用户名: 密码: 验证码:
香烟烟雾提取物对大鼠肾动脉血管平滑肌G-蛋白耦联受体表达的影响及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1研究目的
     吸烟是动脉粥样硬化、冠心病、中风、外周血管疾病等心血管疾病的重要危险因素之一。大量研究表明,吸烟能导致血管壁损伤及血管内皮的局部功能紊乱,并能增强动脉粥样斑块形成。血管内皮细胞和血管平滑肌细胞(VSMC)表面及细胞内分布着不同类型的受体,其中分布在细胞膜上的G蛋白耦联受体(GPCR)家族是最重要的一类受体,与心血管疾病关系密切。大量实验与临床结果报道了生理或病理条件下GPCR的调控,GPCR对于血管收缩起重要作用,GPCR的活化可调节血流和血压水平,GPCR介导的VSMC收缩和增殖异常是血管疾病发展的重要因素。然而,对于吸烟伴随心血管疾病发病率增高的分子机制仍未完全阐明。
     本研究的目的旨在探讨器官培养及香烟烟雾提取物(DSP)对肾动脉血管平滑肌GPCR的影响,阐明其可能的细胞内信号转导机制,由此对于揭示吸烟相关GPCR紊乱所致的心脑血管疾病的发病机理、发现新的药物作用靶点具有重要意义。
     2方法
     采用大鼠肾动脉体外器官培养模型,将分离得到的大鼠肾动脉,去除内皮,制成1~1.5mm的血管环进行器官培养。将特异性或非特异性的细胞内信号通路抑制剂加到培养基中,以检验不同信号通路的参与情况。培养结束后,用灵敏的肌张力描记技术记录血管环的张力变化,依次在血管环浴槽中加入选择性受体激动剂以观察血栓素A2受体(TP)、内皮素受体A (ETA)和内皮素受体B(ETB)等GPCR介导的血管收缩;以实时在线反转录聚合酶链式反应(real-time RT-PCR)技术定量检测受体的mRNA表达;用免疫组织化学染色法结合激光扫描共聚焦显微镜测定受体的蛋白表达,阐明其可能的细胞内信号转导机制。
     在单纯器官培养的基础上,将吸烟这一心血管疾病的危险因子以香烟烟雾提取物DSP的形式引入培养体系,按上述方法从血管收缩功能、受体的mRNA表达量以及受体的蛋白表达水平三个方面探讨DSP对肾动脉血管平滑肌细胞TP、ETA和ETB受体等GPCR的影响及机制。
     3结果
     大鼠肾动脉经过24 h的培养,平滑肌细胞中TP下调。不同通路抑制剂使用后发现TP的下调未被非选择性翻译抑制剂CHX影响,但几乎完全被非选择性转录抑制剂ACD所消除,RT-PCR和免疫组化实验结果也显示TP mRNA表达和TP蛋白表达水平下降,提示TP下调可能与细胞内转录机制有关。进一步使用MAPK通路抑制剂后的研究表明,TP介导的收缩反应未被JNK和p38通路抑制剂SP600125和SB203580影响,但被ERK1/2通路抑制剂U0126部分程度地消除,说明TP的下调可能与激活ERK1/2信号通路有关;蛋白酶体抑制剂MG-132和与NF-κB信号通路抑制剂BMS345541可以明显消除器官培养所致的TP下调,显示ERK1/2的下游通路NF-κB也参与TP下调,IκBα和IκBβ信号通路均与此有关。
     器官培养导致ETA和ETB受体上调。ERK1/2通路抑制剂U0126和p38通路抑制剂SB203580抑制了ETB受体介导的这种增强的收缩反应;而对于ETA受体介导的收缩反应,U0126,SP600125和SB203580均没有明显影响。ETB受体上调可能与ERK1/2及P38信号通路及下游NF-κB途径有关,而ETA受体的上调可能与MAPK信号通路及下游NF-κB途径无关。此外,蛋白酶体抑制剂MG-132消除了器官培养所导致的TP下调或ETA和ETB受体上调,但磷酸二酯酶并未参与其中。器官培养24h后,Il-6和Il-1β的mRNA表达增高明显。
     肾动脉血管环在与DSP共同培养后,ETB、ETA和TP受体介导的平滑肌收缩反应明显增强,且这种增强与DSP的浓度在一定范围内(0.1~0.4μl﹒mL-1)呈浓度-效应依赖关系;此外,ETB受体介导的平滑肌收缩反应增强的程度和与DSP共同培养的时间在一定范围内(0~24h)呈时间-效应依赖关系。ETB受体的mRNA表达水平在与DSP共同培养后明显增加,但DSP的加入并未使ETA和TP受体的mRNA表达水平发生变化。免疫组织化学的实验结果显示与DSP共同培养后,在肾动脉血管平滑肌细胞中TP、ETB和ETA受体的蛋白表达水平明显增高。细胞内信号通路研究结果显示,DSP所致ETB受体水平的上调可以被NF-κB信号通路抑制剂BMS345541完全消除,而TP和ETA受体上调却不被BMS345541所影响。以上结果提示DSP引起的ETB受体改变可能与转录机制有关,而TP和ETA受体可能与转录后机制相关。尽管较高浓度的内毒素(LPS)表现出上调ET受体的作用,但LPS和尼古丁可能均不是DSP中引起上述受体改变的关键成分。
    
     4结论
     器官培养能够引起大鼠肾动脉血管平滑肌细胞TP水平下调, ETB和ETA受体水平上调。TP下调可能与细胞内ERK1/2的下游NF-κB通路有关,ETB受体上调可能与ERK1/2及P38信号通路及下游NF-κB途径有关,而ETA受体的上调可能与MAPK信号通路及下游NF-κB途径无关。
     DSP能够引起大鼠肾动脉血管平滑肌细胞ETB、ETA和TP受体水平上调。DSP引起ETB受体水平上调的机制可能与激活转录因子NF-кB途径有关;ETA和TP受体的上调则可能与转录后机制有关。LPS和尼古丁可能均不是DSP中引起上述受体改变的关键成分。
Objective
     Cigarette smoking exposure is a well-known risk factor for hypertension, atherosclerosis (AS), coronary heart disease (CHD), stroke, myocardial infarction, aortic aneurysm, peripheral vascular disease and other cardiovascular diseases. There is plenty of evidences show that smoking may induce damage of vessel wall and disorder of blood vessel endothelium, also enhance the form of atheromatous plaque. There is different receptor subtypes located on or inside vascular endothelial cell and smooth muscle cells, among them, G-protein coupled receptors (GPCR) which located in the surface of the cell are most capital. Mountains of experimental and clinical studies have demonstrated that the GPCR in vascular smooth muscle (VSMC) play an important role on blood vessel contraction. The activation of GPCR can regulate blood flow and the level of blood pressure. The dysfunction of contraction and proliferation mediated by GPCR in vascular smooth muscle is an important cause for the development of vascular diseases. However, the underlying molecular mechanisms that cigarette smoke leads to higher morbidity of cardiovascular disease are not fully understood.
     The present study was designed to examine if organ culture or DSP regulate TP, ETA and ETB receptors in renal arteries, and which intracellular signal pathways are involved in the organ culture or DSP’s effects. Understanding the intracellular signal mechanisms behind cigarette smoke-induce renal arterial dysfunction and damage may provide a new target for developing therapies for hypertension and cardiovascular disease.
     Methods
     Rat renal arteries were dissected and after removal of endothelium, they were cut into about 1~1.5mm long cylindrical segments and subjected to organ culture. Specific intracellular signal pathway inhibitors were added to the culture medium to test the involvement of different signal pathways. A sensitive myograph system was used to record isometric tension of the segments, and selective agonists were added to tissue baths in turn to evaluate the TP, ETA and ETB receptor-mediated vessel contractility. The receptor mRNA expression was quantified by real-time reverse transcription PCR, while the receptor protein expression was examined using a laser scanning confocal microscope after immunohistochemistry staining.
     Based on the result of organ culture, the ring segments of renal arteries from rats were exposed to DSP (0.1~0.4 ml﹒L-1), nicotine or LPS, in the organ culture for up to 24 h. The alteration of GPCR caused by DSP was studied by three levels: functional evaluation, mRNA analysis and protein localization.
     Results
     We observed down-regulation of the TP in rat renal artery after organ culture for 24h. The down-regulation of the TP was partly abolished by general transcriptional inhibitor ACD, but not abolished by general translational inhibitor CHX. The results of RT-PCR and immunohistochemistry showed that the mRNA and protein expression of TP decreased after organ culture. This suggests that the down-regulation of TP involves a transcriptional mechanism. Furthermore, the decreased contraction caused by organ culture was partly abolished by U0126 (a ERK1/2 pathway inhibitor), but not by SP600125 (a JNK pathway inhibitor) and SB203580 (a p38 pathway inhibitor). This suggests that ERK1/2 signal pathway involves the down-regulation of TP. The NF-κB pathway inhibitor BMS345541, co-incubated with the segments during the organ culture, revealed that organ culture-induced down-regulation of the TP significantly was attenuated. This means the down-regulation of TP receptor occurs through the NF-κB pathway. Additionally, we observed that the down-regulation of the TP was abolished by MG-132. This suggests that the down-regulation of TP receptor was activated through the IκB pathway; both IκBαand IκBβwere involved.
     ETA and ETB receptors were up-regulated after organ culture. The enhanced contraction mediated by ETB receptor was inhibited by U0126 and SB203580, while the enhanced contraction mediated by ETA receptor was not affected by U0126,SP600125 and SB203580. Suggesting that the up-regulated of ETB receptor maybe caused by the activation of ERK1/2and P38 pathway, while MAPK do not involve in the up-regulation of ETA receptor. Furthermore, MG-132 abolished the up- up-regulated of ETB and ETA receptor, but the inhibitors of PDE had no effects. After the segments organ culture for 24h, the mRNA expression of Il-6 and Il-1βincreased.
     The contractions mediated by TP, ETB and ETA receptors were significantly increased after the arterial segments exposed to DSP in a concentration- dependent (0.1~0.4 ml﹒L-1) manner and ETB receptor also presented in a time-dependent (0~24h) manner, compared to control (DMSO). This was in parallel with enhanced mRNA expression for ETB receptor, but not ETA and TP receptors. The results of immunohistochemistry showed that the protein expression of TP, ETA and ETB receptor increased after the segments cultured with DSP for 24h. BMS345541 totally abolished ETB receptor up-regulation, but not ETA and TP receptor up-regulations. Our results suggest that DSP transcriptionally up-regulated ETB receptor expression in rat renal artery via NF-кB signal pathways, whereas up-regulation of ETA and TP receptor-mediated contraction may involve post-transcriptional mechanisms. Both nicotine and LPS were unlikely involved in DSP effects, although LPS at the higher concentrations had such effects.
     Conclusions
     TP was down-regulated after organ culture, while ETA and ETB receptors were up-regulated. The down-regulation of TP receptor occurs through the ERK1/2 and the downstream NF-κB pathway. The up-regulated of ETB receptor maybe caused by the activation of ERK1/2, P38 and NF-κB pathway, while MAPK and NF-κB pathway do not involve in the up-regulation of ETA receptor.
     DSP transcriptionally up-regulated ETB receptor expression in rat renal artery via NF-кB signals pathways, whereas up-regulation of ETA and TP receptor-mediated contraction may involve post-transcriptional mechanisms. Both nicotine and LPS were unlikely involved in DSP effects.
引文
1. Doll R, Peto R, Boreham J, Sutherland I. Mortality from cancer in relation to smoking: 50 years observations on British doctors. Br J Cancer 2005;92(3):426-9.
    2. Lightwood J. The economics of smoking and cardiovascular disease. Prog Cardiovasc Dis 2003;46(1):39-78.
    3. Grau M, Bongard V, Fito M, Ruidavets JB, Sala J, Taraszkiewicz D, et al. Prevalence of cardiovascular risk factors in men with stable coronary heart disease in France and Spain. Arch Cardiovasc Dis;103(2):80-9.
    4. Solomon A, Kivipelto M. Cholesterol-modifying strategies for Alzheimer's disease. Expert Rev Neurother 2009;9(5):695-709.
    5. Heffernan KS, Karas RH, Patvardhan EA, Kuvin JT. Endothelium- dependent vasodilation is associated with exercise capacity in smokers and non-smokers. Vasc Med 2009;15(2):119-25.
    6. Critchley JA, Capewell S. Mortality risk reduction associated with smoking cessation in patients with coronary heart disease: a systematic review. Jama 2003;290(1):86-97.
    7. Ravenholt RT. Tobacco's impact on twentieth-century U.S. mortality patterns. Am J Prev Med 1985;1(4):4-17.
    8.李建华,刘江凤.吸烟对人类健康主要危害的研究进展.国际内科学杂志. 2008; 35(5):284-287.
    9. Hawkins BA. Ecology's oldest pattern? Endeavour 2001;25(3):133-4.
    10. Wolf PA, D'Agostino RB, Kannel WB, Bonita R, Belanger AJ. Cigarette smoking as a risk factor for stroke. The Framingham Study. Jama 1988;259(7):1025-9.
    11. Narkiewicz K, van de Borne PJ, Hausberg M, Cooley RL, Winniford MD, Davison DE, et al. Cigarette smoking increases sympathetic outflow in humans. Circulation 1998;98(6):528-34.
    12. Yugar-Toledo JC, Tanus-Santos JE, Sabha M, Sousa MG, Cittadino M, Tacito LH, et al. Uncontrolled hypertension, uncompensated type II diabetes, and smoking have different patterns of vascular dysfunction. Chest 2004;125(3):823-30.
    13.张晓,胡晓兰,徐仓宝,等.香烟尘粒对血管平滑肌细胞增殖的作用.中国动脉硬化杂志. 2002; 10(4): 294-296.
    14.丁立群,姜玲,范洁.吸烟加重高血压病患者大中动脉硬化.中华高血压杂志. 2008; 16(1): 26-28.
    15. Mahmud A, Feely J. Effect of smoking on arterial stiffness and pulse pressure amplification. Hypertension 2003;41(1):183-7.
    16.潘小华,王智勇.吸烟与冠心病发生发展关系的研究进展.中西医结合心脑血管病杂志. 2007; 5(1): 53-54.
    17. James RW, Leviev I, Righetti A. Smoking is associated with reduced serum paraoxonase activity and concentration in patients with coronary artery disease. Circulation 2000;101(19):2252-7.
    18.曾高峰,刘康桐,丁翠芬等.吸烟对国人血清对氧磷酶活性的影响.临床心血管病杂志. 2002; 18(2): 75-76.
    19. Raij L. Workshop: hypertension and cardiovascular risk factors: role of the angiotensin II-nitric oxide interaction. Hypertension 2001;37(2 Part 2):767-73.
    20.向定成.吸烟和高脂血症是冠状动脉动脉痉挛的重要危险因子.中华心血管病杂志. 2002; 30(4):242-243.
    21. Lee SD, Lee DS, Chun YG, Shim TS, Lim CM, Koh Y, et al. Cigarette smoke extract induces endothelin-1 via protein kinase C in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 2001;281(2):L403-11.
    22. Albaugh G, Kann B, Strande L, Vemulapalli P, Hewitt C, Alexander JB. Nicotine induces endothelial TNF-alpha expression, which mediates growth retardation in vitro. J Surg Res 2001;99(2):381-4.
    23.褚松筠,丁文惠,蒋宏峰等.急性心肌梗死患者血浆线粒体偶联因子6的动态变化及其意义探讨.中华心血管病杂志. 2004; 32(5): 435-437.
    24.刘菲,柳忠兰,刘淑杰.吸烟大鼠脑血管内皮细胞基质金属蛋白酶9的表达.中国动脉硬化杂志. 2005; 13(5): 583-585.
    25.周卫辉,陈祥银,余丽君等.尼古丁对中性粒细胞活化及细胞间黏附分子基因表达的影响.中国病理生理杂志. 2000; 16(9): 779-782
    26.柳忠兰,冯昱,刘淑杰等.吸烟大鼠脑血管内皮细胞P-选择素、E-选择素表达在脑血栓形成.中国现代医学杂志. 2005; 15(1): 34-37.
    27. Cendon SP, Battlehner C, Lorenzi Filho G, Dohlnikoff M, Pereira PM, Conceicao GM, et al. Pulmonary emphysema induced by passive smoking: an experimental study in rats. Braz J Med Biol Res 1997;30(10):1241-7.
    28. Lei Y, Cao YX, Xu CB, Zhang Y. The Raf-1 inhibitor GW5074 and dexamethasone suppress sidestream smoke-induced airway hyperresponsiveness in mice. Respir Res 2008;9:71.
    29. Bahk JY, Li S, Park MS, Kim MO. Dopamine D1 and D2 receptor mRNA up-regulation in the caudate-putamen and nucleus accumbens of rat brains by smoking. Prog Neuropsychopharmacol Biol Psychiatry 2002;26(6): 1095-104.
    30.张瑞,苟文丽,黄谱等.不同孕期被动吸烟对仔鼠学习记忆行为及海马神经元凋亡的影响.现代妇产科进展. 2009; 18(9): 664-666.
    31. Takeuchi Y, Takahashi M, Fuchikami J. Vulnerability of gastric mucosa to prednisolone in rats chronically exposed to cigarette smoke. J Pharmacol Sci 2008;106(4):585-92.
    32. Iida M, Iida H, Dohi S, Takenaka M, Fujiwara H. Mechanisms underlying cerebrovascular effects of cigarette smoking in rats in vivo. Stroke 1998;29(8):1656-65.
    33. Iida H, Iida M, Takenaka M, Fujiwara H, Dohi S. Angiotensin II type 1 (AT1)-receptor blocker prevents impairment of endothelium-dependent cerebral vasodilation by acute cigarette smoking in rats. Life Sci 2006;78(12):1310-6.
    34. Dadmanesh F, Wright JL. Endothelin-A receptor antagonist BQ-610 blocks cigarette smoke-induced mitogenesis in rat airways and vessels. Am J Physiol 1997;272(4 Pt 1):L614-8.
    35. Wang T, Han SX, Zhang SF, Ning YY, Chen L, Chen YJ, et al. Role of chymase in cigarette smoke-induced pulmonary artery remodeling and pulmonary hypertension in hamsters. Respir Res;11(1):36.
    36. Xu CB, Pessah-Rasmussen H, Stavenow L. Interactions between cultured bovine arterial endothelial and smooth muscle cells: effects of injury on the release of growth stimulating and growth inhibiting substances. Pharmacol Toxicol 1991;69(3):195-200.
    37. Xu CB, Stavenow L, Pessah-Rasmussen H. Interactions between cultured bovine arterial endothelial and smooth muscle cells; studies on the release of prostacyclin by endothelial cells. Artery 1992;19(2):94-111.
    38. Xu CB, Stavenow L, Pessah-Rasmussen H. Interactions between cultured bovine arterial endothelial and smooth muscle cells; further studies on the effects of injury and modification of the consequences of injury. Artery 1993;20(3):163-79.
    39. Xu CB, Stavenow L, Pessah-Rasmussen H. Interactions between cultured bovine arterial endothelial and smooth muscle cells; effects of modulated low density lipoproteins on cell proliferation and prostacyclin release. Scand J Clin Lab Invest 1994;54(3):191-8.
    40. Zhang JY, Cao YX, Xu CB, Edvinsson L. Lipid-soluble smoke particles damage endothelial cells and reduce endothelium-dependent dilatation in rat and man. BMC Cardiovasc Disord 2006;6:3.
    41. Vikman P, Xu CB, Edvinsson L. Lipid-soluble cigarette smoking particles induce expression of inflammatory and extracellular-matrix-related genes in rat cerebral arteries. Vasc Health Risk Manag 2009;5(1):333-41.
    42. Wright JL, Churg A. Short-term exposure to cigarette smoke induces endothelial dysfunction in small intrapulmonary arteries: analysis using guinea pig precision cut lung slices. J Appl Physiol 2008;104(5):1462-9.
    43. Zhang W, Cao YX, He JY, Xu CB. Down-regulation of alpha-adrenoceptor expression by lipid-soluble smoke particles through transcriptional factor nuclear factor-kappaB pathway. Basic Clin Pharmacol Toxicol 2007;101(6):401-6.
    44. Zhang W, Zhang Y, Edvinsson L, Xu CB. Up-regulation of thromboxane A2 receptor expression by lipid soluble smoking particles through post-transcriptional mechanisms. Atherosclerosis 2008;196(2):608-16.
    45. Zhang W, Zhang Y, Edvinsson L, Xu CB. Transcriptional down-regulation of thromboxane A(2) receptor expression via activation of MAPK ERK1/2, p38/NF-kappaB pathways. J Vasc Res 2009;46(2):162-74.
    46. Fraioli F, Catalano C, Bertoletti L, Danti M, Fanelli F, Napoli A, et al. Multidetector-row CT angiography of renal artery stenosis in 50 consecutive patients: prospective interobserver comparison with DSA. Radiol Med 2006;111(3):459-68.
    47. White CJ, Jaff MR, Haskal ZJ, Jones DJ, Olin JW, Rocha-Singh KJ, et al. Indications for renal arteriography at the time of coronary arteriography: a science advisory from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology, and the Councils on Cardiovascular Radiology and Intervention and on Kidney in Cardiovascular Disease. Circulation 2006;114(17):1892-5.
    48.孟家眉.神经内科临床新进展.北京:人民卫生版社, 1994: 66-88.
    49. Cop-Blazic N, Zavoreo I. There is no healthy level of smoking. Acta Clin Croat 2009;48(3):371-6.
    50.李奕霖,倪师军,郭亚杰等.香烟燃烧过程有害元素气固分配比实验研究.地球与环境. 2009, 37(1): 91-95.
    51. Ji TH, Grossmann M, Ji I. G protein-coupled receptors. I. Diversity of receptor-ligand interactions. J Biol Chem 1998;273(28):17299-302.
    52.杨宝峰.药理学.北京.人民卫生出版社, 2003: 117.
    53. Beg SA, Hansen-Schwartz JA, Vikman PJ, Xu CB, Edvinsson LI. ERK1/2 inhibition attenuates cerebral blood flow reduction and abolishes ET(B) and 5-HT(1B) receptor upregulation after subarachnoid hemorrhage in rat. J Cereb Blood Flow Metab 2006;26(6):846-56.
    54. Cao YX, He LC, Xu CB, Luo GG, Edvinsson L. Enhanced transcription of contractile 5-hydroxytryptamine 2A receptors via extracellular signal-regulated kinase 1/2 after organ culture of rat mesenteric artery. Basic Clin Pharmacol Toxicol 2005;96(4):282-8.
    55. Luo G, Xu CB, Cao YX, Edvinsson L. Transcriptional up-regulation in expression of 5-hydroxytryptamine2A and transcriptional down-regulation of angiotensin II type 1 receptors during organ culture of rat mesenteric artery. Basic Clin Pharmacol Toxicol 2004;95(6):280-7.
    56. Hansen-Schwartz J, Svensson CL, Xu CB, Edvinsson L. Protein kinase mediated upregulation of endothelin A, endothelin B and 5-hydroxytryptamine 1B/1D receptors during organ culture in rat basilar artery. Br J Pharmacol 2002;137(1):118-26.
    57. Li J, Cao YX, Liu H, Xu CB. Enhanced G-protein coupled receptors-mediated contraction and reduced endothelium-dependent relaxation in hypertension. Eur J Pharmacol 2007;557(2-3):186-94.
    58. Breyer MD, Breyer RM. G protein-coupled prostanoid receptors and the kidney. Annu Rev Physiol 2001;63:579-605.
    59. Huang JS, Ramamurthy SK, Lin X, Le Breton GC. Cell signalling through thromboxane A2 receptors. Cell Signal 2004;16(5):521-33.
    60. Katugampola SD, Davenport AP. Thromboxane receptor density is increased in human cardiovascular disease with evidence for inhibition at therapeutic concentrations by the AT(1) receptor antagonist losartan. Br J Pharmacol 2001;134(7):1385-92.
    61. Morinelli TA, Tempel GE, Jaffa AA, Silva RH, Naka M, Folger W, et al. Thromboxane A2/prostaglandin H2 receptors in streptozotocin-induced diabetes: effects of insulin therapy in the rat. Prostaglandins 1993;45(5): 427-38.
    62. Becker RC. Thrombosis and the role of the platelet. Am J Cardiol 1999;83(9A):3E-6E.
    63. Kinsella BT, O'Mahony DJ, Fitzgerald GA. The human thromboxane A2 receptor alpha isoform (TP alpha) functionally couples to the G proteins Gq and G11 in vivo and is activated by the isoprostane 8-epi prostaglandin F2 alpha. J Pharmacol Exp Ther 1997;281(2):957-64.
    64. Song P, Zhang M, Wang S, Xu J, Choi HC, Zou MH. Thromboxane A2 receptor activates a Rho-associated kinase/LKB1/PTEN pathway to attenuate endothelium insulin signaling. J Biol Chem 2009;284(25): 17120-8.
    65. Chernyavsky AI, Arredondo J, Karlsson E, Wessler I, Grando SA. The Ras/Raf-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. J Biol Chem 2005;280(47):39220-8.
    66. Uhiara CO, Alexander SP, Roberts RE. Effect of inhibition of extracellular signal-regulated kinase on relaxations to beta-adrenoceptor agonists in porcine isolated blood vessels. Br J Pharmacol 2009;158(7):1713-9.
    67. Pfister SL, Pratt PE, Kurian J, Campbell WB. Glibenclamide inhibits thromboxane-mediated vasoconstriction by thromboxane receptor blockade. Vascul Pharmacol 2004;40(6):285-92.
    68. Ashton AW, Cheng Y, Helisch A, Ware JA. Thromboxane A2 receptor agonists antagonize the proangiogenic effects of fibroblast growth factor-2: role of receptor internalization, thrombospondin-1, and alpha(v)beta3. Circ Res 2004;94(6):735-42.
    69. Inoue Y, Tokuyama K, Nishimura H, Arakawa H, Kato M, Mochizuki H, et al. Effects of STA(2), a thromboxane A(2) mimetic, in inducing airflow obstruction and airway microvascular leakage in guinea pigs. Pharmacology 2002;65(2):62-8.
    70. Tardif M, Bergeron Y, Beauchamp D, Bergeron MG. Increased renal uptake of gentamicin in endotoxemic rats receiving concomitant thromboxane A2 antagonist therapy. Antimicrob Agents Chemother 1993;37(12):2727-32.
    71. Cediel E, de Las Heras N, Sanz-Rosa D, Velasco O, Cachofeiro V, Lahera V. AT-1 receptor antagonism modifies the mediation of endothelin-1, thromboxane A2, and catecholamines in the renal constrictor response to angiotensin II. Kidney Int Suppl 2005(93):S3-9.
    72. Haynes WG, Webb DJ. Endothelin as a regulator of cardiovascular function in health and disease. J Hypertens 1998;16(8):1081-98.
    73. Maguire JJ, Davenport AP. ETA receptor-mediated constrictor responses to endothelin peptides in human blood vessels in vitro. Br J Pharmacol 1995;115(1):191-7.
    74. Sakurai T, Yanagisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K, et al. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 1990;348(6303):732-5.
    75. Sudjarwo SA, Karaki H. Role of protein kinase C in the endothelin-induced contraction in the rabbit saphenous vein. Eur J Pharmacol 1995;294(1): 261-9.
    76. Douglas SA, Louden C, Vickery-Clark LM, Storer BL, Hart T, Feuerstein GZ, et al. A role for endogenous endothelin-1 in neointimal formation after rat carotid artery balloon angioplasty. Protective effects of the novel nonpeptide endothelin receptor antagonist SB 209670. Circ Res 1994;75(1): 190-7.
    77. Sudjarwo SA, Hori M, Tanaka T, Matsuda Y, Okada T, Karaki H. Subtypes of endothelin ETA and ETB receptors mediating venous smooth muscle contraction. Biochem Biophys Res Commun 1994;200(1):627-33.
    78. Ohlstein EH, Nambi P, Douglas SA, Edwards RM, Gellai M, Lago A, et al. SB 209670, a rationally designed potent nonpeptide endothelin receptor antagonist. Proc Natl Acad Sci U S A 1994;91(17):8052-6.
    79. Danthuluri NR, Brock TA. Endothelin receptor-coupling mechanisms in vascular smooth muscle: a role for protein kinase C. J Pharmacol Exp Ther 1990;254(2):393-9.
    80. Endoh M, Fujita S, Yang HT, Talukder MA, Maruya J, Norota I. Endothelin: receptor subtypes, signal transduction, regulation of Ca2+ transients and contractility in rabbit ventricular myocardium. Life Sci 1998;62(17-18): 1485-9.
    81.马青.内皮素受体拮抗剂在心血管病中的应用进展.现代中西医结合杂志. 2008, 17(27): 4359-4361.
    82. Alexander SP, Mathie A, Peters JA. Guide to Receptors and Channels (GRAC), 3rd edition. Br J Pharmacol 2008;153 Suppl 2:S1-209.
    83. Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res 1998;74:49-139.
    84. Hommes DW, Peppelenbosch MP, van Deventer SJ. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 2003;52(1):144-51.
    85. Cockerham C, Webb ML, Hedberg SA, Runge MS. Regulation of the rat aortic smooth muscle cell thromboxane A2 receptor. Trans Assoc Am Physicians 1991;104:173-80.
    86.蔡琪,李晓玫.丝裂原活化蛋白激酶信号转导通路研究进展.肾脏病与透析肾移植杂志. 1999, 8(4): 354-359
    87. Benakis C, Bonny C, Hirt L. JNK inhibition and inflammation after cerebral ischemia. Brain Behav Immun 2009.
    88. Underwood DC, Osborn RR, Kotzer CJ, Adams JL, Lee JC, Webb EF, et al. SB 239063, a potent p38 MAP kinase inhibitor, reduces inflammatory cytokine production, airways eosinophil infiltration, and persistence. J Pharmacol Exp Ther 2000;293(1):281-8.
    89.魏小勇. p38 MAPK信号通路与肿瘤的关系.实用癌症杂志. 2009; 24(1):101-103.
    90. Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhancer- binding protein Nf-kappa B by a posttranslational mechanism. Cell 1986; 47(6):921-8.
    91.金树梅,汤华. NF-κB与动脉粥样硬化机制研究进展.天津医科大学学报. 2006; 12(1): 141-144.
    92. Karin M, Delhase M. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol 2000;12(1):85-98.
    93. Jaffre F, Callebert J, Sarre A, Etienne N, Nebigil CG, Launay JM, et al. Involvement of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation: control of interleukin-6, interleukin- 1beta, and tumor necrosis factor-alpha cytokine production by ventricular fibroblasts. Circulation 2004;110(8):969-74.
    94. Geoffroy J, Benzoni D, Sassard J. Antihypertensive effect of thromboxaneA2 receptor blockade in genetically hypertensive rats of the Lyon strain. J Hypertens Suppl 1989;7(6):S272-3.
    95. Mehta JL, Lawson D, Mehta P, Saldeen T. Increased prostacyclin and thromboxane A2 biosynthesis in atherosclerosis. Proc Natl Acad Sci U S A 1988;85(12):4511-5.
    96. Pratico D, Cyrus T, Li H, FitzGerald GA. Endogenous biosynthesis of thromboxane and prostacyclin in 2 distinct murine models of atherosclerosis. Blood 2000;96(12):3823-6.
    97. Zucker TP, Bonisch D, Muck S, Weber AA, Bretschneider E, Glusa E, et al. Thrombin-induced mitogenesis in coronary artery smooth muscle cells is potentiated by thromboxane A2 and involves upregulation of thromboxane receptor mRNA. Circulation 1998;97(6):589-95.
    98. Adner M, Cantera L, Ehlert F, Nilsson L, Edvinsson L. Plasticity of contractile endothelin-B receptors in human arteries after organ culture. Br J Pharmacol 1996;119(6):1159-66.
    99. Vikman P, Edvinsson L. Gene expression profiling in the human middle cerebral artery after cerebral ischemia. Eur J Neurol 2006;13(12):1324-32.
    100. Adner M, Shankley N, Edvinsson L. Evidence that ET-1, but not ET-3 and S6b, ET(A)-receptor mediated contractions in isolated rat mesenteric arteries are modulated by co-activation of ET(B) receptors. Br J Pharmacol 2001;133(6):927-35.
    101. Hansen-Schwartz J, Hoel NL, Zhou M, Xu CB, Svendgaard NA, Edvinsson L. Subarachnoid hemorrhage enhances endothelin receptor expression and function in rat cerebral arteries. Neurosurgery 2003;52(5):1188-94; 1194-5.
    102. Stenman E, Malmsjo M, Uddman E, Gido G, Wieloch T, Edvinsson L. Cerebral ischemia upregulates vascular endothelin ET(B) receptors in rat. Stroke 2002;33(9):2311-6.
    103. Henriksson M, Xu CB, Edvinsson L. Importance of ERK1/2 in upregulation of endothelin type B receptors in cerebral arteries. Br J Pharmacol 2004;142(7):1155-61.
    104. Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL, etal. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 2003;17(7):1263-93.
    105.罗国刚,曹永孝,徐仓宝等. ERK1/2通路参与大鼠肠系膜动脉平滑肌细胞ETB受体上调表达.药学学报. 2006; 41(3): 257-262
    106. Xu CB, Zheng JP, Zhang W, Zhang Y, Edvinsson L. Lipid-soluble smoke particles upregulate vascular smooth muscle ETB receptors via activation of mitogen-activating protein kinases and NF-kappaB pathways. Toxicol Sci 2008;106(2):546-55.
    107. Rhee MY, Na SH, Kim YK, Lee MM, Kim HY. Acute effects of cigarette smoking on arterial stiffness and blood pressure in male smokers with hypertension. Am J Hypertens 2007;20(6):637-41.
    108. Jimenez Ruiz CA. [Replacement therapy with nicotine. Practical aspects]. Rev Clin Esp 1998;198(3):181-5.
    109. Russell MA, Jarvis M, Iyer R, Feyerabend C. Relation of nicotine yield of cigarettes to blood nicotine concentrations in smokers. Br Med J 1980;280(6219):972-6.
    110. Granstrom BW, Xu CB, Nilsson E, Vikman P, Edvinsson L. Smoking particles enhance endothelin A and endothelin B receptor-mediated contractions by enhancing translation in rat bronchi. BMC Pulm Med 2006;6:6.
    111. Danner RL, Elin RJ, Hosseini JM, Wesley RA, Reilly JM, Parillo JE. Endotoxemia in human septic shock. Chest 1991;99(1):169-75.
    112. Liu SF, Barnes PJ, Evans TW. Time course and cellular localization of lipopolysaccharide-induced inducible nitric oxide synthase messenger RNA expression in the rat in vivo. Crit Care Med 1997;25(3):512-8.
    113. MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 1995;81(4):641-50.
    114. Schildknecht S, Bachschmid M, Baumann A, Ullrich V. COX-2 inhibitors selectively block prostacyclin synthesis in endotoxin-exposed vascularsmooth muscle cells. Faseb J 2004;18(6):757-9.
    115. Larsson L, Szponar B, Ridha B, Pehrson C, Dutkiewicz J, Krysinska- Traczyk E et al. Identification of bacterial and fungal components in tobacco and tobacco smoke. Tob Induc Dis 2008:4:4.
    116. Bachar O, Adner M, Uddman R, Cardell LO. Toll-like receptor stimulation induces airway hyper-responsiveness to bradykinin, an effect mediated by JNK and NF-kappa B signaling pathways. Eur J Immunol 2004;34(4): 1196-207.
    117. Ponnuchamy B, Khalil RA. Cellular mediators of renal vascular dysfunction in hypertension. Am J Physiol Regul Integr Comp Physiol 2009;296(4):R1001-18.
    118. Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature 1990;348(6303):730-2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700