用户名: 密码: 验证码:
小麦族St基因组近着丝粒区反转录转座子的克隆及进化机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦族(Triticeae)中十倍体长穗偃麦草(Thinopyrum ponticum)作为目前小麦育种中重要的抗病基因来源之一,一直倍受小麦育种家们的重视,但是对其基因组组成人们至今仍然没有明确统一的认识。为了鉴定其基因组,我们根据野生一粒小麦(Triticum boeoticum) CRW2-BAC5序列设计特异引物以二倍体拟鹅观草(Pseudoroegneria)基因组DNA为模板进行PCR扩增,通过回收产物、测序及比对,我们筛选到了一条来源于St基因组着丝粒反转录转座子长度为1755bp的相对特异序列,暂时命名为pStC1。这条序列有800bp的片段与野生一粒小麦CRW2-BAC5的LTR区高度同源,另有小部分片段与CRW2-BAC5的gag区部分同源,并且包含一段富含AGCAAC碱基的重复序列。序列比对显示,pStC1没有转座发生所必需的引物结合位点——PBS序列,它是源于一种已经失活的转座元件序列片段。以pStC1为探针对小麦、十倍体长穗偃麦草和中间偃麦草(Th. intermedium)等几个物种进行FISH检测,它在小麦A、B及D三个基因组着丝粒相关区域均有很强的杂交信号。对偃麦草属的检测结果显示十倍体长穗偃麦草的基因组明确的分成了两组:一组是28条染色体的着丝粒相关区域有清晰的杂交信号,另一组42条染色体上基本没有信号,我们推定十倍体长穗偃麦草的基因组组成为两个St组和三个E组,用(St1St2 EeEbEx)表示。pStC1在中间偃麦草中不仅St基因组上有强烈的荧光信号,而且E基因组一些染色体的近着丝粒区域也有较强的杂交信号;另外以pStC1下游与CRW2-BAC5的gag区部分同源的序列片段为探针对中国春进行FISH检测时发现,小麦B基因组部分染色体除在着丝粒及近着丝粒区域有较强的荧光信号外,在其常染色体上也发现了明显的信号。这些结果暗示我们在偃麦草属异源多倍体物种及六倍体小麦的物种形成及其基因组进化过程中,St和E基因组之间、A与B及D基因组之间在着丝粒相关区域可能存着在不平衡的整合与协调。
Thinopyrum ponticum (2n=10x=70) in Triticeae is one of important sources of pathogen resistant genes in wheat breeding. Though it has attaracted mang concerns of wheat breeders, but its genome components is still in dispute. In order to characterize its chromosomes, according to the sequence of CRW2-BAC5 from Triticum boeoticum, six pair of specific primers were designed and several DNA fragments were amplified by PCR with the genome DNA of diploid Pseudoroegneria as the template. By purifying PCR products, sequencing and sequence alignment we screened a 1755bp DNA fragment originated from St Centromere-specific retrotransposon, we named it pStC1 (St genome centromeric associated sequence). There is a 800bp fragment of this sequence has highly homology with the LTR region of CRW2-BAC5, a less fragment share partial homology to the gag region, and also we have founded a AGCAAC-rich tandem repeat in this fragment. However, sequence comparison revealed that the primer binding site which is necessary for the activity of transposition was not found in pStC1. Therefore, this sequence might be a segment of an inactivating retrotransposon. Chinese Spring and several Elytrigia species were analysed by Fluorescent in situ hybridization (FISH) with this sequence as probe. Significant hybridization signals on the centromere related regions were observed among all the 42 chromosomes of Chinese Spring. The 70 chromosomes of Th. ponticum were definitely divided into two groups, 28 chromosomes were strongly hybridized at their centromeric regions, and the other 42 chromosome had nearly no signals, so we deduced the genomic compositions of Th. ponticum are two St genomes and three E genomes (St1St2EeEbEx). In Th. intermedium, strongest FISH signals existed on St genome chromosomes, but some E genome chromosomes also have strong signals at their pericentromeric regions. Also FISH of the 900bp downstream sequence of pStC1 was carried out in Chinese Spring, obvious signals were obversed on B genome chromosome arms. These results indicated that during the process of specation and genome evolution in allopolyploids of Thinopyrum genus, unbalanced coordination was existed between St genome and E genome at there centromeric and pericentromeric regions, and also these unbalanced coordination maybe existed among A, B and D genomes during the evolution of hexaploid wheat.
引文
1.马渐新,周荣华,董玉琛,贾继增.来自长穗偃麦草的抗小麦条锈病基因的定位.科学通报,1999,44(1):65~69.
    2.李玉京,刘建中,李滨,李继云,姚树江,李振声.长穗偃麦草基因组中与耐低磷营养胁迫有关的基因的染色体定位.遗传学报,1999,26(6):703~710.
    3.李振声,陈漱阳,刘冠军,李容玲.小麦与偃麦草远缘杂交的研究1.科学通报,1962,04:40~42.
    4.李振声,穆素梅,蒋立训.蓝粒单雄小麦研究(一).遗传学报,1988,9(8):48l4~89。
    5.李振声,陈漱阳,钟冠昌.小麦远缘杂交.中国农业科技出版社,1985年版.
    6.李立会,董玉琛.普通小麦与沙生冰草属间杂种的产生及细胞遗传学研究.中国科学(B辑).1990,(5):492~496.
    7.李立会,董玉琛,周荣华,李秀全,李培.普通小麦与冰草属间杂种的细胞遗传学及其自交可育性,遗传学报.1995,22:109~114.
    8.刘树兵,贾继增,王洪刚,孔令让,周荣华.利用生化及分子标记确定长穗偃麦草染色体与小麦染色体的部分同源性.遗传学报,1999,26(1):374~2.
    9.孙善澄.春小麦与天兰鹅冠草远缘杂交问题的研究.遗传学集刊, 1962,1:17~25.
    10.孙善澄.小偃麦新品种与中间类型的选育途径、程序和方法.作物学报,1981年01期.
    11.辛志勇,徐惠君,陈孝,林志珊,周广和,钱幼亭,成卓敏, Larkin P J,Banks P, Appels R, Clarke B and Brettell R I S.应用生物技术向小麦导入黄矮病抗性的研究.中国科学,1991,1(1):364~2.
    12.张学勇,董玉琛.偃麦草基因组组成及新物种形成规律的研究.云南大学学报(自然科学版),1999,S3:666~7.
    13.张学勇,李大勇.小麦及其近亲基因组中的DNA重复序列研究进展.中国农业科学,2000,33(5):1~7.
    14.张增艳,辛志勇,马有志,陈孝,徐琼芳,林志珊.用分子标记定位源于中间偃麦草的小麦抗黄矮病基因.中国科学(C辑),1999,29(4):413~417.
    15.武东亮、辛志勇、陈孝、徐惠君、马有志、张增艳抗.黄矮病普通小麦-偃麦草异附加系、异代换系的选育和鉴定.中国科学(C辑),1999,2,(1):62~67.
    16.徐柱,Watson L,Dallwite M J,Heywoo V H d,吴仁润,耿伯介.世界禾草属志.中国农业科技出版社,1999年版.
    17.韩芳蒲,李济林.小麦细胞遗传学.中国农业科技出版社,1994年版.
    18.董玉琛,郑殿升.中国作物及其野生近缘植物-粮食作物,2006,pp143~151.
    19.颜济,俊良,伯纳德,R包姆.小麦族生物系统学第三卷,2006,pp1~4.
    20. Ananiev E V, Phillips R L, Rines H W. Chromosome-specific molecular organization of maize(Zea mays L) centromeric regions. Proc Natl Acad Sci USA 1998, 95(22): 3073~3078.
    21. Ansari H A, Ellison N W, Griffiths A G, Williams W M. A lineage-specific centromeric satellite sequence in the genus Trifolium. Chromosome Res 2004, 12(4): 357~367.
    22. Brandes A, Thompson H, Dean C, Heslop-Harrison J S. Multipler epetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L. Chromosome Res 1997, 5(4): 238~246.
    23. Arabidopsis genome initiative: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408: 796~815.
    24. Chen F G, Zhang X Y, Xa G M, Jia J J. Construction and characterization of a bacterial artificial chromosome library for Triticum boeotium. Acta Bot Sinica 2002, 44(4): 451~456.
    25. Chen Q, Conner R L, Laroche A, Thomas J B. Genomic analysis of Thinopyrum intermedium and Th.ponticum using genomic in situ hybridization. Genome 1998, 41: 580~586.
    26. Clarke L. Centromeres of budding and fission yeasts. Trends Genet 1990, 6(5): 150~154.
    27. Cicin H B. Perennial Wheat.Moscow: Science Press 1978.
    28. Clayton W D & Renvoize.S A. Genera graminum: grasses of the world. H.M.S.O 1986.
    29. Comai L. Genetic and epigenetic interactionsin allopolyploid plants. Plant Mol Biol 2000, 43(3): 87~399.
    30. Comai L, Tyagi A P, Winter K, Holmes D R, Reynolds S H, Stevens Y and ByersB. Phenotypic instability and rapidgene silencing in newly formed Arabidopsis allotetraploids. Plant Cell1 2000,
    2: 1551~1568.
    31. Dewey D R. Cytogenetics of Elymus sibiricus and its hybrids with Agropyron tauri, Elymus canadensis and Agropyron caninum. Botanical Gazette 1974, 135: 80~87.
    32. Dewey D R. Morphological, cytological and taxonomic relationships between Agropyron repens and A. elongatiforme (Gramineae). Systematic Botany 1980, 5: 61~70.
    33. Dewey D R. Cytogenetics of Agropyron ferganense and its hybrids with six Agropyron, Sitanion, and Elymus species. American Journal of Botany 1981, 68: 216~225.
    34. Dewey D R. Genome relationships and taxonomy of the perennial grasses related to wheat. Agronomic Abstract 1982, pp63.
    35. Dewey D R. The genome system of classification as a guide to intergeneric hybridization with perennial Triticeae. In: Gustafsson J P ed. Gene Manipulation in Plant Improvement. New York: Plenum 1984, pp2092~79.
    36. Dong F, Miller J T, Jackson S A, Wang G L, Ronald P C, Jiang J. Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci USA l998, 95(14): 8135~8140.
    37. Dvorak J, Sosulski F W. Effects of additions and substitutions of Agropyron elongatum chromosomes on quantitative characters in wheat. Can J Genet Cyto 1974, 16: 627~637.
    38. Dvorak J. Metaphase I pairing frequencies of individual Agropyron elongatum chromosome arms with Triticum chromosomes. Can J Genet Cyto 1979, 21: 243~254.
    39. Entani T, Iwano M, Shiba H, Takayama S, Fukui K, Isogai A. Centromeric localization of an S-RNase gene in Petunia hybrida Vilm. Theor Appl Genet 1999, 99(3-4): 391~39.
    40. Francki M G. Identification of Bilby, a diverged centromeric Tyl-copia retrotransposon family fromcereal rye(Secale cereale L). Genome 200l, 44(2):266~274.
    41. Levy A A, Feldman M, The impact of polyploidy on grass genome evolution. Plant Physiology 2002, 130: 1587~1593.
    42. Gindullis F, Desel C, Galasso I, Schmidt T. The large-scale organization of the centromeric region in Beta species.Genome Res 2001, l1(2): 253~265.
    43. Henikoff S, Ahmad K, Malik H S. The Centromere Paradox: Stable inheritance with rapidly evolving DNA. Science2001, 293: 1098~1102.
    44. Ito H, Nasuda S, Endo T R. A direct repeat sequence associated with the centromeric retrotransposons in wheat. Genome 2004, 47: 747~756.
    45. Jiang J M, Birchler J A, Parrott W A., Dawe R K. A molecular view of plant centromeres. Trends Plant Sci. 2003, 8: 570~575.
    46. Jiang J M, Nasuda S, Scherrer C W, Woo S, Wing R A, Gill B S, ward D C. A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA 1996, 93: 14210~14213.
    47. Jin W W, Melo J R, Nagaki K, Talben P B, Henikoff S, Dawe R K, Jiang J M. Maize centromeres:
    0rganizati0n and functioal adaptation in the genetic background of oat. Plant Cell 2004, 16: 57l~581.
    48. Kamm A, Galasso I, Schmidt T, Heslop-Harrison J S. Analysis of a repetitive DNA family from Arabidopsis arensa and relationship between Arabidopsis species. Plant Mol Biol, 1995, 27: 853~862.
    49. Kawabe A, Nasuda S. Structure and genomic organization of centromeric repeats in Arabidopsis species. Mol Genet Genomics 2005, 272(6): 593~602.
    50. Kihara H. Genomanalyse bei Triticum und Aegilops. Cytologia 1930, 1: 263~284.
    51. Kihara H. Consideration on the evolution and distribution of Aegilops species based on the analyser-method. Cytologia 1954, 19: 336~357.
    52. Kihara H. Wheat studies - retrospect and prospects. Tokyo: Kodansha 1982.
    53. Kishii M, Nagaki K, Tsujimoto H. A tandem repetitive sequence located in the centromeric region of common wheat (Triticum aestivum) chromosomes. Chromosome Res 2001, 9(5): 417~428.
    54. Kurata N, Nonomura K and Harushima Y, Rice genome organization: the centromere and genome interactions. Annals of Botany 2002, 90: 427~435.
    55. Langdon T, Charlotte S, Michael M, Michael L, Huw T, John W F, Howard T, Jones , R N and Glyn J. Retrotransposon evolution in diverse plant genomes. Genetics 2000, 156: 313~325.
    56. Leach C R, Donald T M, Franks T K, Spiniello S S, Hanrahan C F, Timmis J N. Organisation and origin of a B chromosome centromeric sequence from Brachycome dichromosomatica. Chromosoma 1995, 103(10): 708~7l4.
    57. Li L H, Y S Dong. A self-fertile trigeneric hybrid,Triticum aestivum×Agropyron michnoi×Secale cereale, Theor Appl Genet 1993, 87(3): 361~368.
    58. Liu B, Wendel J F. Non-mendelian phenomena in allopolyploid genome evolution. Current Genomics 2002, 3: 589~605.
    59. Liu Z, Li D Y and Zhang X Y. Genetic Relationships Among Five Basic Genomes St, E,A, B and D in Triticeae Revealed by Genomic Southernand in situ Hybridization. Journal of Integrative Plant Biology 2007, 49 (7): 1080~1086.
    60. Liu Z, Yue W, Li D Y, Wang R R-C, Kong X K, Lu K, Wang G X, Dong Y S, Jin W W and Zhang X Y. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromsoma 2008, 5 (117): 445~456.
    61. Matzke M A, Scheid O M and Matzke A J M. Rapid structural and epigenetic changes in polyploid and aneuploid genomes. Bioessays 1999, 21: 761~767.
    62. Margaret G R, Thomas A J and Y T Zhang. Ubiquity of the St chloroplast genome in St-containing Triticeae polyploids NRC Research Press web site on September 2000, 19: 846~852.
    63. McClintock B. The significance of responses of the genome to challenge. Science 1984, 226: 792~801.
    64. Miller J T, Dong F, Jackson S A, Song J and Jiang J M. Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics 1998, 150: 1615~1623.
    65. Miller J T, Jackson S A, Nasudda S, Gill B S, Wing R A, and Jiang J M. Clonging and characterization of a centromere-specific repetitive DNA elements from Sorghum bicolor. Theor Appl Genet 1998, 96: 832~839.
    66. Nagaki K, Cheng Z, Ouyang Z, Talbert P B, Kim M,Jones K M, Henikof S, Buell C R, Jiang J M. Sequencing of a rice centromere uncovers active genes.Nature Genet 2004, 36(2): l38~145.
    67. Nagaki K, Murata M. Characterization of CENH3 and centromere associated DNA sequences in sugarcane, Chromosome Res 2005, 13(2): l95~203.
    68. Osborn T C, Pires J C, Birchler J A, Auger D L, Chen Z J, Lee H S, Comai L, Madlung A, Doerge R W, Colot V and Martienssen R A. Understanding mechanisms of novel gene expression in polyploids.Trends Genet 2003, 19: 141~147.
    69. Osborn T C.The contribution of polyploidy to variation in Brassica species.Physiol. Plant 2004, 121: 531~536.
    70. Sears E R. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symup Biol 1956, 9: 1~22.
    71. Saunders V A, Houben A. The pericentromeric heterochromatin of the grass Zingeria biebersteiniana (2n=4) is composed of Zbcen1-type tandem repeats that are intermingled with accumulated dispersedly organized sequences. Genome 2001, 44(6): 955~961.
    72. Page B T, Wanous M K, Birchler J A. Characterization of a maize chromosome 4 centromeric sequence: evidence for an evolutionary relationship with the B chromosome centromere. Genetics 2001, 159(1): 291~302.
    73. Presting G G, Malysheva L, Fuchs J, Schubert I. A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 1998, 16(6): 721~728.
    74. Tuleen N A, Hart G E. Isolation and characterization of whet-Elytrigia elongate chromosome 3E and 5E addition and substitution lines·Genome 1988, 30: 519~524.
    75. Xin Z Y, Brettell R, Cheng Z M, Waterhouse P M, Appels R, Banks P M, Zhou G H, Chen X andLarkin P J. Characterization of a potential source of barley yellow dwarf virus resistance for wheat. Genome 1988, 30: 250~257.
    76. Wang J, Lee J J, Lee H S, Tian L, Chen M, Rao S, Wei E N, Doerge R W, Comai L, Chen Z J. Methods for genome-wide analysis of gene expression changes in polyploids. Methods in Enzymology 2005, 395: 570~96.
    77. Wang R R C. Genome relationships in the perennialTriticeae based on diploid hybrids and beyond. Hereditas 1992, 116: 133~136.
    78. Wong L H, Choo K H A. Evolutionary dynamics of transposable elements at the centromere. Trends Genet 2004, 20(12): 611~6l6.
    79. Wu J, Yamagata H, Hayashi-Tsugane M, Hijishita S, Fujisawa M,Shibata M, Ito Y, Nakamura M, Sakaguchi M, Yoshihara R, Kobayashi H, Ito K, Karasawa W, Yamamoto M, Saji S, Katagiri S,Kanamori H, Namiki N, Katayose Y, Matsumoto T, Sasaki T. Composition and structure of the centromeric region of ricechromosome 8. Plant Cell 2004, 16(4): 967~976.
    80. Wendel J F. Genome evolution in polyploids. Plant Molecular Biology 2000, 42: 225~249.
    81. Yen C, Yang J L ,Yen Y, Hitoshi Kihara.áskell L?ve and the modern genetic concept of the genera in the tribe Triticeae (Poaceae).植物分类学报2005, 43(1): 82~93.
    82. Zhang X Y, Dong Y S,and Wang R R-C, Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum×Thinopyrum ponticum by in situ hybridization, isozyme analysis and RAPD. Genome 1996, 39: 1062~1071.
    83. Zhang X Y. Wang R R-C, Fedak G. Dong YS. Determination of genome and chromosome composition of Thinopyrum intermedium and partial amphiploids derived from Triticum aestivum×Th. intermedium by GISH and genome-specific RAPD markers. In: Chinese Agricultural Sciences.- for the compliments to the 40th anniversary of the founding of The Chinese Academy of Agricultural Sciences 1997, pp71~80. Also in: Proc. 10th EWAC Meeting 1997 (Viterbo, Italy), pp34~38.
    84. Zhang X Y, Banks P M, Larkin P J. Verification of alien chromosomes and segments in addition lines derived from Triticum aestivum -Thinopyrum intermedium partial amphiploid Zhong 5. Chinese Agricultural Sciences (English version) 2000, 3: pp53~59.
    85. Zhong C X., Dawe R K, Centromeric Marshall J B, Topp C, Mroczek R, Kato A, Nagaki K, Birchler J A, Jiang J M, retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 2002, 14(11): 2825~36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700