用户名: 密码: 验证码:
无碱二元驱油体系配方及驱油效果影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物/表面活性剂二元复合驱油体系中由于没有碱的存在,减少了碱对驱油效果和地面设备的不利影响,但同时也会使油水间的界面张力升高,很难达到超低界面张力(<10-3mN/m数量级),不利于提高驱油效率;没有了碱与表面活性剂的协同效应,会大大增加表面活性剂的吸附量,不利于经济成本。要想使无碱二元复合驱油体系具有与三元复合驱油体系同样低的界面张力,这就对表面活性剂提出了更高的要求。本文根据有关在无碱条件下形成超低界面张力机理的新理论设计合成了一种能够在无碱条件下使油水间的界面张力达到超低(<10-3mN/m数量级)的新型表面活性剂。通过室内实验,研究了这种表面活性剂的界面张力特性、界面张力稳定性、以及对不同油水条件的适应性和吸附特性等,并且对无碱二元复合驱油体系和三元复合驱油体系中活性剂的吸附量进行了对比分析。结果表明,这种活性剂完全能够满足无碱二元复合驱油体系对活性剂的要求。
     实验研究了无碱二元复合驱油体系的粘弹性和对水驱后残余油的启动和运移规律,在突扩、突缩等模型中通过理论计算研究了弹性对驱油效率的影响。结果表明,表面活性剂浓度对无碱二元体系的粘弹性影响不大,而聚合物浓度、分子量、二价离子浓度、矿化度、剪切速率等因素对粘弹性的影响较大,驱油体系的弹性越大,对驱油效率的贡献越高。
     通过室内人造岩心物理模拟实验,研究了不同分子量聚合物的流动特性。研究表明,在气测渗透率大于0.3μm2的岩心上可以使用分子量为2.5×107以下的所有聚合物(包括分子量为2.5×107的聚合物)。
     在均质和不同变异系数的二维纵向非均质人造岩心上开展了无碱二元驱油体系驱油效果以及活性剂浓度、二元体系段塞尺寸、聚合物浓度、变异系数、注入时机和渗透率等因素对无碱二元驱油体系驱油效果的影响规律,并与聚合物驱油体系、强碱三元复合驱油体系、弱碱三元复合驱油体系进行了驱油效果的对比分析。结果表明,随着活性剂浓度和二元段塞尺寸的增加,化学剂用量增加,无碱二元复合驱油体系的提高采收率幅度增加,但是增加到一定值后,增幅会变缓;聚合物等浓度条件下,当主段塞聚合物浓度由500mg/L增加到2500mg/L,无碱二元体系化学驱采收率呈明显提高的趋势;在变异系数相同的条件下,随着模型的渗透率的增加,无碱二元体系提高采收率幅度呈增加的趋势;在渗透率相同的情况下,变异系数增加,无碱二元体系的复合驱采收率都随着变异系数的增大而增大,而总采收率随变异系数的增大而降低;提前转注无碱二元复合驱油体系,能够提高采收率幅度;岩心渗透率和变异系数一定时,磺基甜菜碱表面活性剂无碱二元体系驱油效果要好于重烷基苯磺酸盐氢氧化钠强碱三元体系和石油磺酸盐碳酸钠弱碱三元体系。
Due to the nonexistence of alkali in polymer-surfactant flooding system,the influence of alkali on displacement effect and equipments on the surface decreases, but at the same time, the interfacial tension between oil and water increases so that ultra-low interfacial tension (<10-3mN/m order) is hard to achieve, which is of disadvantage to improve displacement efficiency; without the synergistic effect between alkali and surfactant, the adsorption capacity of surfactant will greatly increase, which is of disadvantage to economies. In order to get the same low-interfacial tension of polymer-surfactant flooding system as ASP flooding system, the quality of surfactant will be highly required. Based on a new theory of the achievement of ultra-low interfacial tension with the nonexistence of alkali, a new type of surfactant which can help to get the ultra-low (<10-3mN/m order) interfacial tension was synthesized in this paper. Through the experiments in the lab, the interfacial tension properties,interfacial tension stability and the adaptability and the absorption characteristics under different oil-water conditions of this surfactant were studied,moreover, the amount of surfactant adsorption of the polymer-surfactant flooding system and ASP flooding system were compared and analyzed. The result shows that the requirement could be completely satisfied, using this type of surfactant.
     In the Experiment, the viscoelasticity of the two-component combinational flooding system without alkali and the start-up and migration laws of the residual oil after water flooding were studied,and through the sudden expansion,sudden contraction and other model the impact of elasticity on the oil displacement efficiency was studied. The results showed that the concentration of the alkali-surfactant had little effect on the viscoelasticity of the two-component system no alkali,while the polymer concentration,divalent ion concentration,salinity,shear rate and other factors had greater effect on the viscoelasticity. The greater the elasticity of the flooding system is, the higher the contribution on the oil displacement efficiency.
     Through the laboratory artificial core physical simulation experiments, the flow characteristics of different molecular weight polymer as well as the influence law of the two-component surfactant-polymer flooding slug size on the flooding effect of the alkali-free two-component flooding system were studied, which were used to select the formulas of the alkali-free two-component flooding system. Studies have shown that the core whose gas log permeability is greater than 0.3μm2 can use all the polymers whose molecular weight lower is than 2.5×107 (including the polymer whose molecular weight is 2.5×107);with surfactant concentration and slug size increases,the amount of chemical agents were increased,and the EOR range of alkali-free two-component flooding system was increased,but after it was increased to a certain value,the increase will be slowed.
     In the homogeneous and two-dimensional vertical heterogeneity of different variation coefficients artificial cores, the experiments about the alkali-free two-component system flooding effects as well as the influence law of coefficient of variation,injection timing,permeability and other factors on the flooding effect of alkali-free two-component flooding were conducted, and a comparative analysis was made on the flooding effect of the two-component flooding system with polymer flooding system, alkali ASP flooding system,and weak base ASP flooding system.The results showed that in the homogeneous cores with the same polymer concentration,when the main slug polymer concentration increased from 500mg/L to 2500mg/L,alkali-free two-component system chemical flooding recovery efficiency had the trend of obvious improvement;in the same coefficient of variation conditions,with the permeability of the model increases,the oil recovery efficiency improvement range of alkali-free two-component system showed an upward trend;in the case of the same permeability, the coefficient of variation increased,the alkali-free two-component system recovery efficiency increased, while the total recovery rate decreased as the coefficient of variation decreased;injecting alkali-free two-component flooding system ahead could improve the recovery efficiency; when core permeability and the coefficient of variation are constant,the flooding effect of alkali-free sulfobetaine surfactants-polymer flooding system was better than the displacement characteristics of ASP flooding solution and the weak base ASP flooding solution.
引文
[1]王德民.发展三次采油新理论新技术,确保大庆油田持续稳定发展(上)[M].大庆石油地质与开发,2001,29(3):1~5.
    [2]胡博仲.聚合物驱采油工程[M].北京:石油工业出版社,1997.
    [3]王启民,廖广志,牛金刚.聚合物驱油技术的实践与认识[M].大庆石油地质与开发,1999,18(4):1~5.
    [4] Giordano R M.,Slattery J C.Effect of the interfacial viscosities upon displacement in capillaries with special application to tertiary oil recovery [J].AIChE J,1983,29(3):483~492.
    [5]刘合.大庆油田聚合物驱后采油技术现状及展望[J].石油钻采工艺,2008,30(3):1~6.
    [6]程杰成,廖广志.大庆油田三元复合驱矿场试验综述.大庆石油地质与开发,2001,20(2):46~51.
    [7]赵福麟,王业飞,戴彩丽,等.聚合物驱后提高采收率技术研究[J].2006,30(1):85~89.
    [8]杨振宇,周浩,姜江,等.大庆油田复合驱用表面活性剂的性能及发展方向[J].精细化工,2005,22(S1):22~23.
    [9]李孟涛,刘先贵,杨孝君.无碱二元复合体系驱油试验研究[J].石油钻采工艺,2004,26(5):73~76.
    [10]刘方,李玉华.石油开采中表面活性剂驱的应用与展望.精细与专业化学品,2002,22:9~11.
    [11]张景存.三次采油[M].北京:石油工业出版社,1995,55~60.
    [12]吴文祥,张洪亮,侯吉瑞,等.ASP三元复合体系/大庆原油间的动态界面张力特性[J].大庆石油学院学报,1995,19(1):119~122.
    [13]张国印,伍晓林,宋林,等.三次采油用烷基苯磺酸盐类表面活性剂研究[J].大庆石油地质与开发,2001,2(2):26~28.
    [14]罗跃国.内油田应用表面活性剂的现状与展望[J].精细石油化工,1992,34(5):1~5.
    [15]黄宏度.驱油用石油羧酸盐的研制[J].油田化学,1991,8(3):235~239.
    [16] Hongdu Huang,Youzhen Yang.Preparation of Petroleum Carboxylate for Tertiary Oil Recovery[R].Proceedings of Fouth Asian Chemical Congres,Beijin,1991,158.
    [17]康万利,吴文祥,宋文玲,等.石油羧酸盐及其复配体系/大庆原油间的界面张力[J].大庆石油学院学报,1997,19(1):123~127.
    [18] Li Ganzuo,Lin Yuan,Xu Guiying.Enhanced oil recovery using natural sodiumcarboxy- late surfactant systems for the typical midcontinent crude oil[R].In Proceedings of 34th IUPAC Congress.Beijing,1993,867.
    [19]李干佐,徐桂英,毛宏志,等.开发天然羧酸盐在油田中的应用[J].日用化学工业,1998,23(5):26~30.
    [20]李干佐,林元,徐桂英,等.天然混合羧酸(盐)复合驱油体系的研究[J].日用化学工业,1994,11(5):61~65.
    [21]伍晓林,陈坚,伦世仪.生物表面活性剂在提高原油采收率方面的应用[J].生物学杂志,2000(6):25~27.
    [22]新疆石油管理局.三元复合驱注入、采出及集输处理工艺技术研究[R].“八五”国家重点科技攻关专题成果报告.1996.2~6.
    [23]崔正刚,张天林,邹文华.重烷基苯磺酸盐的合成及其在提高石油采收率中的应用研究[J].表面活性剂/洗涤剂技术与经济进展,2002,25(2):95.
    [24]朱友益,沈平平.三次采油复合驱用表面活性剂合成、性能及应用[M].北京:石油工业出版社,2002:19~68.
    [25] ShawJE,StaPPPR.Synthesis of carbonxylate used in EOR[J].J.Colloid Interfaee Sei. 1995,107(1):120~131.
    [26]李干佐,沈强,郑立强.新型驱油用表面活性剂天然混合羧酸盐[J].油田化学,1999,19(1):57~60.
    [27]王业飞,赵福麟.醚羧酸盐及其与石油磺酸盐和碱的复配研究[J].油田化学,1998,18(4):340~343.
    [28]朱友益,沈平平.三次采油复合驱用表面活性剂合成、性能及应用[M〕.北京:石油工业出版社,2002:183~207.
    [29]乔卫红,张树彪,王绍辉,等.三次采油用表面活性剂的研究[J].精细化工,1999,16(增刊):71~77.
    [30]郝爱军.重烷基苯磺酸盐的合成及其在三次采油中的应用研究[J].无锡:无锡轻工业学院,1997,12(5):21~26.
    [31]黄宏度.从烷烃汽相氧化产物直接制备(不磺化)驱油用活性剂[J].油田化学.1987, 4(3):191~196.
    [32] Berger Paul D,Berger Christie H,Hsu Iris K.Anionic surfactants based on alkene sul- fonicaeid [P].US 6043391,2000—3—28.
    [33]杨金华,曹亚,李惠林.高分子表面活性剂与原油形成超低界面张力的研究[J].精细化工,1999,2(3):20~26.
    [34]单希林,康万利,孙洪彦,等.烷醇酰胺型表面活性剂的合成及在EOR中的应用[J].大庆石油学院学报,1999,23(1):32.
    [35]唐军.驱油型石油环烷酸二乙醇酰胺的合成[J].精细化工,2004,21(增刊):47~52.
    [36] P.D.Berger,C.H.Lee.Ultra-low concentration for sandstone and limestone floods[J].SPE 7518,2002.475~478.
    [37] Rosen M.J.Gemini:a new generation of surfacetants[J].Chemtech,1993,23(3):30~33.
    [38]康万利,孟令伟,高慧梅.二元复合驱表面活性剂界面张力研究[J].胶体与聚合物,2005,23(4):22~25.
    [39]王业飞,李继勇,赵福麟.高矿化度条件下应用的表面活性剂驱油体系[J].油气地质与采收率,2001,8(1):67~69.
    [40]兰云军,鲍利红,李延.两性表面活性剂的类型、应用性能和发展概况[J].中国皮革,2002,32(13):20~24.
    [41]王长生,王彤,王晶华.聚合物驱采油井受效阶段动态分析图[J].石油钻采工艺,1999,21(2):101~104.
    [42]黄延章,于大森,张桂芳.聚合物驱油微观机理研究[J].油田化学,1990(7):57~59.
    [43] Xia Huifen,Wang demin,Wu Junzheng,et al.Elasticity of HPAM solution increases displacement efficiency under mixed wettability condition[R].SPE 88456,2004:1~8.
    [44]王德民,程杰成,杨清彦,等.黏弹性聚合物溶液提高岩心的微观驱油效率[J].石油学报,2000,21(5):45~52.
    [45]夏惠芬,王德民,刘中春,等.黏弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报,2001,22(4):60~66.
    [46]夏惠芬,王德民,侯吉瑞,等.聚合物溶液的黏弹性对驱油效率的影响[J].大庆石油学院学报,2002,26(2):l09~111.
    [47]夏惠芬,孔凡顺,吴军政,等.聚合物溶液的弹性效应对驱油效率的作用[J].大庆石油学院学报,2004,28(6):29~31.
    [48]夏惠芬,王德民,王刚,等.聚合物溶液在驱油过程中对盲端类残余油的弹性作用[J].石油学报,2006,27(2):72~76.
    [49]韩培慧,赵群,穆爽书,等.聚合物驱后进一步提高采收率途径的研究[J].大庆石油地质与开发,2006,25(5):81~84.
    [50] Y. Liu,B.Bai,P.J.Shuler.Application and Development of Chemical-Based Conformance Control Treatments in China Oil Fields.SPE 99641,2006.
    [51] Teeuw.D,Hesselink J.T.Power-law Flow and Hydrodyndmic Behavior of Biopolyrher Solution in Porous Media.SPE 8982. SPE 5th lnternational Oilfield and Geothermal Che- mistry Stanford.May 1980.
    [52] Chauveteau G.,Kohler N.lnfluence of microgels in Xanthan Polyasccharide Solutions on Their Flow Through Various Porous Media.SPE 9295.SPE 55th Annual Technological Conferrence,Dallas,Sept,1987.
    [53] Hirasaki G.H,Pope G.A.Analysis of Factors lnfluencing The Mobility and Adsorption in The Folw of Polymer Sloutions Through Porous Media.SPE 4026.SPE 47th Annual Fall Meeting,San Antonio,Oct,1972.
    [54]陈铁龙.ASP三元复合体系在孔隙介质中的流变性[J].西南石油学院学报,1998(3):23~25.
    [55] Pitts M.J.Alkaline-Surfactant-Polymet Flooding Prepardd for Daqing Petroleum lnstiru- te,June 1999.
    [56]高水利,何秋轩,阎庆来,等.砾岩油藏复合体系驱油机理研究一以克拉玛依砾岩油藏为例[J].石油勘探与开发,1995(2):65~67.
    [57] Tong Z.X,Yang Ch.Z,Wu G.Q,et.al.A Study of Microscopic Mechanism of urfactant/ Alkali/Polymer.SPE 9662.1988:1~7.
    [58]杨清彦,官文超,贾忠伟.大庆油田三元复合驱驱油机理研究[J].大庆石油地质与开发,1999(3):24~26.
    [59]王茂盛.聚驱后泡沫与AS体系交替注入提高采收率研究[D].大庆石油学院硕士论文,2006:15~32.
    [60]周润才.表面活性剂/聚合物驱油的基本原理[J].国外油气田工程,1995:9~12.
    [61] R.A.Bradford,J.D.Cpmpton,P.R.Hollis.Operational Problems in North Burbank Unit Surfactant Polymer Project[J].SPE 7799:429~436.
    [62] C.Z.Yang.Adjustment of Surfactant-Polymer Interaction Surfactant-Polymer Flooding With Polyelectrolytes[J].SPE 14931:459~462.
    [63] S.M.Holley,J.L.Caylas,Design.Operation and Evaluation of a Surfactant/Polymer Field Pilot Test[J].SPE 20232:463~468.
    [64] C.S.Chivu,G.E.Ketlerhats.Polymer/Surfactant Transport in Micellar Flooding[J].SPE 9354:112~128.
    [65] Wagner.Effeet of interfacial tension on displacement efficiency[J].SPE,1966,6(4):335~344.
    [66] Foster W R.ALow-Tension Water Flooding Process[R].JPT,1973,205~210.
    [67]王凤兰,杨凤华.三元复合体系的界面张力及其影响因素[J].大庆石油学院学报,2001,25(2):25~28.
    [68]吴文祥.A-S-P三元复合体系与大庆原油间界面张力等值图[J].大庆石油学院学报,1995,19(1):115~118.
    [69]杨林,李茜秋.原油性质对三元复合体系形成超低界面张力的影响[J].大庆石油地质与开发,2000,19(2):37~40.
    [70]廖广志,杨振宇.三元复合驱中超低界面张力影响因素研究[J].大庆石油地质与开发,2001,20(1):40~43.
    [71]杨迎花.三元复合驱体系/大庆原油间界面张力研究[J].天津科技大学学报,2004,19(4):31~33.
    [72]杨会丽,王业飞,任嫡.原油/水界面张力的影响因素[J].承德石油高等专科学校学报,2006,8(1):1~3.
    [73]李孟涛,刘先贵,杨孝君.无碱二元复合体系驱油试验研究[J].石油钻采工艺,2004,26(5):73~76.
    [74]刘莉平,杨建军.聚/表二元复合驱油体系性能研究[J].断块油气田,2004,11(4):60~64.
    [75]郭东红,辛浩川,崔晓东.聚合物驱后利用ORS表面活性剂/聚合物二元体系提高采收率的研究[J].精细石油化工进展,2006,7(1):l~3.
    [76]吴文祥,张玉丰,胡锦强.聚合物/表面活性剂二元复合体系驱油物理模拟实验[J].大庆石油学院学报,2005,29(6):98~100.
    [77] Mungan N.Role of wettability and interfacial tension in water flooding[Z].SPE705,1963.
    [78] Wagner O R. Leach R O.Effect of interfacial tension on displacement efficiency[Z].SPE 1564,1966.
    [79] Taber J J.Dynamic and static forces required to remove a discontinuous oil phase from porous media containing both oil and water[Z].SPE 2098,1968.
    [80] Foster W R.A low-tension waterflooding process[Z] .SPE 3803,1973.
    [81] Taylor K C, Hawkins B F,Islam M R.Dynamic interfacial tension in surfactant enhan- ced alkaline flooding[J].The Journal of Canadian Petroleum Technology,1990,29(1): 50~55.
    [82] Chiwetelu C I, Hornof V,Neale G H.A dynamic model for the interaction of caustic reagents with acidic oils[J].AIChE Journal,1990,36(2):233~241.
    [83] Borwankar R P,Wasan D T.Dynamic interfacial tensions in acidic crude oil/caustic sys- tems PartⅠ:A chemical diffusion-kinetic model[J].AIChE Journal,1986,32(3):455~466.
    [84] Borwankar R P,,Wasan D T.Dynamic interfacial tensions in acidic crude oil/caustic sys- tems Part II:Role of dynamic effects in alkaline flooding for enhanced oil recovery[J] AIChE Journal,1986,32(3):467~476.
    [85] Wilson P M D,Brandner C F.Aqueous surfactant solutions which exhibit ultra-low ten- sions at the oil-water interface[J].Journal of Colloid and Interface Science,1977,60(3):473~479.
    [86]赵宇.系列烷基苯磺酸盐纯化合物的合成及界面性能的研究[D].大连理工大学,2006.
    [87]王业飞,赵福麟.醚羧酸盐及其与石油磺酸盐和碱的复配研究[J].油田化学,1998,18(4):340~343.
    [88]绳德强,杨普华,刘彦丽.碱/聚合物相互作用与碱十聚合物/原油界面张力研究[J].油田化学,1993,10(1):46~50.
    [89]康万利,吴文祥,宋文玲,等.石油羧酸盐及其复配体系/大庆原油间的界面张力[J].大庆石油学院学报,1997,19(1):123~127.
    [90]黄宏度,吴一慧,吕军,等.石油梭酸盐复配体系的协同效应[J].江汉石油学院学报,1994,16(2):64~67.
    [91]张路,罗澜,赵濉,等.油相性质对水相中混合表面活性剂协同效应的影响[J].油田化学,2000,17(3):268~271.
    [92]张路,罗澜,赵濉,等.表面活性剂亲水一亲油能力对动态界面张力的影响[J].物理化学学报,2001,17(1):62~65.
    [93]徐桂英,竺和平,袁云龙,等.石油磺酸盐/部分水解聚丙烯酰胺体系界面张力的研究[J].油田化学,1989,6(4):332~336.
    [94]吴文祥,张洪亮,胡靖邦,等.A-S-P三元复合体系与大庆原油间界面张力等值图[J].大庆石油学院学报,1995,19(1):115~118.
    [95]吴文祥,张洪亮,侯吉瑞,等.A-S-P三元复合体系/大庆原油间的动态界面张力特性[J].大庆石油学院学报,1995,19(1):119~122.
    [96] Chan K S,Shah D O.The molecular mechanism for achieving ultra low interfacial ten- sion minimum in a petroleum sulfonate/oil/brine system[J].Journal of Dispersion Science and Technology,1980,1(7)55.
    [97]徐桂英,刘木辛,李干佐,等.影响羧酸盐驱油体系界面张力因素的研究[J].山东大学学报(自然科学版),1996,31(1):71~75.
    [98]袁红,杨承志.表面活性剂一碱一聚合物联合驱替与羧酸及其盐类表面活性剂在EOR中的应用[J].油田化学,1990,7(4):373~379.
    [99]赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003.
    [100]张路,赵濉,罗澜,等.碱/表面活性剂复合驱油体系与胜利孤东原油间协同效应的研究[J].油田化学,1998,15(1):348~353.
    [101]李干佐,林元,徐桂英,等.天然混合羧酸(盐)复合驱油体系的研究[J].油田化学,1994,11(1):61~65.
    [102]徐桂英,王富华,刘木辛,等.PS,LS和煤油体系的界面张力[J].油田化学,1993,10(1):57~61.
    [103]张树彪.三次采油用表面活性剂的合成及其界面张力性能的研究[D].大连:大连理工大学,2000.
    [104]化岩,史永刚,任连岭,等.红外光谱技术在润滑油分析中的应用[J] .合成润滑材料,2008,35(2):5~7.
    [105]王凤兰,杨凤华.三元复合体系的界面张力及其影响因素[J].大庆石油学院学报,2001,25(2):25~28.
    [106]Pouchelon A,Meunier J,Langevin D,et al.Low interfacial tensions in three-phase systems obtained with oil-water surfactant mixtures[J].Chemical Physics Letters,1980,76(2):277~281.
    [107]Cash L,Cayias J L,Fournier G,et al.The application of low interfacial tension scaling rules to binary hydrocarbon mixtures[J].Journal of Colloid and Interface Science,1977,59(1):39~44.
    [108]康万利,董喜贵.采油化学原理[M].北京:化学工业出版社,1997.
    [109]杨勇,王海峰,张国印.一种超低浓度表面活性剂体系在砂岩和石灰岩类油藏驱油中的应用[J].国外油田工程,2003,19(10):6~9.
    [110]曹宝格.驱油用疏水缔合聚合物溶液的流变性及粘弹性实验研究[D].西南石油大学博士学位论文,2006.
    [111]姜海峰.梳形聚合物溶液的流变性及驱油效果分析[J].大庆石油学院学报,2008.
    [112]李振泉.胜利油田污水配制梳形抗盐聚合物KYPAM驱油试验初步结果[J].油田化学,2004,21(2):165~167.
    [113]程杰成,罗健辉,李振乾,等.梳形抗盐聚合物的应用与研究进展[J].精细与专用化学品,2004,12(6):10~12.
    [114]郑晓松.聚合物溶液的弹性粘度理论及应用[D].大庆石油学院博士论文,2004.
    [115]Southwick J. G,Mank C. W.Molecular degradation, injectivity and elastic properties of polymer solutions[R],SPE 15652.
    [116]R. S. Seright.The effects of mechanical degradation and viscoelastic behavior on injecti- vity of polyacrylamide solutions[R] .SPE,Exxon Production Research Co,June 1983
    [117]张宏方.衰竭层效应和粘弹性效应对聚合物波及系数的作用研究[D] .大庆石油学院博士论文,2003.
    [118]韩显卿,高有瑞.孔隙介质中滞留聚合物粘弹性的测定方法研究[J].西南石油学院学报.1992,2:145~150.
    [119]佟曼丽,郭小莉.聚合物稀溶液流经孔隙介质时的粘弹效应及其表征[J].油田化学1992,2:145~150.
    [120]S.K.拜佳,张贵孝译,秦同洛校.聚合物在多孔介质中的流动[M].石油工业出版社,1986.
    [121]Chiwet C.Enhanced oil recovery using lignosulphonate/petroleum sulphonate mixtures Trans I Chem[M].1982,60,101~110.
    [122]Hong S.A,Bae J.H,Lewise G. R.An evaluation of lignosulfonates as a sacrificial adso- rbate in surfactant flooding.SPE Reservoir Engineering,1987,2:17~25.
    [123]Novosad J,etal.Retention of foam-dorming surfactants at elevated temperatures.JCPT,1986,3~6:42~46.
    [124]Travis Presleyc.Sulfonate retention and residual oil Saturation.SPEJ,1983,4:349~357.
    [125]Trogus F.J.Adsorption of mixed surfactant systems.SPEJ,1979,7:769~778.
    [126]Sat T.A.Chemical transport in porous media with dispersion and rate-Controlled adsorp- tion.SPEJ,1980,6:129~137.
    [127]Fred Ramirez W.Convection,dispersion,and adsorption of Surfactants in porous media SPED,1980,12:431~439.
    [128]Victor M Ziegler.Effect of temperature on Surfactant adsorption in porous media. SPED,1981,4:219~228.
    [129]Somasundaran P,Hanna H.S,Adsorption of Sulfonates on reservoir rocks.SPEJ,1979,8:221~231.
    [130]Megers K.O,Saller S.J.The effect of oil/brine ratio on surfactant adsorption from mic- roemulsion.SPED,1981,8:50~51.
    [131]Krumtine Paul H.Surfactantflooding 1:The effect of alkaline,additives on IFT,surfa- ctant adsorption and recovery efficiency.SPEJ,1982,8:503~513.
    [132]Novosad J.Surfactant retention in Berea sandstone-effects of phase behavior and tempe- rature.SPEJ,1982,12:962~970.
    [133]Scamehorn J.F.Adsorption of Surfactants on mineral oxide Surfaces from aqueous solu- tions I:isomerically pure Aaionic Surfactants.Joural of colloid and interface Science,,1982,85(2):463~477.
    [134]Scamehorn J.F.Adsorption of surfactants on mineral oxide surfaces from aqueoussolu- tions II:Binary Mixtures of anionic Surfactants.Journal of colloid and interface Science,1982,80(2):479~493.
    [135]Somasandaran P,Celik M.The role of surfactant precipitation and redissolution on the adsorption.SPED,1984,4:233~239.
    [136]Somasundaran P,Shafick Hanna H.Adsorption/desorption of Sulfonates by reservoir rock minerals in Solution of varying Sulfonate Concentrations.SPEJ,1985,6:343~350.
    [137]Paul A,Siracusa,Somasundaran P.Adsorption-desorption and hysteresis of sulfonates on kaolinite pH effects.Journal of Colloid and interface Science,1986,114(1):184~193.
    [138]Minssieux P L.Mothod for adsorption reduction of mixed surfactant systems.Journal of science and engineering,1989,2:235~244.
    [139]黄延章,于大森.微观渗流实验力学及其应用[M].第一版.北京:石油工业出版社,2001,59~79.
    [140]杨清彦,宫文超,贾忠伟.大庆油田三元复合驱驱油机理的研究[J] .大庆石油地质与开发,1999,18(3):24~26.
    [141]田燕春,杨林,杨振宇,等.表面活性剂同系物体系对原油界面张力的影响[J].日用化学品科学,2000,30(1):115~119.
    [142]鞠野.一元/二元/三元/驱油体系微观驱油机理研究[D].大庆石油学院硕士学位论文,2006.
    [143]王刚.粘弹性无碱二元驱油体系提高采收率机理研究[D].大庆石油学院博士学位论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700