用户名: 密码: 验证码:
多星测控调度问题的遗传算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多星测控调度是指对高中低轨等各类卫星合理地分配天地基测控资源以满足卫星的测控任务需求。多星测控调度问题是一个具有多时间窗口等复杂约束的大规模组合优化问题,涉及要素多且关系复杂,对其进行深入研究不仅可以为工程应用提供调度方案和方案评价结果,还可以对调度算法进行探索和分析,并在此基础上改进算法性能。本文针对多星测控调度问题的遗传算法框架,研究了相关的遗传算法。主要工作和创新如下:
     在模型方面,借鉴低轨卫星测控调度任务需求描述方式,在对中高轨卫星的轨道测量和轨道保持等需求进行分析的基础上,给出了高中低轨任务需求规范化描述;针对天基和地基测控资源的测控特点,以卫星任务需求加权满足率最大为目标,建立了测控资源的调度模型。
     遗传算法是一种具有全局搜索性能的随机搜索算法,在类似于多星测控调度问题的诸多领域取得了很好的应用效果。由于多星测控调度问题的搜索空间巨大,不易求解,而搜索策略又决定遗传算法的求解性能,因此,首先对遗传算法的求解策略进行研究,并在此基础上得出求解框架。遗传算法可以对整个解空间进行大范围的全局型搜索,也可以对解空间的部分区域进行细致的局部型搜索,虽然全局型搜索原理上可以得到问题的最优解,但对算法的实现技术有较高的要求,局部型搜索虽然从原理上不能保证得到最优解,但可以对重点区域进行详细搜索,稳定地得到满意解甚至是最优解,两种策略各具优势,因此,本文提出了基于全局和局部两种搜索策略的求解框架,并对两种策略共同使用的算法组件进行了设计。
     在全局型求解算法方面,由于搜索空间巨大,对随机型的遗传算法而言,容易造成收敛速度慢和求解时间长,而且还易陷入局部最优。针对初始算法求解易陷入局部最优和不稳定的缺陷,借鉴分散搜索多样化采样及局部寻优的思想,在原始GA全局的随机搜索中嵌入分散搜索,对多样化初始集产生方法、参考集更新方法、解组合方法和解提高方法等分散搜索要素进行了设计。针对长染色体和基因间较弱的相关性,借鉴路径连接的思想,提出了一种基于局部路径连接的定向交叉算子,利用构成初始解和引导解的要素的差异性,构建从初始解出发的分层搜索邻域,然后将邻域中满足模型约束的解作为交叉的结果。出于减少运算时间的考虑,提出了两阶段递进遗传算法,鉴于模型的目标函数在时间上具有一定的可分性,而且可以对调度方案的局部作出理想化的假设,以时间为依据将被调度弧段划分成两个部分。在对第一部分形成种群并作进化求解的基础上,将其最优解与第二部分弧段组合,并作进一步的进化求解。
     在局部型求解算法方面,要求能在减小搜索范围的同时尽可能地减小优秀解的丢失,确保算法的稳定性。针对问题特点,提出了合作型协同进化调度算法,为实现上述目的,加强协同性是算法设计的关键和难点。由于采用传统的子种群代表个体最优选择和随机选择容易使求解效果不稳定,综合考虑代表个体的协同性和计算开销,依据贪婪性强弱从每个子种群选择三个代表个体,并利用正交表进行个体适应度计算。其次,针对现有合作协同进化主要通过所有子种群代表个体拼接的全局协同进行整个种群进化、较少利用局部协同信息的现象,对每个个体设定一个能表明其与所有相邻子种群合作效果的进化性能指标——局部交互值,并将该交互值作为评价个体优劣和个体进行自适应变异的尺度之一,从机理上减少由于子种群代表个体选择的非全局性而造成的优秀个体的丢失。
     最后通过算例对所设计算法的整体性能和所作改进的效果进行了验证,结果表明本文设计的两种遗传进化策略都可以得到各种规模问题的高质量解,其中合作协同进化相比两阶段递进进化能以较多的时间来更稳定地获取更好的解。两种求解策略结合使用能够满足不同求解质量和求解时间要求下的多星测控调度需求。
The scheduling of multi-satellite Tracking Telemetry and Command (TT&C) is to make the best satisfaction of TT&C task requirements of satellites by appropriately distributing TT&C resource from space and ground. The multi-satellite TT&C scheduling is a mass combinatorial optimization problem with complex constraints, such as multi-time windows. This problem relates to many elements and the relations between elements are complex. The deep research of integrated scheduling of TT&C resource not only provides scheduling alternatives and evaluation results for engineering application, but also explores and analyzes scheduling algorithm, and further improves algorithm performance. This dissertation puts forward the Genetic Algorithm (GA) framework and studies the related GA methods for integrated scheduling of TT&C resource. The main work and creation go as follows:
     On the aspect of model, the orbit measure and orbit holding requirements of middle and high satellites were analyzed, then according to the task requirement describing of low satellites, the normalized requirements description of all types of satellites was proposed. Following the performance constraints of TT&C resource from space and ground, the integrated scheduling model was established, with the objective of maximizing the weight summation satisfaction rate, and then the scheduling strategy models of TT&C resource were formulated.
     GA is a random search algorithm that searchs through the total space. Its applications in many areas similar to TT&C have acquired good effects. Because the multi-satellite TT&C scheduling problem has huge solution space and is difficult to solve, whereas the solving performance of GA is determined by search strategy, so the dissertation firstly studies the solving strategy and then elicits the solving framework. GA can implement large scale global search through the solution space and also can implement particular local search through part of the solution space. In theory, the global search can find the optimal solution, but because of the huge search space it calls for a better technique to carry out the algorithm. Oppositely, though the local search may not ensure to find the optimal solution, it can search particularly through the crucial area and steadily find the satisfactory or even the optimal solution. Both of the two strategies have their own advantages. So this dissertation puts forward the solving framework based on global and local strategy of GA and designs common components of them.
     On the aspect of global solving algorithm, for the random GA, because the huge search space it easily leads to a slow speed of convergence and a long time of solution, and prones to get into local optimization. To account for the weakness of simple genetic algorithm solving which prones to get into local optimization and instability, absorbing the characteristics of Scatter Search that samples diversified and optimizes locally, a hybridized genetic algorithm based on scatter search was proposed, embedding the global directed search in the global stochastic search. After problem was described, representation of feasible solution was designed which was convenient for searching roundly, then the process of algorithm was constructed, and the main elements of algorithm were presented, which included diversification generator controlled by input parameters, reference set generating and updating method based on quality and diversification principle, the combination method drawing on the good components of combination solutions, and the improvement method based on heuristic local searching. All usable time section encoding was designed to engage fine-grained searching. To overcome the difficulties of long chromosome and weak correlation between genes, a directed crossover operator based on local path relining was designed which was based on the idea of Path Re-linking, difference between Initial Solution and Guiding Solution was applied to construct the layering neighborhood of Initial Solution, and then the solution in the neighborhood that met the constraints of model became the crossing result. Considering reducing the calculating time, a two-stage successive genetic algorithm was put forwards. Whereas the model's object function was somewhat time separable and local part of the scheduling alternatives can be ideally hypothesized, the scheduled time windows were separated to two sections, after the population from first section was evolved, the gained optimized solution was combined with the second section, and then the evolution of the second phase goes further.
     On the aspect of local solving algorithm, it tries to minish the loss of better solution while minishing the search scale and ensures the stability of the algorithm. According to the characteristic of the problem, this dissertation proposes the scheduling algorithm based on cooperative co-evolution. In order to achieve the above purpose, enhancing the cooperation is the key and difficult point of algorithm design. Considering that adopting the traditional methods of best selection and random selection may make the scheduling algorithm instable, the methods for representation selection and the corresponding fitness computing are suggested. For the balance of representation cooperation and time spending, the method takes advantage of the idea of orthogonal design, selects three representations in each child population according to the degree of greediness, and computes individual fitness by orthogonal table. Representation individuals'cooperation of all child populations is used to drive the evolution of whole population in current cooperative co-evolution algorithm, and the local cooperative information used in the process is little. This dissertation made some improvements to the cooperative co-evolution for multi-satellite TT&C scheduling, which emphasized the local interaction function under global cooperation. A performance index for individual—Local Interaction Value(LIV) was proposed, which indicated its cooperative effectiveness with its neighbor populations, and took LIV as one of the measures of individual quality in the selection operation. For improving the mutation self-adaptation, the difference between LIV and sum of all child finesses was taken to determine the mutation probability. Above improvements can reduce the loss of excellent individuals due to the non-global characteristic of delegate individuals.
     Finally, we verify the algorithm performance and the effect of improvements by the calculating case. Results indicate that both genetic evolution strategies can find the high quality solution for various scale problems. Comparing with the two-stage successive evolution, the cooperative co-evolution can more stably acquire better solution in the price of spending more time. Combining to use the two algorithms can satisfy requirements of multi-satellite TT&C scheduling with different solution quality and solving time.
引文
[1]郝岩.航天测控网[M].北京:国防工业出版社,2004.
    [2]于志坚.我国航天测控系统的现状与发展[J].中国工程科学,2006,8(10):42-46.
    [3]Fukunaga a S, Rabideau G, Chien S. ASPEN:A Framework for Automated Planning
    and Scheduling of Space Control and Operation[C].//Proceedings of AI,Robotics and Automation in Space(i-SAIRAS). Tokyo,Japan:1997.
    [4]Chien S, Rabideau G, Knight R. ASPEN-Automating Space Mission Operations Using Automated Planning and Scheduling[C].//Proceedings of 6th International Space Operations. Toulouse,France:2000.
    [5]Chien S, Knight R, Sherwood R, ASPEN-Automated Planning and Scheduling for Space Mission Operations[R]. California Institute of Technology,2000. http://planning.jpl.nasa.gov.
    [6]Barbulescu L, Howe a E, Whitley L D. AFSCN Scheduling:How the Problem and Solution Have Evolved[J]. Mathematical and Computer Modelling,2006, 43(9-10):1023-1037.
    [7]Gooley T D. Automating Air Force Satellite Control Network(AFSCN) Scheduling[J]. Mathl. Comput. Modelling,1996,24(2):91-101.
    [8]Clement B J,Johnston M D. The Deep Space Network Scheduling Problem[C]. //Proceedings of IAAI 2005 American Association for Artificial Intelligence. Pittsburgh, PA:AAAI Press,2005:1514-1520.
    [9]Clement B J,Johnston M D. Design of a Deep Space Network Scheduling Application[C].//Proceedings of the International Workshop on Planning and Scheduling for Space(AAAI2006). Baltimore:2006.
    [10]Barbulescu L. Scheduling Space-ground Communication for the Air Force Satellite Control Network[J]. Scheduling,2004,7(1):7-34.
    [11]Adele E H, Whitley L D, Barbulescu L. Mixed Initiative Scheduling for the Air Force Satellite Control Network[C].//Proceedings of Second International NASA Workshop on Planning and Scheduling for Space. San Francisco, CA:2000. http://www.cs.colostate.edu/sched/pubs/nasa00.ps.gz.
    [12]Jang K. The Capacity of The Air Force Satellite Control Network[D]. Ohio:Air Force Institute of Technology,1996.
    [13]Schalck S M. Automating Satellite Range Scheduling[D]. Ohio:Air Force Institute of Technology,1993.
    [14]Abbott R J, Campbell M L, Krenz W C. A Sustainable Genetic Algorithm for Satellite Resource Allocation[J]. Telematics and Informatics,1995, 12(3/4):141-159.
    [15]Marinelli F, Nocella S, Rossi F, A Lagrangian Heuristic for Satellite Range Scheduling with Resource Constraints[R]. Technical Report TRCS 004,2005.
    [16]Rao J D, Soma P, Padmashree G S. Multi-Satellite Scheduling System for Leo Satellite Operations[C].//Proceedings of SpaceOps-98. Tokyo, Japan:1998.
    [17]Soma P, Venkateswarlu S, Santhalakshmi S. Multi-Satellite Scheduling Using Genetic Algorithms [C].//Proceedings of 10th International SpaceOps Symposium(SpaceOps'04). Motreal,Cannada,2004.
    [18]郭齐胜,杨秀月,王杏林等.系统建模[M].北京:国防工业出版社,2006.
    [19]王凌.车间调度及其遗传算法[M].北京:清华大学出版社,2003:42.
    [20]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,2005.
    [21]黄红选,韩继业.数学规划[M].北京:清华大学出版社,2006.
    [22]Gooley T D. Automating the Satellite Range Scheduling Process[D]. Ohio:Air Force Institute of Technology,1993.
    [23]Parish S A. A Genetic Algorithm Approach to Automating Satellite Range Scheduling[Dl. USA:Air Force Institute of Technology,1994.
    [241 Barbulescu L, Howe A, Whitley L D. Leap Before You Look:An Effective Strategy in an Oversubscribed Problem[C].//Proceedings of Nineteenth National Conference on Artificial Intelligence (AAAI-04). San Jose,CA,USA:AAAI Press/ The MIT Press,2004:143-148.
    [25]Howe A, Whitley L D, Watson J P. A Study of Air Force Satellite Access Scheduling[C].//Proceedings of World Automation Conference. Wailea, Hawaii: 2000.
    [26]Barbulescu L, Howe A, Watson J P. Satellite Range Scheduling:A Comparison of Genetic, Heuristic and Local Search[C].//Proceedings of the Seventh International Conference on Parallel Problem Solving from Nature(PPSNVII). Fort Collins, USA:Colorado State University,2002. http://www.springerlink.com/content/ e4nuue4xheqj2p39/.
    [27]Barbulescu L, Howe A, Whitley L D. Trading places:How to schedule more in a multi-resource oversubscribed scheduling problem[C].//Proceedings of International Conference on Automated Planning and Scheduling(ICAPS-04). Whistler, British Columbia:2004:227-234.
    [28]凌晓冬.多星测控调度问题建模及算法研究[D].长沙:国防科学技术大学研究生院,2009.
    [29]李元新,吴斌.基于遗传算法的测站资源优化分配方法研究[J].飞行器测控学报,2005,24(4):1-5.
    [30]Wu Bin, Li Yuanxin, Huang Yong Xuan. Optimal Scheduling of TT&C Network Resources Based on Genetic Algorithm[J]. Journal of Astronautics,2006, 27(6):1132-1136.
    [31]李云峰.卫星-地面站数传调度模型及算法研究[D].长沙:国防科学技术大学研究生院,2008.
    [32]李云强,余昭平.遗传算法在卫星广播调度中的应用[J].系统过程与电子技术,2004,26(2):150-152.
    [33]Zhang Na, Feng Zu-Ren, Feng Yuan-Jing. An Optimization Model for Multisatellite Resources Scheduling[C].//Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China,2006:7400-7404.
    [34]邢立宁,陈英武.基于混合蚁群优化的卫星地面站系统任务调度方法[[J].自动化学报,2008,34(4):414-418.
    [35]陈祥国.卫星数传调度的蚁群优化模型及算法研究[D].长沙:国防科学技术大学研究生院,2010.
    [36]贺仁杰.成像侦察卫星调度问题研究[D].长沙:国防科学技术大学研究生院,2004.
    [37]李菊芳.航天侦察多星多地面站任务规划问题研究[D].长沙:国防科技大学研究生院,2004.
    [38]刘洋,贺仁杰,谭跃进.基于约束满足的多星调度模型研究[J].系统工程与电子技术,2004,26(8):1076-1079.
    [39]方炎申.中继卫星调度模型研究[D].长沙:国防科技大学研究生院,2007.
    [40]金光,武小悦,高卫斌.卫星地面站资源调度优化模型及启发式算法[J].系统工程与电子技术,2004,26(12):1839-1841.
    [41]金光,武小悦,高卫斌.卫星地面站资源配置仿真研究[J].系统仿真学报,2004,16(11):2401-2403.
    [42]王红飞,李绪志,陈立军.基于Multi-agent的卫星计划调度系统智能机制[J].计算机工程与设计,2006,32(22):194-196.
    [43]赵建立,闻英友,王光兴.一种基于移动Agent与SNMP相结合的卫星网络管理[J].小型微型计算机系统,2004,25(11):1913-1915.
    [44]张帆,王钧,李军等.基于时间序无圈有向图的多准则优化成像调度[J].国防科技大学学报,2005,27(6):61-66.
    [45]阮启明.面向区域目标的成像侦察卫星调度问题研究[D].长沙:国防科学技术大学研究生院,2006.
    [46]Yao M J,Chu W M. A Genetic Algorithm for Determining Optimal Replenishment Cycles to Minimize Maximum Warehouse Space Requirements [J]. OMEGA-The International Journal of Management Science,2008,36(4):619-631.
    [47]Pezzella F, Morganti G, Ciaschetti G. A Genetic Algorithm for the Flexible Job-shop Scheduling Problem[J]. Computers and Operations Research,2008, 35(10):3202-3212.
    [48]Nachiappan S P,Jawahar N. A Genetic Algorithm for Optimal Operating Parameters of VMI System in a Two-echelon Supply Chain[J]. European Journal of Operational Research,2007,182(3):1433-1452.
    [49]Dang C Y,Li M Q. A Floating-point Genetic Algorithm for Solving the Unit Commitment Problem[J]. European Journal of Operational Research,2007, 181(3):1370-1395.
    [50]Mcgovern S M,Gupta S M. A Balancing Method and Genetic Algorithm for Disassembly Line Balancing[J]. European Journal of Operational Research,2007, 179(3):692-708.
    [51]Shadrokh S,Kianfar F. A Genetic Algorithm for Resource Investment Project Scheduling Problem, Tardiness Permitted With Penalty [J]. European Journal of Operational Research,2007,181(1):86-101.
    [52]Poojari C A,Varghese B. Genetic Algorithm Based Technique for Solving Chance Constrained Problems[J]. European Journal of Operational Research,2008, 185(3):1128-1154.
    [53]Goncalves J F, Mendes J J M, Resende M G C. A Genetic Algorithm for the Resource Constrained Multi-project Scheduling Problem[J]. European Journal of Operational Research,2008,189(3):1171-1190.
    [54]Jawahar N,Balaji a N. A Genetic Algorithm for the Two-stage Supply Chain Distribution Problem Associated with a Fixed Charge[J]. European Journal of Operational Research,2009,194(2):496-537.
    [55]Valente J M S,Goncalves J F. A Genetic Algorithm Approach for the Single Machine Scheduling Problem with Linear Earliness and Quadratic Tardiness Penalties[J]. Computers and Operations Research,2009,36(10):2707-2715.
    [56]Tseng L Y,Chen S C. Two-Phase Genetic Local Search Algorithm for the Multimode Resource-Constrained Project Scheduling Problem [J]. IEEE Transaction on Evolutionary Computation,2009,13(4):848-857.
    [57]Souai N,Teghem J. Genetic Algorithm Based Approach for the Integrated Airline Crewpairing and Rostering Problem[J]. European Journal of Operational Research, 2009.199(3):674-683.
    [58]凌晓冬,武小悦,刘琦.多星测控调度问题的禁忌遗传算法研究[J].宇航学报,2009,30(5):2133-2139.
    [59]邢立宁.知识型智能优化算法及其应用研究[D].长沙:国防科学技术大字研究生院,2009.
    [60]Camara M, Ortega J, De-Toro F. A Single Front Genetic Algorithm for Parallel Multiobjective Optimization in Dynamic Environments [J]. Neurocomputing,2009, 72(16-18):3570-3579.
    [61]Yuan Q, He Z Q, Leng H N. A Hybrid Genetic Algorithm for A Class of Global Optimization Problems with Box Constraints [J]. Applied Mathematics and Computation,2008,197(2):924-929.
    [62]Wang Y M, Yin H L, Wang J. Genetic algorithm with new encoding scheme for job shop scheduling[J]. The International Journal of Advanced Manufacturing Technology,2009,44(9-10):977-984.
    [63]张文修,梁怡.遗传算法的数学基础[M].西安:西安交通大学出版社,2003.
    [64]李敏强,寇纪淞,林丹.遗传算法的基本理论与应用[M].北京:科学出版社,2002:120-170.
    [65]Rudolph G. Convergence Analysis of Caninical Genetic Algorithms[J]. IEEE Transactions on Neural NetWorks,1994,5(1):96-101.
    [66]Rudolph G. Convergence of evolutionary algorithms in general search spaces[C]. //Proceedings of IEEE International Conference on Evolutionary Computation. Informatik Centrum Dortmund. Germany:IEEE Press,1996:50-54.
    [67]Eiben a E, Aarts E H L, Hee K M V. Global Convergence of Genetic Algorithms:a Markov Chain Analysis[C].//Proceedings of Parallel Probelm Solving from Nature: Springer,Berlin,1990:4-12.
    [68]Garnier J,Kallel L. Statistical Distribution of the Convergence Time of Evolutionary Algorithms for Long-Path Problems [C].//Proceedings of IEEE Transactions on Evolutionary Computation,2000:16-30.
    [69]Rudolph G. Local Convergence Rates of Simple Evolutionary Algorithms with Cauchy Mutations [J]. IEEE Transactions on Evolutionary Computation,1997, 1(4):249-258.
    [70]Qi X F,Palmieri F. Theoretical Analysis of Evolutionary Algorithms with an Infinite Population Size in Continuous Space. II:Analysis of the Diversification Role of Crossover[J]. IEEE transactions on neural networks,1994,5(1):102-119.
    [71]张晓缋,方浩,戴冠中.遗传算法的编码机制研究[J].信息与控制,1997,26(2):134-139.
    [72]孟庆寿.带有对称编码的基因算法的研究[J].电子学报,1996,24(10):27-31.
    [73]张晓文.基于两次赌轮选择的神经网络遗传优化[J].控制与决策,2005,20(2):210-213.
    [74]黎耀.基于Hash函数改进遗传算法的IPv6下模糊异常检测模型[J].武汉大学学报,2006,52(5):600-603.
    [75]张明威.基于双种群演化的遗传算法研究[J].计算机时代,2006,(5):3-5.
    [76]周鹏.基于代沟信息的可变种群规模遗传算法[J].湖北汽车工业学院学报,2006,20(3):47-49.
    [77]Potts J C, Giddens T D, Yadav S B. The Development and Evaluation of an Improved Genetic Algorithm Based on Migration and Artificial Selection[J]. IEEE Transactions on Systems, Man, and Cybernetics,1994,24(1):73-86.
    [78]刘清.多点正交交叉的遗传算法[J].计算机工程,2005,31(24):151-153.
    [79]李平.多亲遗传算法的理论分析及其应用研究[J].计算机工程与设计,2006,27(4):581-583.
    [80]都伟.一种自适应杂交算子的浮点遗传算法[J].系统仿真学报,2006,18(6):1711-1713.
    [81]Holland J H. Adaptation in Natural and Artificial Systems[M]. Michigan: University of Michigan Press,1975.
    [82]Husband P,Mill F. Simulated Co-evolution as the Mechanism for Emergent Planning and Scheduling[C].//Proceedings of 4th International Conference on Genetic Algorithms. San Mateo:Morgan Kaufmann,1991:264-270.
    [83]Potter M,De Jong K. A Cooperative Co-evolutionary Approach to Function Optimization[C].//Proceedings of the Third Conference on Parallel Problem Solving from Nature. London:Springer-Verlag,1994:249-257.
    [84]Potter M A, De Jong K, Grefenstette J. A Co-evolutionary Approach to Learning Sequential Decision Rules[C].//Proceedings of the Sixth International Conference on Genetic Algorithms. San Francisco:Morgan Kaufmann,1995:366-372.
    [85]Potter M,De Jong K. Evolving Nerral Networks with Col laborative Species[C]. //Proceedings of the 1995 Summer Computer Simulation Conference. Ottawa, Ontario, Canada,1995:340-345.
    [86]Potter M A. The Design and Analysis of A Computation Model of Cooperative Co-evolution[D]. Fairfax:George Mason University,1997.
    [87]Potter M,De Jong K. The Co-evolution of An tibodies for Concept Learning[C]. //Proceedings of Parallel Problem Solving from Nature.1998:530-539. http://www. demo.es brandeis.edu.
    [88]Yang Z Y, Tang K, Yao X. Large scale evolutionary optimization using cooperative coevolution[J]. Information Sciences,2008,178(15):2985-2999.
    [89]Yang Z Y, Tang K, Yao X. Multilevel Cooperative Coevolution for Large Scale Optimization[C].//Proceedings of IEEE World Congress on Computational Intelligence. Hong Kong,2008:1663-1670.
    [90]孙晓燕,巩敦卫.基于连接识别的协同进化种群分割算法研究[J].控制与决策,2005,20(6):702-705.
    [91]孙晓燕,巩敦卫.变种群规模合作型协同进化遗传算法及其在优化中的应用[J].控制与决策,2004,19(12):1437-1440.
    [92]Deng H B, Wang L, Zhao Q J. The Cooperative Co-evolution Algorithm Based on Individual Selection of Self-adaptation[C].//Proceedings of the 2nd IEEE/ASME International Conference. Beijing,2006:1-5.
    [93]Panait L,Luke S. Time-dependent Collaboration Schemes for Cooperative Coevolutionary Algorithms[C].//Proceedings of Coevolutionary and Coadaptive Systems. AAAI Press,2005.
    [94]Panait L, Luke S, Harrison J F. Archive-based Cooperative Coevolutionary Algorithms [C].//Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. New York:ACM,2006:345-352.
    [95]Au C K,Leung H F. Guided Mutations in Cooperative Coevolutionary Algorithms for Function Optimization[C].//Proceedings of 19th IEEE International Conference on Tools with Artificial Intelligence. New York:ACM,2007:407-414.
    [96]Au C K,Leung H F. Biasing Mutations in Cooperative Co-evolution[C]. //Proceedings of Computer Science and Engineering. IEEE Press,2007:828-833.
    [97]Wiegand R P. Applying Diffusion to a Cooperative Coevolutinary Model[C]. //Proceedings of the 5th International Conference on Parallel Problem Solving from Nature. London:Springer-Verlag,1998:560-572.
    [98]Zhao O F. A General Framework for Cooperative Algorithms:a Society Model[C]. //Proceedings of IECE98. AK:Anchorage,1998:57-62.
    [99]郑浩然,吴赵斌.基于共生策略的多模式进化算法[J].计算机工程,2000,26(8):7-8.
    [100]钟求喜,谢涛,陈火旺.任务分配与调度的共同进化方法[J].计算机学报,2001,24(3):308-314.
    [101]刘娜,钟求喜.求解0-1背包问题的共同进化遗传算法[J].计算机科学,2001,28(9):102-105.
    [102]Wang J X, Wang W C, Wang X F. Cooperative Co-evolutionary Approach Applied in Reactive Power Optimization of Power System[C].//Proceedings of ICNC 2006. Berlin Heidelberg:Springer-Verlag 2006:620-628.
    [103]Chen H Y,Wang X F. Cooperative Coevolutionary Algorithm for Unit Commitment[J]. IEEE Transaction on Power System,2002,17(1):128-133.
    [104]王建学,王锡凡,陈皓勇等.基于协同进化法的电力系统无功优化[J].中国电机工程学报,2004,24(9):124-129.
    [105]Cai Z X,Peng Z H. Cooperative Coevolutionary Adaptive Genetic Algorithm in Path Planning of Cooperative Multi-Mobile Robot Systems [J]. Journal of Intelligent and Robotic Systems,2002,33:61-71.
    [106]Chern H Y,Risto M, Cooperative Co-oevolution of Multi-agent Systems[R]. Austin:University of Texas,2000.
    [107]Roger E. Applying Cooperative Co-evolution to Inventory Control Parameter Optimization [D]. Skovde:Skovde University,1996.
    [108]Pena-Reyes C A,Sipper M. Fuzzy CoCo:A Cooperative Co-evolutionary Approach to Fuzzy Model-ing[J]. Fuzzy Systems,2001,9(5):727-737.
    [109]王正志.进化计算[M].长沙:国防科技大学出版社,2000:166-181.
    [110]Larran Aga P, Kuijper C M H. Murga R H. Genetic Algorithms for the Travelling Salesman Problem:A Review of Representations and Operators[M]. Netherlands: Kluwer Academic Publishers,1999.
    [111]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [112]Fox, B.R., Mcmahon. Genetic Operators for Sequencing Problem(Foundations of Genetic Algorithms)[M]. Los Altos:Morgan Kaufmann Publishers,1991.
    [113]Seniw. A Genetic Algorithm for the Traveling Salesman Problem[D]. Charlotte: University of Norith Carolina,1991.
    [114]Homaifar,Guan. A New Approach on the Traveling Salesman Problem by Genetic Algorithm[C].//Proceedings of the 5th International Conference on Genetic Algorithms. San Francisco:Morgan Kaufmann,1993:460-466.
    [115]韩建枫,李敏强,寇纪淞.一种求解TSP问题的新型遗传编码及应用[J].天津大学学报,2003,36(2):225-229.
    [116]Cleveland,Smith. Using Genetic Algorithms to Schedule Flow Stop Release[C]. //Proceedings of the 3rd International Conference on Genetic Algorithms. Los Altos:Morgan Kaufmann Publishers,1989:160-169.
    [117]Syswerda,Palmucci. Schedule Optimization Using Genetic Algorithms[C]. //Proceedings of the 4th International Conference on Genetic Algorithms. Los Altos:Morgan Kaufmann Pulishers,1991.
    [118]Syswerda G,Palmucci J, The Application of Genetic Algorithms and Their Convergence[R]. University of North Carolina at Charlotte,1991.
    [119]Whitley D. Scheduling Problems and Traveling Salesman:The Genetic Edge Recombination Operator[C].//Proceedings of the 3rd Internation Conference on Genetic Algorithms Los Altos:Morgan Kaufmann Publishers 1989.
    [120]Starkweather T, Mcdaniel S, Mathias K. A Comparison of Genetic Sequencing Operators[C].//Proceedings of the 4th International Conference on Genetic Algorithms. Los Altos:Morgan Kaufmann Pulishers,1991:69-76.
    [121]Barrie M B,Ayechew M A. A Genetic Algorithm for the Vehicle Routing Problem[J]. Computers & Operations Research,2003,30:787-800.
    [122]Christian Prins. A simple and effective evolutionary algorithm for the vehicle routing problem[J]. Computers & Operations Research,2004,31:1985-2002.
    [123]Thangiah S. Vehicle Routing with Time Windows using Genetic Algorithms, in Applications Handbook of Genetic Algorithms:New Frontiers. Boca Raton, CRC Press,1995:253-277.
    [124]Noor H M. Hybrid Genetic Algorithms for Vehicle Routing Problems With Time Windows [EB].2002. http://www.ijcim.th.org/past_editions/2002V10N1/article5. pdf.
    [125]Kenny,Qili Zhu. A New Genetic Algorithm For VRPTW[C].//Proceedings of the International Conference on Artificial Intelligence. LasVegas, USA:Morgan Kaufmann publishers,2000:311264-311274.
    [126]Manar I. Hosny,Christine L. Mumford. Single Vehicle Pickup and Delivery with Time Windows:Made to Measure Genetic Encoding and Operators[C]. //Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary Computation. New York:ACM Press,2007:2489-2496.
    [127]G.B.Alvarenga, G.R.Mateus, G.De Tomi. A genetic and set partitioning two-phase approach for the vehicle routing problem with time windows[J]. Computers & Operations Research,2007,34:1561-1584.
    [128]李茂军,童调生.用单亲遗传算法求解有序组合优化问题[J].系统工程与电子技术,1998,20(10):58-61.
    [129]李茂军,童调生.单亲遗传算法编码方式的研究[J].长沙电力学院学报,2000,15(3):11-13.
    [130]李茂军,童调生,童光宇.单亲遗传算法图式定理的分析研究[C].In中国控制与决策1998年学术年会.大连.1999
    [131]李茂军,童调生.单亲遗传算法及其应用研究[J].湖南大学学报,1998,25(6):56-59.
    [132]李茂军,童调生.单亲遗传算法的全局收敛性分析[J].自动化学报,1999,25(1):76-80.
    [133]李茂军,邱丽芳,童调生.单亲遗传算法的计算效率分析[J].长沙电力学院学报,1999,14(1):48-50.
    [134]李茂军,樊韶胜,童调生.单亲遗传算法在模式聚类中的应用[J].模式识别与人工智能,1999,12(1):32-37.
    [135]王小平,曹立明.遗传算法理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [136]中国首颗中继卫星“天链一号”01星发射成功[J].中国空间科学技术,2008, 6:14.
    [137]夏南银,张守信,穆鸿飞.航天测控系统[M].北京:国防工业出版社,2002.
    [138]Fox M S. ISIS:a retrospective, in Intelligent Scheduling, Morgan M B, Editor, Morgan Kaufmann Publishers,1994:391-422.
    [139]赵亚福.卫星测控网的技术发展[J].飞行器测控学报,2002,21(3):1-4.
    [140]吴斌,黄学祥,黄永宣.中低轨道卫星多星测控存在的问题及其改进措施[J].宇航学报,2003,24(6):629-633.
    [141]康建勇,梁勤亚,李国栋.天地一体化综合测控网络探索[C].//Proceedings of中国宇航学会飞行器测控专业委员会2007年航天测控技术研讨会论文集.杭州,2007.
    [142]沈荣骏,赵军.我国航天测控技术的发展趋势与策略[J].宇航学报,2001,22(3):1-5.
    [143]王遗振,赵坚,聂成.卫星地面站设备配置效能评价指标体系研究[J][J].军事运筹与系统工程,2003,17(1)59-64.
    [144]金光.卫星地面站测控资源调度CSP模型[J].系统工程与电子技术,2007,29(7):1117-1120.
    [145]Barbulescu L, Howe a E, Whitley L D. Understanding Algorithm Performance on an Oversubscribed Scheduling Application[J]. Artificial Intelligence Research, 2006,27(1):577-615.
    [146]Forrest S,Mitchell M. Relative Building-Block Fitness and the Building Block Hypothesis, in Foundations of Genetic Algorithms, Whitley L D, Editor. San Mateo:Morgan Kaufmann,1993:109-126.
    [147]Barbulescu L, Oversubscribed Scheduling Problems[R].2002. http://www-math. ucdenver.edu/-billups/courses/ma5779/papers/laura-proposal.pdf.
    [148]Sadeh N. Look-Ahead Techniques for Micro-opportunistic Job Shop Scheduling[D]. Pittsburgh:Carnegie Mellon,1991.
    [149]马敏书.改进的遗传算法及其在数据挖掘中的应用研究[D].北京:北京交通大学,2005.
    [150]张成文.基于遗传算法的具有全局QoS限制的Web服务选择[D].北京:北京邮电大学,2007.
    [151]Grefenstette J J. Incorporating Problem Specific Knowledge into Genetic Algorithms, in Genetic Algorithms and Simulated Annealing, Davis L, Editor. California:Morgan Kaufman Publishers,1987:42-60.
    [152]Orvosh D,Davis L. Using a Genetic Algorithm to Optimize Problems with Feasibility Constraints[C].//Proceedings of 1st IEEE Conference on Evolutionary Computation. Orlando:IEEE prsss,1994:548-553.
    [153]Chen H,Flann N S. Parallel Simulated Annealing and Genetic Algorithms:A Space of Hybrid Methods, in Parallel Problem Solving from Nature 3, Berlin:Springer-Verlag,1994:428-438.
    [154]De Jong K A. An Analysis of the Behavior of a Class of Genetic Adaptive Systems[D]. Michigan:University of Michigan,1975.
    [155]陈伦军,罗延科,陈海虹等.机械优化设计遗传算法[M].北京:机械工业出版社,2005.
    [156]Wolpert D H,Macready W G. No Free Lunch Theorems for Optimization [J]. IEEE Transactions On Evolutionary Computation,1997, 1(1):67-82.
    [157]Droste,Wiesman. On the Design of Problem-specific Eas, in Advances in Evolutionary Computing, Ghosh A and Tsutsui S, Editors. Berlin, Springer Verlag,2003.
    [158]Eshelman L,Schaffer J. Real-coded Genetic Algorithms and Intervalschemata, in Foundations of Genetic Algorithms, Whitley L, Editor. San Francisco, Morgan Kaufmann Publishers,1993:187-202.
    [159]Michalewicz Z. Genetic Algorithm+Data Structure= Evolution Programs[M]. New York:Springer-Verlag,1996.
    [160]Walters G A, Smith D K. Evolutionary Design Algorithm for Optimal Layout of Tree Networks [J]. Engineering Optimization,1995,24:261-281.
    [161]Soma P, Venkateswarlu S, Santhalakshmi S. Multi-Satellite scheduling using Genetic Algorithms [EB].Fort Collins:Colorado State University,2004. http:// www.aiaa.org/Spaceops2004Arvhive/papers/track2_e.asp.
    [162]Barbulescu L, Howe A, Watson J P. Satellite Range Scheduling:A Comparison of Genetic, Heuristic and Local Search [EB].Fort Collins:Colorado State University,2002.http://www.cs.colostate.edu/-genitor/2002/PPSNVII.pdf.
    [163]阎志伟,牛轶峰,李汉铃.基于并行禁忌遗传算法(PTGA)的预警卫星传感器调度研究[J].宇航学报,2003,24(6):598-603.
    [164]李云峰,武小悦.遗传算法在卫星数传调度问题中的应用[J].系统工程理论与实践,2008,28(1):125-131.
    [165]孙瑞祥.进化计算与智能诊断[D].西安:西安交通大学,2000.
    [166]李敏强,寇纪淞.遗传算法的模式欺骗性分析[J].中国科学(E辑),2002,32(1):95-102.
    [167]Apodaca J, Bainter C, Dinh T, Satellite Mission Scheduling With Dynamic Tasking[R].2006.
    [168]Miller B,Goldberg D. Genetic Algorithms,Selection Schemes,and The Varying Effects of Noise [J]. Evolution Computation,1996,4(2):25-49.
    [169]Dejong K A. An Analysis of the Behavior of A Class of Genetic Adaptive Systems[D]. Michigan:University of Michigan,1975.
    [170]Rudolph G. Convergence Analysis of Canonical Genetic Algorithms [J]. IEEE Transactions On Neural Networks,1994,5(1):96-101.
    [171]Herrera F,Lozano M. Gradual Distributed Real-coded Genetic Algorithms [J]. IEEE Transactions on Evolutionary Computation,2000,4(1):43-63.
    [172]Tuson a L,Ross P. A Dapting Operator Settings in Genetic Algorithms [J]. EvolutionaryC omputation,1998,6(2):161-184.
    [173]Herrera F, Lozano M, Verdegay J L. Fuzzy Connectives Based Crossover Operators to Model Genetic Algorithms Population Diversity [J]. Fuzzy Set System,1997,92(1):21-30.
    [174]Herrera F, Lozano M, Sanchez a M. Hybrid Cross Over Operators For Real-coded Genetic Algorithms:An Experimental Study [J]. Soft Computing-A Fusion of Foundations,Methodologies and Applications,2004.
    [175]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.
    [176]Noorul Haq A, Saravanan M, Vivekraj a R. A Scatter Search Approach for General Flowshop Scheduling Problem[J]. Int J Adv Manuf Technol,2007, 31(7-8):731-736.
    [177]Nowichi E,Smutnichi C. Some aspects of scatter search in the flow-shop problem[J]. European Journal of Operational Research,2005,169(2):654-666.
    [178]Alvarez-Valdes R, Crespo E, Tamarit J M. A scatter search algorithm for project scheduling under partially renewable resources[J]. Journal of Heuristics 2006, 12(1-2):95-113.
    [1791 Glover F. Heuristics for integer programming using surrogate constramts[J]. Decision Sciences,1977,8(1):156-166.
    [180]Glover F. A Template for Scatter Search and Path Relinking, in Lecture Notes in Computer Science, Hao J K, Lutton E, and Ronald E, Editors. Berlin, Springer, 1998:13-54.
    [181]Marti R. Scatter Search-Wellsprings and Challenges[J]. European Journal of Operational Research,2006,169(2):351-358.
    [182]Campos V, Glover F, Laguna M. An Experimental Evaluation of A Scatter Search for the Linear Ordering Problem[J]. Journal of Global Optimization,2001, 21(4):397-414.
    [183]Marti R, Laguna M, Glover F. Principles of scatter search[J]. European Journal of Operational Research,2006,169(2):359-372.
    [184]Saravanan M,Noorul Haq A. Evaluation of scatter-search approach for scheduling optimization of flexible manufacturing systems[J]. Int J Adv Manuf Technol, 2008,38(9-10):978-986.
    [185]Gu M, He F, Song X Y. Multiterminal Net Assignments by Scatter Search[J]. Mathematical and Computer Modelling,2005,41(8-9):997-1004.
    [186]Glover F,Laguna M. Tabu Search[M]. Boston:Kluwer Academic Publishers, 1997.
    [187]Vallada E,Ruiz R. Genetic Algorithms with Path Relinking for the Minimum Tardiness Permutation Flowshop Problem[J]. Omega,2010,38:57-67.
    [188]Zhang G,Lai K. Combining Path Relinking and Genetic Algorithms for the Multiple-level Warehouse Layout Problem [J]. European Journal of Operational Research,2006,169(2):413-425.
    [189]Festa P, Pardalos P M, Resende M G C. Randomized Heuristics for the MAX-CUT Problem[J]. Optimization Methods & Software,2002,7(6):1033-1058.
    [190]Hohn C,Reeves C. Are Long Path Problems Hard for Genetic Algorithms[C]. //Proceedings of the 4th Conference on Parallel Problem Solving from Nature. Berlin:Springer,1996:134-143.
    [191]Glover F. Tabu Search and Adaptive Memory Programing-Advances,Applications and challenges, in Interfaces in Computer Science and Operations Research, Barr R S, Helgason R V, and Kennington J L, Editors. Boston:Kluwer Academic Publishers,1996:1-75.
    [192]Glover F, Laguna M, Marti R. Fundamental of Scatter Search and Path Relinking[J]. Control and Cybernetics 2000,29(3):653-684.
    [193]Mauricio G C R,Celso C R. GRASP and Path-Relinking:Recent Advances and Applications, in Metaheuristics Progress as Real Problem Solvers, Toshihide I, Koji N, and Mutsunori Y, Editors. New York, Springer,2003:29-36.
    [194]王军民.成像卫星鲁棒性调度方法及应用研究[D].长沙:国防科学技术大学研究生院,2008.
    [195]金锋,吴澄.大规模生产调度问题的研究现状与展望[J].计算机集成制造系统,2006,12(2):161-168.
    [196]Sannomiya N,Iima H. Genetic Algorithm Approach to An Optimal Scheduling Problem for A Large-scale Complex Manufacturing System[C].//Proceedings of the IEEE International Conference on System,Man and Cybernetics. NJ(NEW Jersey):IEEE prsss,1999:622-627.
    [197]Zhang R,Wu C. Decomposition and Immune Genetic Algorithm for Scheduling
    Large Job Shops[J]. Evolutionary Computation,2008, 1(6):33-39.
    [198]张瑞,吴澄.求解大规模车间调度问题的一种分解优化算法[J].计算机集成制造系统,2008,14(8):1559-1565.
    [199]娄山佐,史忠科.基于分解协调原理的大规模动态车辆调度[J].系统仿真学报,2006,18(4):998-1001.
    [200]郝井华,刘民,吴澄等.基于工件聚类的并行机调度算法及其应用[J].计算机集成制造系统,2006,12(12):2062-2073.
    [201]梁旭,王佳,黄明.解决大规模生产调度问题的一种新编码方法[J].计算机集成制造系统,2008,14(10):1974-1977.
    [202]焦李成,刘静,钟伟才.协同进化计算与多智能体系统[M].北京:科学出版社,2006:25.
    [203]Potter M A,Dejong K A. Cooperative Coevolution:An Architechture for Evolving Coadapted Subcomponents[J]. Evolutionary Computation,2000,8(1):1-29.
    [204]巩敦卫.协同进化遗传算法理论及应用[M].北京:科学出版社,2009.
    [205]杨东勇,邱宇航,郑月锋.自适应代表个体选择方法的协作协进化算法[J].浙江工业大学学报,2005,33(5):499-502.
    [206]Potter M A. The Design and Analysis of A Computational Model of Cooperative Co-evolution[D]. Fairfax:George Mason University,1997.
    [207]Paul.W.R, William.C.L, De.J.K. The Effects of Representational Bias on Collaboration Methods in Cooperative Co-evolution[C].//Proceedings of The 7th Conference on Parallel Problem Solving from Nature. Spain:Springer-Verlag, 2002:257-268.
    [208]薛宏涛,沈林成,常文森.多群体合作型协进化方法的数学建模及分析[J].国防科技大学学报,2002,24(3):98-102.
    [209]马逢时,何良材,余明书,范金城.应用概率统计[M].北京:高等教育出版社,1989.
    [210]白新桂.数据分析与试验优化设计[M].北京:清华大学出版社,1986.
    [211]Potter M A,De Jong. Cooperative Co-evolution:An Architecture for Evolving Coadapted Subcomponents[J]. Evolutionary Computation,2000,8(1):1-29.
    [212]郭圆平.动态种群规模的协同进化算法模型、理论与应用[D].合肥:中国科学技术大学,2008.
    [213]Rudolph G. Convergence Properties of Evolutionary Algorithms[M]. Hamburg: Kovac,1997.
    [214]Goldberg D E. Genetics-based Machine Learning:Where It Came, Where it's Going, in Modeling and Simulation Methodology, ElzasM S, Oren T I, and Zcigler B P, Editors. New York, North-Holland,1989:285-300.
    [215]Goldberg D E,Deb K A. A Comparative Analysis of Selection Schemes Used in Genetic Algorithms, in Foundations of Genetic Algorithm s, Rawlins G J, Editor. San Mateo CA:Morgan Kaufmann,1991:69-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700