用户名: 密码: 验证码:
带约束拉杆方形和矩形截面钢管混凝土短柱承载力与延性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
带约束拉杆异形钢管混凝土柱是一种新型的结构构件。在钢管对核心混凝土约束相对弱处设置了约束拉杆,方形、矩形钢管对核心混凝土的有效约束增加,使到钢管的径向应力集度变化趋于平缓,相应地钢管对核心混凝土的平均侧向约束力增大,使核心混凝土的抗压强度得以较大幅度地提高;拉杆的弹性约束作用相当于对钢管横向弹性支撑作用,从而发生在一般形式方形、矩形钢管混凝土柱钢管局部过早出现屈曲的现象得到抑制和延迟。带约束拉杆异形钢管混凝土柱已经很好地应用于实际工程,但目前对其承载力和延性的研究尚不充分。本文作为带约束拉杆异形钢管混凝土柱力学性能系列研究的一部分,从带约束拉杆方形和矩形钢管混凝土短柱受力全过程的非线性分析程序编制、承载力计算以及延性计算三个方面深入地研究这种新型结构构件的轴压、单向偏压和双向偏压性能,为后续更为系统的研究奠定良好的基础。本文的主要工作和结论如下。
     (1)基于带约束拉杆方形、矩形钢管混凝土短柱内核心混凝土等效单轴受压本构关系,编制出可合理模拟带约束拉杆方形、矩形钢管混凝土短柱在轴压、单向偏压、双向偏压下受力全过程截面非线性分析计算程序,程序的计算结果和试验结果的比较表明,两者吻合良好
     (2)通过对不同参数的轴压承载力数值计算结果的回归分析,分别提出了适合带约束拉杆方形、矩形钢管混凝土构件轴压承载力计算的简化公式。
     (3)通过大量的参数分析,探究了轴压比、钢管壁厚、钢管强度、混凝土强度、约束拉杆间距、约束拉杆直径、截面尺寸等各种参数对带约束拉杆方形、矩形钢管混凝土短柱截面单向偏压承载力的影响规律。轴压比较低时,单向偏压承载力随轴压比的增大而增加;轴压比较高时,单向偏压承载力随轴压比的增大而减少。随着钢管强度的提高、钢管壁厚的增大、混凝土强度的提高、约束拉杆间距的减少、约束拉杆直径的增大,带约束拉杆方形、矩形钢管混凝土短柱单向偏压承载力也随之增大;混凝土强度的提高和约束拉杆直径的增大的影响效果不如其他因素明显。通过对数值计算结果的回归分析,分别提出了适合带约束拉杆方形、矩形钢管混凝土构件单向偏压承载力计算的简化公式。
     (4)荷载角对带约束拉杆方形、矩形钢管混凝土短柱承载力有较大影响;对于方形截面短柱,在荷载角α= 0(或90°),截面的抗弯承载力最高;在荷载角α= 45°处,截面的抗弯承载力最低;从荷载角为0逆时针到45°,承载力也随之从最大值减小至最小值。对于矩形截面短柱,在荷载角α= 0,截面的抗弯承载力最高;在荷载角α=60°处,截面的抗弯承载力最低;从荷载角为0逆时针到60°,承载力也随之从最大值减小至最小值,而后截面承载力又逐渐增加,直至90°处,达到另一个大值。不同荷载角α下各参数对带约束拉杆方形、矩形钢管混凝土短柱的n- M曲线和M ?φ曲线的影响规律基本相同,不同参数下的M_x / M_x' -M_y /M_y'相关曲线均为以x、y轴为对称轴的封闭曲线,通过对数值计算结果的回归分析,分别提出了适合带约束拉杆方形、矩形钢管混凝土构件双向偏压承载力计算的简化公式。
     (5)通过大量的参数分析,探究了轴压比、钢管壁厚、钢管强度、混凝土强度、约束拉杆间距、约束拉杆直径、截面尺寸等各种参数对带约束拉杆方形、矩形钢管混凝土短柱截面单向偏压曲率延性系数的影响规律。随着轴压比的降低、钢管强度的提高、钢管壁厚的增大、约束拉杆间距的减少、约束拉杆直径的增大,带约束拉杆方形、矩形钢管混凝土短柱单向偏压曲率延性系数也随之增大;约束拉杆直径的增大的影响效果不如其他因素明显;混凝土强度的提高反而降低曲率延性系数。通过对数值计算结果的回归分析,分别提出了适合带约束拉杆方形、矩形钢管混凝土构件单向偏压曲率延性系数计算的简化公式。
     (6)荷载角对带约束拉杆方形、矩形钢管混凝土短柱截面的曲率延性系数影响非常显著;在荷载角α= 0°(或90°),截面的曲率延性系数最小;在荷载角α= 45°附近处,截面的曲率延性系数最大;从荷载角为0°逆时针到45°,曲率延性系数也随之从最小值增加至最大值。通过对数值计算结果的回归分析,分别提出了适合带约束拉杆方形、矩形钢管混凝土构件双向偏压曲率延性系数计算的简化公式。
Special-shaped (including square, rectangle, L-shaped and T-shaped, et al.) concrete-filled steel tubular (CFT) column with binding bars is a new type structural member for buildings. For the square or rectangle concrete-filled steel tube columns with binding bars (SCFT-WB or RCFT-WB), by setting binding bars at the middle of each cross-sectional side, the distribution of lateral confining stress from the steel tube to the core concrete becomes more uniform, and the corresponding average lateral confining stress to the core concrete becomes larger, as a result, the confinement effect of the steel tube on the core concrete is enhanced, significant enhancement of the compressive strength of core concrete can be found. The behavior of the outward local buckling of the steel plates of the square or rectangle CFT columns is delayed or even avoided before the ultimate strength is reached, because the binding bars act as lateral constraining and constrain the lateral deformation of the tubes.
     Special-shaped concrete-filled steel tubular (CFT) columns with binding bars have been widely used in practical engineering projects, but researches on the bearing capacity and ductility are not sufficient. As a part of the study on the mechanical behaviors of special-shaped concrete-filled steel tubular (CFT) columns with binding bars, an extensively study on the behaviors of bearing capacity and ductility of the SCFT-WB or RCFT-WB stub columns subjected to axial load, uniaxial compressive load, and biaxial compressive load are conducted, based on the fiber element analysis program with nonlinear constitutional relationship of the core concrete, including the following main aspects.
     (1) The fiber element analysis technique is used to conduct the load-strain relationship curves of the SCFT-WB and RCFT-WB stub columns subjected to axial compressive load, uniaxial compressive load, and biaxial compressive load, based on the equivalent uniaxial constitutional relationship for the encased concrete of square or rectangle steel tubular with binding bars. The load-strain relationship curves predicted by the program agree well with the experimental ones.
     (2) The fiber element analysis program developed is used to investigate the effects of varied parameters on the bearing capacity of SCFT-WB or RCFT-WB stub columns subjected to axial load, and simplified formulas to predict the bearing capacities are suggested.
     (3) The fiber element analysis program developed is used to investigate the effects of ratios of axial compression stress to strength, sectional steel ratios, steel yield strengths, concrete cube strengths, the restraint coefficients of binding bars including spacings and diameters of the binding bars, and sectional aspect ratios on the bearing capacity of SCFT-WB or RCFT-WB stub columns subjected to uniaxial compressive load. The flexural strength increases by increasing the ratio of axial compression stress to strength when it is relatively small, while that decreases by increasing the ratio of axial compression stress to strength when it is relatively large. Furthermore, the flexural strength increases by increasing the sectional steel ratios, steel yield strengths, concrete cube strengths, and restraint coefficients of binding bars, in which the effects of concrete cube strengths and diameters of the binding bars on the flexural strength are inferior to the others. Based on the parameter analysis results, simplified formulas to predict the bearing capacities of SCFT-WB and RCFT-WB stub columns subjected to uniaxial compressive load are suggested, respectively.
     (4) Significant effects of load angles on the bearing capacity of SCFT-WB and RCFT-WB stub columns subjected to biaxial compressive load can be found. For the SCFT-WB stub columns, the maximum and minimum flexural strength are obtained at load angle 0°(or 90°) and 45°, respectively, and it decreases from the load angle 0°to 45°. For the RCFT-WB stub columns, the maximum and minimum flexural strength are obtained at load angle 0°and 60°, respectively, and it decreases from the load angle 0°to 60°, and increases again from 60°to 90°. Similar effects of varied parameters at different load angles on the N-M and M-φinteraction diagrams of the SCFT-WB and RCFT-WB stub columns can be found, and the M_x/M_x'-M_y/M_y'interaction diagrams are closed curves, symmetric to the x and y axis. According to the features of M_x/M_x'-M_y/M_y'interaction diagrams, simplified formulas to predict the bearing capacities of SCFT-WB and RCFT-WB stub columns subjected to biaxial compressive load are suggested, respectively.
     (5) The fiber element analysis program developed is used to investigate the effects of ratios of axial compression stress to strength, sectional steel ratios, steel yield strengths, concrete cube strengths, the restraint coefficients of binding bars including spacings and diameters of the binding bars, and sectional aspect ratios on the coefficient of curvature ductility of SCFT-WB or RCFT-WB stub columns subjected to uniaxial compressive load. The coefficient of curvature ductility increases by decreasing the ratio of axial compression stress to strength and the concrete cube strength, increasing the sectional steel ratios, steel yield strengths, and restraint coefficients of binding bars, in which the effect of diameters of the binding bars on the coefficient of curvature ductility is inferior to the others. Based on the parameter analysis results, simplified formulas to predict the coefficients of curvature ductility of SCFT-WB and RCFT-WB stub columns subjected to uniaxial compressive load are suggested, respectively.
     (6) Significant effects of load angles on the coefficient of curvature ductility of SCFT-WB and RCFT-WB stub columns subjected to biaxial compressive load can be found. The maximum and minimum coefficient of curvature ductility are obtained at load angle 45°and 0°(or 90°), respectively, and it increases from the load angle 0°to 45°. Based on the parameter analysis results, simplified formulas to predict the coefficients of curvature ductility of SCFT-WB and RCFT-WB stub columns subjected to biaxial compressive load are suggested, respectively.
引文
[1]韩林海.钢管混凝土结构-理论与实践[M].北京:科学出版社,2004
    [2]钟善桐.钢管混凝土结构(第三版) [M].北京:清华大学出版社,2003
    [3]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003
    [4]钟善桐.高层钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社, 1997
    [5]韩林海,杨有福.现代钢管混凝土结构技术[M].北京:中国建筑工业出版社,2004
    [6] EC4. Design of Steel and Concrete Structures, Part1.1, General Rules and Rules for Building[S]. DD EVV1994-1-1:1996: British Standards Institute, London QIA2BS
    [7] BS5400. Steel concrete and composite bridges: Part 5: Code of practice for design of composite bridge[S]. British Standards Institution, London, UK
    [8] ACI318-1999. Building code requirements for structural concrete and Commentary [S]. American 6 Concrete Institute, Detroit(MI), USA
    [9] AISC-LRFD1999. Load and resistance factor design specification for structural steel tubular structures[S]. American Institute of Steel Construction(AISC), Chicago, USA
    [10] Wakabayasbi M. Recent development and research in composite and miffed building structures in Japan. Proceedings of the 4th ASCCS International Conference. Kosice. Slovakia. 1994.237-242
    [11] AIJ1997. Recommendations for design and construction of concrete filled steel tubular structures [S]. Architectural Institute of Japan(AIJ), Tokyo, Japan
    [12] Nisbiyama I. Morino S. Sakino K., et al. Summary of Research on Concrete-Filled Structural Steel Tube Column System Carried out under the US-Japan Cooperative Research Program on Composite and Hybrid Structures. BRI Research Paper No.147. Building Research Institute. Japan.2002
    [13] Spacone E, EI-Tawil S. Nonlinear analysis of steel-concrete composite structure: state of the art [J]. Journal of Structural Engineering, ASCE, 2004, 130(2):159-168
    [14] Azizinamini A, Schneider SP. Moment connections to circular concrete-filled steel tube columns [J]. Journal of Structural Engineering, ASCE, 2004, 130(2):213-221
    [15]张素梅,钟善桐.空心钢管混凝土的研究和构件计算[J].土木工程学报, 1994, 27(3)24-32
    [16]韩林海,钟善桐.钢管混凝土弯扭构件的理论分析和试验研究[J].工业建筑, 1994, 24(2):3-8
    [17]韩林海,钟善桐.钢管混凝土压扭、弯扭构件承载力相关方程[J].哈尔滨建筑工程学院学报, 1994, 27(2):32-37
    [18]韩林海,钟善桐.钢管混凝土压扭短柱理论分析方法[J].哈尔滨建筑工程学院学报, 1993, 26(3):18-23
    [19]潘有光,钟善桐.钢管混凝土轴心受拉本构关系[J].工业建筑, 1990, 20(4):30-37
    [20]钟善桐.钢管混凝土统一理论[J].哈尔滨建筑工程学院学报,1994, 27(6):21-27
    [21]韩林海,钟善桐.钢管混凝土压弯扭(剪)承载力相关关系及钢管混凝土统一设计理论构想[J].工业建筑,1995, 25(1) :14-20
    [22]蔡绍怀,邸小坛.钢管混凝土偏压柱的性能和强度计算[J].建筑结构学报, 1985, 6(4):32-34
    [23]蔡绍怀,顾万黎.钢管混凝土抗弯强度的试验研究[J].建筑结构学报, 1985, (3):28-29
    [24]蔡绍怀,顾万黎.钢管混凝土长柱的性能和强度计算[J].建筑结构学报, 1985, 6(1):32-40
    [25]蔡绍怀,焦占栓.钢管混凝土短柱的基本性能和强度计算[J].建筑结构学报, 1984, 5(6):13-29
    [26]蔡绍怀.钢管混凝土的计算与应用[M].北京:中国建筑工业出版社, 1989
    [27]蔡健,苏恒强.对穿暗牛腿式钢管混凝土柱节点试验研究[J].华南理工大学学报(自然科学版), 2000, 28(5):105-109
    [28]陈庆军,蔡健,林瑶明等.柱钢管不直通的新型钢管混凝土柱-梁节点(II)-轴压下采用环形钢筋加强钢管不直通的节点区的性能[J].华南理工大学学报(自然科学版), 2002, 30(12):58-61
    [29]陈庆军,蔡健,林瑶明等.柱钢管不直通的新型钢管混凝土柱-梁节点(I)-轴压下采用钢筋网加强钢管不直通的节点区的性能[J].华南理工大学学报(自然科学版), 2002, 30(9):91-95
    [30]梁剑,蔡健,姚大鑫等.一种新型钢管混凝土梁柱节点试验研究-RC楼层间钢管非连通型节点[J].华南理工大学学报(自然科学版), 2002, 30(10):79-83
    [31]刘付军,蔡健,刘丽艳等.新型钢管混凝土柱-平板节点的基本性能[J].华南理工大学学报(自然科学版), 2003, 31(6):5-9
    [32]苏恒强,蔡健,姚大鑫等.钢管混凝土加强环式节点的试验研究[J].华南理工大学学报(自然科学版), 2004, 32(1):80-84
    [33]蔡健,黄泰赟.钢管混凝土柱节点的应用现状和存在问题[J].建筑结构, 2001, 31(7):8-10, 13
    [34]蔡健,杨春,苏恒强.穿心钢筋暗牛腿式钢管混凝土柱节点试验研究[J].工业建筑, 2000, 30(3):61-64
    [35]方小丹,李少云,陈爱军.新型钢管混凝土柱的试验研究[J].建筑结构学报, 1999, 20(5): 2-15
    [36]季静,陈庆军,韩小雷.穿心暗牛腿钢管混凝土柱节点的模型试验研究[J].华南理工大学学报(自然科学版), 2001, 29(7):70-73
    [37]朱莜俊,梁书亭,蒋永生等.钢管混凝土板柱结构剪力环节点冲切试验[J].东南大学学报(自然科学版), 1998, 28(2):57-62
    [38]张素梅,张大旭.钢管混凝土柱与梁节点荷载-位移滞回曲线理论分析[J].哈尔滨建筑大学学报, 2001, 34(4):1-6
    [39]韩林海,姜绍飞等.大轴压比情况下钢骨混凝土柱滞回性能的试验研究[J].钢结构, 1999, 14(2):21-25
    [40]方小丹,李少云,钱稼茹等.钢管混凝土柱-环梁节点抗震性能的试验研究.建筑结构学报, 2002, 23(6): 10-18
    [41]韩林海,杨有福,霍静思.钢管混凝土柱火灾后剩余承载力的试验研究[J].工程力学, 2001, 18(6):100-109
    [42]韩林海,霍静思.火灾后钢管混凝土柱的承载力研究[J].土木工程学报, 2002, 35(4):25-35
    [43]韩林海,贺军利等.钢管混凝土柱耐火性的试验研究[J].土木工程学报, 2000, 33(3):31-35,63
    [44]韩林海,徐蕾.带保护层方钢管混凝土耐火极限的试验研究[J].土木工程学报, 2000, 33(6):63-69
    [45]韩林海,徐蕾,冯九斌等.钢管混凝土耐火极限和防火设计实用方法研究[J].土木工程学报, 2002, 35(6):6-13
    [46]韩林海,杨华,霍静思等.标准火灾作用后矩形钢管混凝土柱剩余承载力的研究[J].工程力学, 2002, 19(5):93-100
    [47]顾维平,蔡绍怀,冯文林.钢管高强混凝土的性能与极限强度[J].建筑科学, 1991, 7(1):23-27
    [48]顾维平,蔡绍怀,冯文林.钢管高强混凝土长柱性能和承载力的研究[J].建筑科学,1991, 7(3):3-8
    [49]顾维平,蔡绍怀,冯文林.钢管高强混凝土偏压柱性能与承载力的研究[J].建筑科学,1993,9 (3):8-12
    [50]中国工程建设标准化协会标准. CECS159: 2004.矩形钢管混凝土结构技术规程[S]. 2004,北京.中国计划出版社
    [51]中华人民共和国电力行业标准. DL/T5085-1999.钢-混凝土组合结构设计规范[S]. 1999,北京.中国电力出版社
    [52]中华人民共和国国家军用标准. GJB4142-2000.战时军港抢修早强型组合结构技术规程[S]. 2000,北京.中国人民解放军总后勤部
    [53]福建省地方规程. DBJ13-51-2003.钢管混凝土结构技术规程[S]. 2003,北京.中国建筑工业出版社
    [54]张正国.方钢管混凝土柱的机理和承载力分析[J].工业建筑, 1989, 19(11):2-7
    [55] Knowles RB, Park R. Strength of concrete-filled steel tubular columns[J]. Journal of the Structural Division, ACI, 1969, 95(ST12):2565-2587
    [56] Tomii M, Yoshimura K, Morishita Y. Experimental studies on the ultimate moment of concrete filled square steel tubular beam-columns.[J]. Trans Architectural Institute of Japan, 1979, (275):55-63
    [57] Uy B, Patil SB. Concrete-filled hight strength steel box columns for tall buildings: behavior and design[J]. The Structural Design of Tall Building, 1996, (5):75-93
    [58] Uy B. Local and post-local buckling of concrete-filled steel welded box columns[J]. Journal of Constructional Steel Research, 1998, (47):47-72
    [59] Ge HB, Usami T. Strength of concrete-filled thin-walled steel box columns: experimental[J]. Journal of Structural Engineering, ASCE, 1992, 118(11):3006-3054
    [60] Ge HB, Usami T. Strength analysis of concrete filled thin-walled steel box columns [J]. Journal of Constructional Steel Research, 1994, 30 (3):259-281
    [61]Susantha KAS, Ge H, Usami T. Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes[J]. Engineering Structures, 2001, (23):1331-1347
    [62] Liang QQ, Uy B. Theoretical study on the post-local buckling of steel plates in concrete-filled box columns[J]. Computer and Structure, 2000, (75):479-490
    [63] Uy B. Strength of concrete filled steel box columns incorporating local buckling [J]. Journal of Structural Engineering, ASCE, 2000, 126(3):341-352
    [64] Shanmugam NE, Lakshmi B, Uy B. An analytical model for thin-walled steel box columns with concrete in-fill[J]. Engineering Structures, 2002, (24):825-838
    [65] Nakai H, Kitada T, Nakanishi K, et.al. Experimental study on ultimate strength and ductility of steel and composite bridge piers with thin walled stiffened box cross section[J]. J Struct Engng, ASCE, 1997, 39A:225-236
    [66] Nakai H, Kitada T, Sugiyama I, et.al. Experimental study on ultimate strength and ductility of concrete filled thin-walled steel box columns after receiving seismic loading [J]. J Struct Engng, JSCE, 1993, 39A:1347-1360
    [67] Shakir-Khalil H, Mouli M. Further tests on concrete-filled rectangular hollow-section columns [J]. The Structure Engineer, 1990, 68(20):405-413
    [68] Shakir-Khalil H, Zeghiche J. Experimental behavior of concrete filled rectangular hollow section columns [J]. The Structure Engineer, 1989, 67(19):346-353
    [69] Uy B. Strength of short concrete filled high strength steel box columns [J]. Journal of Constructional Steel Research, 2001, (57):113-134
    [70] Schneider S.P. Axially loaded concrete-filled steel tubes[J]. J Struct Eng 1998, 124(10):1125 -1138.
    [71] Sakino K, Nakahara H, Morino S, Nishiyama I. Behaviour of centrally loaded concrete-filled steel-tube short columns [J].J Struct Eng 2004, 130(2):180-188.
    [72] Varma AH, Ricles JM, Sause R, Lu L-W. Experimental behaviour of high strength square concrete-filled steel tube beam- columns [J].J Struct Eng 2002, 128(3):309-318.
    [73] Fujimoto T, Mukai A, Nishiyama I, Sakino K. Behaviour of eccentrically loaded concrete-filled tubular columns [J]. J Struct Eng, 2004, 130(2):203-212.
    [74] Mursi M, Uy B. Strength of short concrete filled steel box columns incorporating interaction buckling[J]. J Struct Eng, 2003, 129(5):629-639.
    [75] Shanmugam N.E, Lakshmi B. State of art report on steel-concrete composite columns [J]. Journal of Constructional Steel Research, 2001, 57(10):104-180.
    [76] Liang QQ, Uy B, Liew JYR. Nonlinear analysis of concrete-filled thin-walled steel box columns with local buckling effects [J]. Journal of Constructional Steel Research, 2006, 62(6):581-91.
    [77] Liang QQ, Uy B, Liew JYR. Local buckling of steel plates in concrete-filled thin-walled steel tubular beam-columns [J]. Journal of Constructional Steel Research, 2007, 63(3):396-405.
    [78] Mouli M, Khelafi H. Strength of short composite rectangular hollow section columns filled with lightweight aggregate concrete [J]. Engineering Structures, 2007, 29(8):1791-1797
    [79] Ellobody E, Young B. Nonlinear analysis of concrete-filled steel SHS and RHS columns [J]. Thin-Walled Structures, 2007, 44(8): 919-930
    [80]张正国,左明生.方钢管混凝土轴压短柱在短期一次静载下的基本性能研究[J].郑州工学院学报, 1985, 6(2):19-32
    [81]张正国.方钢管混凝土偏压短柱基本性能研究[J].建筑结构学报, 1989, 10(6):10-20
    [82]张正国.方钢管混凝土中长柱稳定分析和实用设计方法[J].建筑结构学报, 1993, 14(4):28-39
    [83]李四平霍达,王箐,郭院成,黄玉盈.偏心受压方钢管混凝土柱极限承载力的计算[J].建筑结构学报, 1998, 19(1):41-51
    [84]李四平,聂建国,霍达,黄玉盈.方钢管混凝土偏压柱压溃荷载的近似计算[J].工程力学, 1996, 13(11):20-25
    [85]李四平,王箐,蒋晓东,黄玉盈.方钢管混凝土偏压柱极限承载力计算的简化数值法[J].华中理工大学学报, 1997, (4):93-94
    [86]李四平,邹时智,关罡,王箐.方钢管混凝土偏压柱压溃过程的数值模拟[J].华中理工大学学报, 1996, (5):91-94
    [87]王箐,蒋晓东,李四平,霍达.方钢管混凝土偏压柱承载力计算的正割公式[J].建筑结构学报, 1998, (9):48-51
    [88]左明生,李四平,王菁.方钢管混凝土偏压柱的试验研究[J].郑州工学院学报, 1992, 13(2):122-128
    [89]荆树英,郑小庆,朱金铨.方形厚壁钢管混凝土短柱受力性能的研究[J].工业建筑, 1989, 19(11):8-13
    [90]颜卫亨张兴武.轴压方形钢管混凝土短柱的承载力计算[J].四川建筑科学研究, 1994, (4):11-14
    [91]张兴武,仲鹏.偏压方钢管混凝土短柱的承载力计算[J].建筑结构学报, 1994,15 (6):16-20
    [92]韩林海,陶忠.方形截面钢管混凝土压弯构件的理论分析和试验研究[C].霍英东教育基金高等院校青年教基金总结报告,(1998)
    [93]韩林海,陶忠.方形截面钢管混凝土构件的设计计算[J].钢结构, 1998,13 (4):39-45
    [94]韩林海,陶忠.方钢管混凝土轴压力学性能的理论分析与试验研究[J].土木工程学报, 2001, 34(2):17-25
    [95]韩林海,陶忠,刘威,陈宝春.长期荷载作用下方钢管轴心受压柱的变形特性[J].中国公路学报, 2001, 14(2):52-57
    [96]陶忠,韩林海.方钢管混凝土压弯构件荷载-位移滞回性能研究[J].工业建筑, 2000, 30(6):13-18
    [97]陶忠,韩林海.方形截面钢管混凝土压弯承载力设计计算[J].哈尔滨建筑大学学报, 2000, 33(6):23-27
    [98]陶忠,韩林海.方形截面钢管混凝土双向压弯构件承载力理论分析和简化计算[J].钢结构, 2000, 15(1):42-46
    [99]陶忠,韦灼彬,韩林海.方钢管混凝土压弯构件力学性能分析及承载力研究[J].工业建筑, 1998, 28(10):10-14
    [100]陶忠,韦灼彬,韩林海.方钢管混凝土轴心受压稳定承载力的研究[J].工业建筑, 1998, 28(10):15-18
    [101]韦灼彬,陶忠,韩林海.方钢管混凝土纯弯构件力学性能及承载力的研究[J].工业建筑, 1998, 28(10):6-9
    [102]吕西林,陆伟东.反复荷载作用下方钢管混凝土柱的抗震性能试验研究[J].建筑结构学报, 2000,21 (4):2-11
    [103]吕西林,余勇,陈以一.轴心受压方钢管混凝土短柱的性能研究:I试验[J].建筑结构, 1999, 29(10):41-43
    [104]余勇,吕西林.方钢管混凝土柱的三维非线性分析[J].地震工程与工程振动, 1999, 19(3):57-64
    [105]余勇,吕西林.轴心受压方钢管混凝土短柱的性能研究:II分析[J].建筑结构, 2000, 30(2):43-46
    [106]韩林海,杨有福.矩形钢管混凝土轴心受压构件强度承载力的试验研究[J].土木工程学报, 2001, 34(4): 22-31
    [107]杨有福,韩林海.矩形钢管混凝土构件抗弯力学性能的试验研究[J].地震工程与工程振动, 2001, 21(3) : 41-48
    [108]杨有福,韩林海.矩形钢管混凝土柱的耐火性能和抗火设计方法[J].建筑结构学报, 2004,25(1):25-35
    [109]韩林海,杨有福,刘威.长期荷载作用对矩形钢管混凝土轴心受压柱力学性能的影响研究[J].土木工程学报, 2004,37(3):12-18
    [110]韩林海,游经团,杨有福,陶忠.往复荷载作用下矩形钢管混凝土构件力学性能的研究[J].土木工程学报,2004, 37(11):11-22
    [111] Han L-H. Tests on stub columns of concrete-filled RHS sections [J]. Journal of Constructional Steel Research, 2002, 58(3):353-372.
    [112] Han L-H, Yao G-H.Influence of concrete compaction on the strength of concrete-filled steel RHS columns [J]. Journal of Constructional Steel Research, 2003, 59(6):751-767.
    [113] Han L-H, Yang Y-F, Tao Z. Concrete-filled thin walled steel RHS beam columns subjected to cyclic loading [J].Thin-walled Structures,2003,41(9):801-833
    [114] Han L-H, Yang Y-F. Analysis of thin-walled RHS columns filled with concrete under long term sustained loads[J].Thin-walled Structures,2003,41(9):849-870
    [115]邓洪洲,傅鹏程,余志伟.矩形钢管和混凝土之间的粘结性能试验[J].特种结构, 2005(1),50-52
    [116]沈祖炎,黄奎生.矩形钢管混凝土偏心受力构件的设计方法[J].建筑结构,2005,35(1)
    [117]沈之容,蒋涛.矩形钢管混凝土结构的经济分析[J].特种结构,2001,18(4)
    [118]刘永健,周绪红,邹银生,樊海涛.矩形钢管混凝土横向局部承压强度的试验研究[J].建筑结构学报,2003,(4)48
    [119]郝艳娥,翟振东.矩形钢管混凝土短柱轴压承载力神经网络评估[J].长安大学学报(建筑与环境科学版) ,2004(3),24-28
    [120]何保康,杨晓冰,周天华.矩形钢管混凝土轴压柱局部屈曲性能的解析分析[J].西安建筑科技大学学报(自然科学版), 2002, 34(3):210-213
    [121]樊海涛,周绪红. T型矩形钢管混凝土受压节点性能研究[J].湖南大学学报(自然科学版) ,2002,29(1)
    [122]钟善桐.圆形、八边、方形与矩形钢管混凝土轴心受压性能的连续性.建筑钢结构进展[J]. 2004, (4):14-22
    [123]陈洪涛,钟善桐,张素梅.各种截面钢管混凝土轴压短柱基本性能连续性的理论研究[J].工业建筑,2004,34(8):93-95
    [124]郭兰慧,张素梅.截面长宽比对矩形钢管高强混凝土力学性能的影响[J].哈尔滨工业大学学报,2007,39(4):530-535
    [125] Liu D, Gho W-M. Axial load behaviour of high-strength rectangular concrete-filled steel tubular stub columns[J].Thin-Walled Struct,2005,43(8): 1131-42.
    [126]王箐,关罡,李四平,聂建国.方钢管混凝土轴压柱的承载力的计算[J].建筑结构, 1997,27(5):13-15
    [127] Uy B,Bradford MA.Elastic local buckling of thin steel plates in composite steel-concrete members[J].Engineering Structures,1996,18(3):193-200
    [128] Bridge RQ, O'Shea MD. Behavior of Think-walled Steel Box Sections with orwithout Internal Restraint[J]. Journal of Constructional Steel Research, 1998, (47):73-91
    [129] Song JY, Kwon YB (1997). Structural behavior of Concrete-filled Steel Box Sections (Austria, International Conference Report on Composite Construction-Conventional and Innovative), pp. 795-800.
    [130] Vrcelj Z, Uy B. Behavior and design of steel square hollow sections filled with high strength concrete[J]. Australian Journal of Structure Engineering, 2001, 3(3):153-169
    [131] Tsuda K, Matsui C. Limitation on Width(Diamter)-Thickness Ratio of Steel Tube of Composite Tube and Concrete Columns with Encsed Type Section[C]. Proccedings of the Fifth Pacific Structural Steel Conference, Seoul,Korea,1998
    [132]何保康,周天华.矩形钢管截面的b/t、h/t的限值确定[J].钢结构, 2001, (2)
    [133] Tao Z, Han LH, Wang ZB. Experimental Behavior of Stiffened Concrete-filled Thin-walled Hollow Steel Structural(HSS) Stub[J]. Journal of Constructional Steel Research, 2005, 61:962-983
    [134]韩林海,冯九斌.混凝土的本构关系模型及其在钢管混凝土数值分析中的应用[J].哈尔滨建筑大学学报, 1995, 28(5):26-32
    [135]陈惠发,萨里普著AF,余天庆,王勋文译.土木工程材料的本构方程[M].武汉:华中科技大学出版社, 2001
    [136]陈洪涛,钟善桐,张素梅.钢管混凝土中混凝土的三向本构关系[J].哈尔滨建筑大学学报, 2000, 23(6):13-16
    [137] Tang J, Hino S, Kuroda I, Ohta T. Modeling of stress-strain relationships for steel and concrete in -filled curcular steel tubular columns[J]. Steel Constr Eng, 1996, 3(11):35-46
    [138] Tomii M,Sakino K. Elasto-plastic behavior of concrete-filled square steel tubular beam-columns.Transactions,Architectural Institute of Japan(AIJ), 1979, (280):111-120
    [139]韩林海.钢管混凝土结构[M].北京:科学技术出版社, 2000
    [140]余勇,吕西林.三向受压混凝土的三维本构关系[J].同济大学学报, 1998, (12):622-626
    [141] Popovics S. A numerical approach to the complete stress-strain curves for concrete [J]. Cement andConcrete Research, 1973, 3(5):583-599
    [142] Mander JB, Priestley MJN, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, ASCE, 1988, 114(8):1087-1826
    [143]李学平.矩形钢管混凝土柱的静、动力学性能研究[D].同济大学大学博士学位论文,2004
    [144] Kitada T. Ultimate strength and ductility of state of art on concrete-filled steel bridges piers in Japan [J]. Engineering Structures, 1998, 20(4-6):347-354
    [145] Huang CS, Yeh YK, et.al. Axial load behavior of stiffened concrete-filled steel columns[J]. Journal of Structural Engineering, ASCE, 2002, 128(9):1222-1230
    [146] Cai Jian, He Zhen-Qiang. Axial load behavior of square CFT stub column with binding bars [J], Journal of Constructional Steel Research ,2006,62:472-483.
    [147]何振强.带约束拉杆方形钢管混凝土短柱受压性能的研究[D].华南理工大学,2006
    [148] Jian Cai,Yue-Ling Long, Axial Load Behavior of Rectangular CFT Stub Columns with Binding Bars, ADVANCES IN STRUCTURAL ENGINEERING 10 (5): 551-565 OCT. 2007
    [149]蔡健,何振强,带约束拉杆矩形钢管混凝土短柱轴压性能的试验[J].工业建筑,2007, 37(4):75-80
    [150]蔡健、龙跃凌,带约束拉杆方形、矩形钢管混凝土短柱的轴压承载力[J].建筑结构学报,2009, 30(1):7-14
    [151]何振强,蔡健.带约束拉杆方形钢管混凝土偏压短柱的试验研究[J].华南理工大学学报(自然科学版), 2006, 34(2):107-111
    [152]蔡健,何振强.带约束拉杆方形钢管混凝土柱偏压性能[J].建筑结构学报,2007,28(4):25-35
    [153]龙跃凌,蔡健,带约束拉杆矩形钢管混凝土柱的偏压性能[J].华南理工大学学报(自然科学版), 2008, 36(12):21-27
    [154]龙跃凌,蔡健,带约束拉杆矩形钢管混凝土短柱偏压性能的试验研究[J].工业建筑,2009, 39(10):126-130
    [155]蔡健,何振强.带约束拉杆方形钢管混凝土的本构关系[J].工程力学,2006,23(10):145-150
    [156]蔡健,龙跃凌,带约束拉杆矩形钢管混凝土的本构关系[J].工程力学,2008, 25(2):137-143
    [157]蔡健,何振强,金雪峰,带约束拉杆方形钢管混凝土轴压柱局部屈曲性能[J].工程力学, 2007, 24(5):711-716
    [158] Jian Cai , Yue-Ling Long, Local buckling of steel plates in rectangular CFT columns with binding bars, Journal of Constructional Steel Research, 65 (2009) 965-972
    [159]陈宗弼,陈星,叶群英,罗赤宇.广州新中国大厦结构设计[J].建筑结构学报,2000,21(3):3-9
    [160]过镇海,王传志.多轴应力下混凝土的强度和破坏准则[J].土木工程学报,1991,24(3): 1~14.
    [161]张文福,赵文艳.钢管混凝土极限压应变的计算方法[J].黑龙江工程学院学报,2001,15(3): 6~8.
    [162] K.A.S. Susantha,Hanbin Ge,Tsutomu Usami. Uniaxial stress–strain relationship of concrete confined by various shaped steel tubes[J].Engineering Structures,2001, 23:1331~1347.
    [163]龙跃凌.带约束拉杆矩形钢管混凝土短柱受压性能的研究[D].华南理工大学博士学位论文,2008.
    [164] R.帕克,T.波利著,秦文钱等译.钢筋混凝土结构[M].重庆:重庆大学出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700