进展,2002.第25卷第3-4期(总第99-100期).
    [144]林景仟.谭东娟.于学峰等.鲁西归来庄金矿成因.济南:山东科学技术出版社.1997.P3~16.
    [145]黄宗理.张良弼主编.地球科学大辞典(应用科学卷).北京,地质出版社.2005.11,P12.
    [146]李洪奎.李英平等.沂水县龙泉站金矿地质特征及找矿前景[J],山东国土资源,2005.2,1(6~7).9~15.
    [147]林景仟、谭东娟、于学峰等著.鲁西归来庄金矿成因[M].济南.山东科学技术出版社,1997.4,P98~99.
    [148]李俊健.骆辉.周红英等.内蒙古阿拉善地区朱拉扎嘎金矿的成矿时代.地球化学,2004.33(6),666~668.
    [149]李洪奎.杨永波.田景祥等.山东沂沭断裂带中段金矿床地质特征[J].地质与勘探,2004.40(4),27~31.
    [150]陈光远.邵伟.孙岱生.胶东金矿成因矿物学与找矿.[M],重庆.重庆出版社.1989.
    [151]刘斌NaCI-H20溶液包裹体的密度和等容式及其应用.[J].矿物学报,1987.7(4).345~352
    [152]Hu Huabin,Mao Jingwei, Niu shuyin. Study on fluid inclusions of Mofanguo gold deposits om Pingyi,WesternShandong,Geo-science,2004.18(4):529~535.
    [153]Hu Huabin,Mao Jingwei, Liu Dunyi,Niu shuyin,Wang Tao,Li Yongfeng,Shi Yuruo. The SHRIMP age of Zircon from Tongshi magmatic complex in Western Shangdong and its geologocal implications, Earth Science Frontiers,2004,.11(2):453~460.
    [154]李洪奎.杨锋杰.牛树银.李英平等.山东龙泉站金矿区稳定同位素特征及其地质意义[J],地 质学报,2007.81(5).P635~639.
    [155]Du Letian. The Relationshop between crust fluids and mantle fluids.Earth Science Frontiers, 1994.,1(1-2):79~86.
    [156]卢作祥.范永香等.成矿规律与成矿预测学[M],武汉:中国地质大学出版社.1991,P85~97.
    [157]李华芹、吴华、陈富文等.东天山白云山铼钼矿区燕山期成岩成矿作用同位素年代学证据.地质学报,2005.第79卷第2期,249~251.
    [158]刘斌,沈昆.流体包裹体热力学.北京:地质出版社.1999.P1~290
    [159]杜乐天.地壳流体与地幔流体间的关系.地学前缘.1994.1(1-2),P79~86.
    [160]R.W.博伊尔.金的地球化学与金矿床.马万钧、王立文、罗永国等译.北京:地质出版社.1984.556~565.
    [161]胡华斌,毛景文,牛树银等.2004b.鲁西平邑地区磨坊沟金矿床流体包裹体研究.现代地质.18(4).529~535.
    [162]苏文超.漆亮.胡瑞忠等.流体包裹体中稀土元素的CP-MS分析研究.科学通报,1998.43(10):1094~1098.
    [163]王宝德.牛树银.孙爱群等.冀北地区金矿床氦、氩、铅同位素组成及其成矿物质来源[J].地球化学.2003,32(2):181~187.
    [164]张连昌等.胶东地区金矿床流体包裹体的He、Ar同位素组成及成矿流体来源示踪岩石学报.2002,118(4)559~562.
    [165]Anderson,D.L.,Chemical plume in the mantle[J].Geol.Soc.Am.Bull,1975,86:1593-1600.
    [166]Bach W, Irber W. Rare earth element mobility in the oceanic lower sheeted dyke complex: evidence from geochemical data and leaching experiments. Chemical Geology,1998.151:309-326.
    [167]Barrett T, Jarvis I, Jarvis K E. Rare earth elementgeochemistry of massive sulfide-sulfates and gossans on the Southern Explorer Ridge. Geology,1990.18:583~586.
    [168]Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and significance of the oxidation state of europium. Chemical Geology,1991.93:219-230.
    [169]Deffeys,K.S.Plume convection with aupper mantle temperature inversion[J].Nature,1972,(240):539-544.
    [170]Davies,GF. Mantle plumes,mantle stirring and hotspot geochemistre. Earth Planet Sci.Lett,1990,94-109.
    [171]Davies,C.A.; lister,G.S. Detachment faulting in continental extension,Perspectives from the southwestern U.S.Cordillera. Geological Science of America Special Paper,1988,218.
    [172]毛景文.李荫清.河北省东坪碲化物金矿床流体包裹体研究:地幔流体与成矿关系.矿床地质,2001.20(1):23~36.
    [173]毛景文.李晓峰.张作衡等.中国东部中生代浅成热液金矿的类型、.特征及其地球动力学背景.高校地质学报,2003.9(4):620~637.
    [174]牛树银.侯增谦.孙爱群.核幔成矿物质(流体)的反重力迁移——地幔热柱多级演化成矿作 用.地学前缘,2001,8(3):95~01.
    [175]孙丰月.石准立.冯本智.胶东金矿地质及幔源C-H-O流体分异成岩成矿.吉林人民出版社.1995.
    [176]曾普胜.裴荣富.侯增谦等.安徽铜陵矿集区冬瓜山矿床:一个叠加改造型铜矿.地质学报,2005.第79卷第1期,109~110.
    [177]R.W.博伊尔.金的地球化学与金矿床.马万钧、王立文、罗永国等译.北京:地质出版社.1984.294~301.
    [178]袁万明.莫宣学.喻学惠等.青海省五龙沟矿区金矿化的石英稀土元素地球化学指示.地质与勘探,2002.38(1):15~17.
    [179]Bach W, Irber W. Rare earth element mobility in the oceanic lower sheeted dyke complex: evidence from geochemical data and leaching experiments. Chemical Geology,1998.151:309-326.
    [180]Barrett T, Jarvis I, Jarvis K E. Rare earth elementgeochemistry of massive sulfide-sulfates and gossans on the Southern Explorer Ridge. Geology,1990.18:583~586.
    [181]Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and significance of the oxidation state of europium. Chemical Geology,1991.93:219-230.
    [182]Hass J R, Shock E L, Sassani D C. Rare earth element in hydrothermal systems:Estimates of standard partial modal thermodynamic properties of aqueous complex of the rare earth elements at high pressures and temperature. Geochim Cosmochim Acta,1995.59(21):4329~4350.
    [183]Ohmoto H, Rye R O. Isotopes of sulfur and carbon. In:Barnes H L ed. Geochemistry of Hydrothermal Ore Deposits. New York:John Wiley&Sons,1979.509-567.
    [184]毕献武.胡瑞忠.Cornell D H.蚀变流体的来源:矿化蚀变带中原生与次生长石的稀土元素证据.科学通报,2000.45(13):1429~1432.
    [185]鄢云飞.谭俊.李闫华.阮诗昆,中国浅成低温热液型金矿床地质特征及研究现状,资源环境与工程,2007.2,第21卷第1期,P7~11.
    [186]胡华斌.毛景文.牛树银等.鲁西平邑地区磨坊沟金矿床流体包裹体研究,现代地质,2004.18(4):529~535.
    [187]胡华斌.牛树银.毛景文.张忠义.王银宏,.鲁西中生代幔枝构造及其金矿化,矿床地质,200423(1):115~122.
    [188]胡华斌.牛树银.毛景文等.鲁西平邑磨坊沟碲金型金矿的地质特征及成因机制.地球学报,2004,25(5):523~528.
    [189]牛树银.胡华斌.毛景文等.鲁西地区地质构造特征及其形成机制.中国地质,2004.31:34~39.
    [190]牛树银.孙爱群.地球的物质运动.科学,1999,51(3):49~52.
    [191]宋彪.张玉海.万渝生等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,2002,5(增刊).26~30.
    [192]袁洪林.吴福元.高山等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003.48卷14期,1511~1519.
    [193]Gunther D, Frischknecht R, Heinrich C A, etal. CaPabilitiesofan ArF 193μmexcimer laser for LAM-ICP-MS micre-analysis of geologieal materials. Journal of Analytical Atomtc Speetrometry. 1997,12,939~944.
    [194]李洪奎.杨永波.田京祥等.山东沂沭断裂带中段金矿地质特征[J].地质与勘探,2004.第40卷第4期,27~31.
    [195]李洪奎.岳成利.杨锋杰等.山东沂水县龙泉站金矿成因初探[J],矿物学报,2007,第27卷增刊,25~27.
    [196]胡圣标.郝杰.付明希等,秦岭-大别-苏鲁造山带白至纪以来的抬升冷却史—低温年代学数据约束,岩石学报,2005,第21卷第4期,P1167~1173.
    [197]吴根耀.梁兴.陈焕疆.试论郯城--庐江断裂带的形成、演化及其性质,地质科学,2007.1,第42卷第1期,P160~175.
    [198]陈宣华.王小凤.张青.陈柏林.陈正乐,郯庐断裂带形成演化的年代学研究,长春科技大学学报,2000.7,第30卷第3期,P215~220.
    [199]朱光.牛漫兰.刘国生.王道轩.宋传中,郯庐断裂带早白垩世走滑运动中的构造、岩浆、沉积事件,地质学报,2002.8,第76卷第3期,P325~334.
    [200]张振海.张景鑫.叶素芝.胶东金矿同位素年龄的厘定.地质出版社.1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700