用户名: 密码: 验证码:
非线性数学地质模型研究及在滇东南金矿成矿预测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多线性的或非线性的数学地质模型应用于矿产资源预测,来估算识别标志与预测目标矿产之间的关系。其中,选择适合的数学地质模型来达到有效的预测目的非常关键。由于地学问题本身的复杂性,传统数理统计模型在研究地学问题时具有较大局限性。当前,非线性理论与方法在资源预测与评价中的应用使矿产资源预测研究进入一个新领域。人工神经网络(Aritifical Neural Network. ANN)是非线性的复杂的动力学系统,应用到成矿预测领域,有助于深刻理解成矿系统的非线性动力学行为,更精确地再现成矿系统演化过程,对矿产资源进行更为准确的预测。另一类非线性模型——支持向量机(Support Vector Machine, SVM),从20世纪90年代以来广受重视,因其能在高维数据的有限样本情况下达到很好的适应及分类推广能力。虽然非线性模型(如ANN和SVM)在经过合理的训练后,能够得到较高的预测精度,但由于其分类过程的非线性性,分类规则不易于理解,难以从预测过程中认识到适合于特定矿产资源预测的成矿因子的知识。
     本文以滇东南金矿预测为研究实例,探讨非线性模型在矿产预测中的应用。另外,还研究了在预测建模前的地化数据处理和预测建模后的成矿因子的选择。本文的主要研究成果包括:(1)针对地球化学异常阈值选择这一难点,研究了多重分形分析方法,应用半径-面金属量(r-P)方法进行地球化学奇异值制图。该方法强调了数据在统计及空间域上的特征,用以反映地球化学数据集的多种类群,用来识别和圈定异常。(2)本文采用了径向基神经网络模型(Radial Basis Function Neural Network, RBFNN)对成矿地质条件复杂的滇东南地区金矿开展成矿预测,研究结果表明,该模型能快速准确的获取成矿潜力信息。(3)针对非线性分析建模(以SVM为例)难以获得分类规则(成矿条件的知识)的缺点,本文在SVM模型的训练过程中,采用RFE(Recursive Feature Elimination, RFE)特征选择方法,从各种输入的成矿因子中挖掘出对矿床(点)正确预测的重要性排序,以提供对输入模型的成矿条件的客观评价。
Large numbers of mathematic geology models have been applied to mineral resources prediction and evaluation. In general, these models calculate and identify the relationships between mineral indicators and mineral targets with certain mathematical function (linear or non-linear). Therefore, it is important to select a compatible mathematic geology model to predict targets effectively. The built-in complication of geological subject limits the application of conventional mathematical statistics. The non-linear theories and methods show advantages in mineral resources prediction and evaluation. ANN (Aritifical Neural Network), a complex of non-linear system, can help to profoundly understand the non-linear process of mineralization, and then predict mineral resources more accurately. An other non-linear model, SVM (Support Vector Machine) has good adaptability and classification efficiency with limited samples of high dimension data. Although a high predict accuracy can be reached with non-linear modeling techniques, it is still hard to obtain classify rules, which indicate the preferable metallogenic factors from geological information.
     In this paper, the application of non-linear models to mineral resources prediction was studied with example of gold deposits prediction in Southeast Yunnan. Furthermore, the geochemical data processing method and metallogenic factors selection were studied before and in modeling. The main achievements include: (1) A geochemical anomaly identifying method, r-P model, is studied with multifractal analysis, and applied successfully to geochemical study in Southeast Yunnan. (2) RBFNN model is employed to gold prospectivity mapping in Southeast Yunnan. Experimental results show that the model can quickly obtain the probability of gold deposits. (3) For solving the shortcoming that it is difficult to get classification rules (metallogenic factor knowledge) in non-linear modeling (takes SVM as an example), this paper uses a technique called support vector machine based recursive feature elimination, or SVM-RFE to rank all input features in SVM, then values metallogenic factors in Southeast Yunnan.
引文
Agterberg, F. P. Geomathematical evaluation of copper and zinc potential in the Abitibi area of the Canadian shield. Geological Survey of Canada paper, 1972. p. 71-41.
    Agterberg, F. P. Mixtures of multiplicative cascade models in geochemistry. Nonlin. Processes Geophys., 2007, 14: 201-209.
    Agterberg, F. P. Multivariate prediction equations in geology. Journal of the International Association for Mathematical Geology, 1970, (2): 319-324.
    Agterberg, F. P. Systematic approach to dealing with uncertainty of geoscience information in mineral exploration. Proceedings of the 21st
    APCOM Symposium, Las Vegas, USA, Chapter 18, 1989. p. 165-178.
    Agterberg, F. P., Bonham-Carter, G. F. Deriving weights-of-evidence from geoscience contour maps for prediction of discrete events. Proceedings of the 22nd APCOM Symposium, Berlin, Germany, v.2, 1990. p. 381-395.
    Agterberg, F. P., Bonham-Carter, G. F. Measuring the Performance of Mineral-Potential Maps. Natural Resources Research, 2005, 14(1): 1-17. Ahrens, L. H. The lognormal distribution of the elements (a fundamental law of geochemistry and its subsidiary). Geochim.Cosmochim Acta 5, 1954: 49-73.
    Alle`gre, C. J., Lewin, E. Scaling laws and geochemical distribution. Earth Planet. Sci. Lett., 1995, 132: 1- 13.
    An, P., Moon, W. M., Rencz, A. Application of fuzzy set theory for integration of geological, geophysical and remote sensing data. Canadian Journal of Exploration Geophysics, 1991, 27: 1-11.
    Barton, P. B., others, a. (1995). Recommendations for assessments of undiscovered mineral resources, U.S. Geological Survey. Open-File Report95-82: 139 p.
    Bateman, A. M. Economic Mineral Deposits. 1951a: 916 pp.
    Bateman, A. M. The Formation of Mineral Deposits. 1951b: 371 pp.
    Behnia, P. Application of Radial Basis Functional Link Networks to Exploration for Proterozoic Mineral Deposits in Central Iran. Natural Resources Research, 2007, 16(2): 147-155.
    Bolviken, B., Stokke, P. R., Feder, J., et al. The fractal nature of geochemical landscapes. Journal of Geochernical Exploration, 1992, 43(1992): 91-109.
    Bonham-Carter, G. F. Geographic Information Systems for Geoscientists: Modeling with GIS. Ontario, Canada: Pergamon Press, 1994
    Bonham-Carter, G. F., Agterberg, F. P. Application of a microcomputer based geographic information system to mineral-potential mapping. In: J. T. Hanley, D. F. Merriam, (Eds.), Microcomputer-based Applications in Geology. New York, Pergamon Press, 1990.p. 49-74.
    Bougrain, L., Gonzalez, M., Bouchot, V., et al. Knowledge recovery for continental-scale mineral exploration by neural networks. Nat. Resour. Res., 2003, 12(3): 173-181.
    Broomhead, D. S., Lowe, D. Multivariable functional interpolation and adaptive networks. Complex Systems, 1988, 2: 321-355.
    Brown, W. M., Gedeon, T. D., Groves, D. I., et al. Artificial neural networks: a new method for mineral prospectivity mapping. Australian Journal of Earth Sciences, 2000, 47(4): 757 - 770.
    Brown, W. M., Gedeon, T. D., Groves, D. Use of Noise to Augment Training Data: A Neural Network Method of Mineral–Potential Mapping in Regions of Limited Known Deposit Examples. Natural Resources Research, 2003, 12(2): 141-152.
    Burges, C. J. C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2: 121–167.
    Cheng, Q. (2003a). "GeoData Analysis System (GeoDAS) for Mineral Exploration and Environmental Assessment, Unpublished User’s Guide." from .
    Cheng, Q. A new model for incorporating spatial association and singularity in interpolation of exploratory data. In: O. D. Leuangthong, V. Clayton, (Eds.), Geostatistics Banff 2004, Quantitative Geology and Geostatistics, 2005.14(2): p. 1017-1025.
    Cheng, Q. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 2007, 32(2007): 314-324.
    Cheng, Q. Multifractal and geostatistics methods for characterizing local structure and singularity properties of exploration geochemical anomalies. Earth Science-Journal of China University of Geosciences, 2001, 26(2): 162-166.
    Cheng, Q. Multifractal theory and geochemical element distribution pattern. Earth Science-Journal of China University of Geosciences, 2000, 25(3): 311-318.
    Cheng, Q. Multifractality and spatial statistics. Computers & Geosciences, 1999b, 25: 949-961.
    Cheng, Q. Non-linear mineralization model and information processing methods for prediction of unconventional resources. Earth Science-Journal of China University of Geosciences, 2003b, 28(4): 445-454.
    Cheng, Q. Quanlifying the generalized self-similarity of spatial patterns for mineral resources assessment. Earth Science-Journal of China University of Geosciences, 2004, 29(6): 733-743.
    Cheng, Q. Singularity-generalized self-similarity-fractal spectrum (3S) models. Earth Science-Journal of China University of Geosciences, 2006, 31(3): 337-348.
    Cheng, Q. Spatial and scaling modelling for geochemical anomaly separation. Journal of Geochemical Exploration, 1999c, 65(1999): 175-194.
    Cheng, Q. The gliding box method for multifractal modeling. Computers & Geosciences, 1999a, (25): 1073-1079.
    Cheng, Q. The perimeter-area fractal model and its application in geology. Math. Geol., 1995, 27: 69-82.
    Cheng, Q., Agterberg, F. P. Fuzzy weights of evidence and its application in mineral potential mapping. Natural Resources Research, 1999, 8(1): 27-35.
    Cheng, Q., Agterberg, F. P. Multifractal modeling and spatial statistics. Mathematical Geology, 1996, 28(1): 1-16.
    Cheng, Q., Agterberg, F. P. Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Computers and Geosciences, 2008, (2008): 1-11.
    Cheng, Q., Agterberg, F. P., Ballantyne, S. B. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 1994, 51: 109-130.
    Cheng, Q., Li, Q. A fractal concentration–area method for assigning a color palette for image representation. Computers & Geosciences, 2002, 28: 567-575.
    Cheng, Q., Xu, Y., Grunsky, E. Integrated Spatial and Spectrum Method for Geochemical Anomaly Separation. Nature Resources Research, 2000, 9(1): 43-51.
    Duda, R. O., Hart, P. E., Stock, D. G. Pattern Classification: John Wiley & Sons, 2001
    Foody, G. M., Mathur, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(6): 1335-1343.
    GDMG. Geological map of Vietnam on 1:500000 scale, 1988
    Gettings, M. E., Bultman, M. W. Quantifying favorableness for occurrence of a mineral deposit type - an example from Arizona. USGS Open-File Report 93-392, 1993: 23 pp.
    GUO, L., LIU, Y., LI, C., et al. SHRIMP zircon U–Pb geochronology and lithogeochemistry of Caledonian Granites from the Laojunshan area, southeastern Yunnan province, China: Implications for the collision between the Yangtze and Cathaysia blocks. Geochemical Journal, 2009, 43: 101-122.
    Guyon, I., Weston, J., Barnhill, S. Gene selection for cancer classification using support vector machines. Machine Learning, 2002, 46: 389-422.
    Halsey, T. C., Jensen, M. H., Kadanoff, L. P., et al. Fractal measures and their singularities: The characterization of strange sets. Physical review A, 1986, 33(2): 1141-1151.
    Harris, D. P. An Application of Multivariate Statistical Analysis of Mineral Exploration. University Park, Penn-sylvania: Pennsylvania State University, 1965
    Harris, D. P., Pan, G. C. Mineral favorability mapping: a comparison of artificial neural networks, logistic regression and discriminate analysis. Natural Resources Research, 1999, 8(2): 93-109.
    Harris, D. P., Rieber, M. (1993). Evaluation of the United States Geological Survey's three-step assessment methodology, U.S. Geological Survey. Open-File Report 93-258-A: 675p.
    Harris, D., Zurcher, L., Stanley, M., et al. A Comparative Analysis of Favorability Mappings by Weights of Evidence, Probabilistic Neural Discriminant Analysis, and Logistic Regression. Natural Resources Research, 2003, 12(4): 241-255.
    Harris, J. R., Wilkinson, L., Grunsky, E., et al. Techniques foranalysis and visualization of lithogeochemical data with applications to the Swayze greenstone belt, Ontario. Journal of Geochemical Exploration, 1999, 67: 301–334.
    Haykin, S. Neural networks: A comprehensive foundation: Prentice Hall, Upper Saddle River, NJ, 1994
    Koike, K., Matsuda, S., Suzuki, T., et al. Neuralnetwork- based estimation of principal metal contents in the Hokuroku District, Northern Japan, for exploring Kurokotype deposits. Nat. Resour. Res., 2002, 11(2): 135-156.
    Li, C., Ma, T., Shi, J. Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration, 2003, 77(2003): 167–175.
    Limpert , E., Stahel, W. A., Abbt, M. Lognormal distributions across the sciences: keys and clues. Bioscience 2001, 51(5): 341-352. Liu, H., Yu, L. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 2005, 17: 491-502.
    Liu, Y., ye, L. Lao jun shan-song chay metamorphic core complex and its tectonic significance. Geochimica et cosmochimica Acta, 2003, supplement: A259.
    Looney, C. G. Radial basis functional link nets and fuzzy reasoning. Neurocomputing, 2002, 48: 489-509.
    Looney, C. Pattern Recognition Using Neural Networks: Oxford University Press, N.Y., 1997
    Maluski, H., Lepvrier, C., Jolivet, L., et al. Ar–Ar and fission-track ages in the Song massif: Early Triassic and Cenozoic tectonics in northern Vietnam. Journal of Asian Earth Sciences, 2001, 19(1-2): 233-248.
    Mandelbrot, B. B. The Fractal Geometry of Nature (updated and augmented edition). San Francisco, CA: W.H. Freeman, 1983
    Manoranjan, D., Liu, H. Feature selection for classification. Intelligent Data Analysis, 1997, 1: 131-156.
    Mao, Z., Peng, S., Lai, J., et al. Fractal Study of Geochemical Prospecting Data in south area of Fenghuanshan copper deposit, Tongling Anhui. Journal of Earth Sciences and Environment, 2004, 26(4): 11-14. Mitchell. Machine learning: The McGraw-Hill Companies, Inc, 1997 Moody, J. E., Darken, C. J. Fast learning in networks of locally-tuned
    processing units. Neural Computation, 1989, 1(2): 281-294. Noble, W. S. What is a support vector machine. Nature Biotechnology, 2006, 24(12): 1565-1567.
    Nykanen, V. Radial Basis Functional Link Nets Used as a Prospectivity Mapping Tool for Orogenic Gold Deposits Within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield. Natural Resources Research, 2008, 17(1): 29-48.
    Nykanen, V., Groves, D. I., Ojala, V. J., et al. Combined conceptual/empirical prospectivity mapping for orogenic gold in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 2008, 55(1): 39 - 59.
    OBUCHOWSKI. Receiver operating characteristic curves and their use in radiology. Radiology, 2003, 229(1): 3-8.
    Oommen, T., Misra, D., Twarakavi, N. K. C., et al. An objective analysis of support vector machine based classification for remote sensing. Mathematical Geosciences, 2008, 40: 409-422.
    Peters, S. G., Huang, J., Li, Z., et al. Sedimentary rock-hosted Au deposits of the Dian-Qian-Gui area, Guizhou, and Yunnan Provinces, and Guangxi District, China. Ore Geology Reviews, 2007, 31(2007): 170-204.
    Porwal, A., Carranza, E. J. M., Hale, M. A hybrid neuro-fuzzy modelfor mineral potential mapping. Mathematical Geology, 2004, 36(7): 803-826.
    Porwal, A., Carranza, E. J. M., Hale, M. Artificial neural networks for mineral-potential mapping; a case study from Aravalli Province, Western India. Nat. Resour. Res., 2003, 12(3): 155-171.
    Razumovsky, N. Distribution of metal values in ore deposits. Comptes Rendus (Doklady) de l’Académie des Sciences de l’URSS, 1940, 9: 814-816.
    Roger, F., Leloup, P. H., Jolivet, M., et al. Unravelling a long and complex thermal history by multi-system geochronology: example of the SongChay metamorphic dome, North Vietnam. Tectonophysics, 2000, 321: 449-446.
    Sawatzky, D. L., Raines, G. L., Bonham-Carter, G. F., et al. (2004). "ArcSDM3.1: ArcMAP extension for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural network analysis." from .
    Singer, D. A., Kouda, R. A comparison of the weights-of-evidence method and probabilistic neural networks. Natural Resources Research, 1999, 8(4): 287-298.
    Singer, D. A., Kouda, R. Application of a feedforward neural network in the search for Kuroko Deposits in the Hokuroku district, Japan. Mathematical Geology, 1996, 28(8): 1017-1023.
    Singer, D. A., Kouda, R. Classification of mineral deposits into types using mineralogy with a probabilistic neural network. Nonrenewable Resources, 1997, 6(1): 69-81.
    Skabar, A. A. Mapping Mineralization Probabilities using Multilayer Perceptrons. Natural Resources Research, 2005, 14(2).
    Tang, N. D., Avigad, D. Ar-Ar and fissiontrack ages in the song chay Massif: Early Triassic and Cenozoic tectonics in northern Vietnam. Journal of Asian Earth Sciences, 2001, 25(19): 233-248.
    Tsoukalas, L. H., Uhrig, R. E. Fuzzy and neural approaches in engineering. In, John Wiley & Sons, Inc., New York, 1997.p. 587p.
    Turcotte, D. L. Fractals in petrology. Lithos, 2002, 65(2002): 261-271.
    Vapnik, V. N. The nature of statistical learning theory. New York: Springer-Verlag, 1995
    Wu, G., Zhong, D. Babu-phu Ngu Ophiolites: A Geological Record of paleotethyan ocean Bordaring China and Vietnam. Gondwana Research, 1999, 2(4): 554-557.
    Xie, S., Bao, Z. Fractal and Multifractal Properties of Geochemical Fields. Mathematical Geology, 2004, 36(7): 847-864.
    蔡煌东,陆文聪.自组织人工神经网络在多金属成矿预测中的应用.矿床地质, 1994, 13(2): 181-185.
    蔡煌东,陆文聪.自组织学习联想神经树在多金属成矿预测中的应用.华东地质学院学报, 1995, 18(4): 344-348.
    陈翠华,何彬彬,顾雪祥, et al.右江沉积盆地演化与微细浸染型金矿床成矿作用关系探讨.地质与勘探, 2004, 40(1): 21-25.
    陈建平.矿产资源勘查与评价学科发展动态.地质科技情报, 1999, 18(3).
    陈守余,周梅春.数据开采的BP神经网络方法及其应用.地球科学-中国地质大学学报, 1998, 23(2): 183-187.
    成秋明.应用复杂性-非线性理论开展成矿预测——奇异性理论-广义自相似性-分形谱系多重分形理论与应用.矿床地质, 2006, 25(增刊): 463-466.
    董聪.人工神经网络:当前的进展与问题.科技导报, 1999, 1999(07): 26-30.
    广西省地矿局.广西省区域地质志.北京:地质出版社, 1987
    郝社峰,刘汉湖,杨武年.多元信息成矿预测模型分析及实例应用.江苏地质, 2005, 29(4): 234-238.
    胡瑞忠,彭建堂,马东升, et al.扬子地块西南缘大面积低温成矿时代. 矿床地质, 2007, 26(6): 583-596.
    贾大成,胡瑞忠.滇黔桂地区卡林型金矿床成因探讨.矿床地质, 2001, 20(4): 378-384.
    江鑫培.滇东南地区金矿类型及成矿地质条件分析.云南地质, 1996, 15(3): 277-281.
    李红阳,高振敏,杨竹森, et al.我国西南地区卡林型金矿成矿模式讨论. 矿物岩石地球化学通报, 2000, 19(4): 360-361.
    李双成,郑度.人工神经网络模型在地学研究中的应用进展.地球科学进展, 2003, 18(1): 68-76.
    李随民,姚书振,周宗桂.基于MATLAB的BP网络在矿产资源预测中的应用. 金属矿山, 2007a, (8): 55-57.
    李随民,姚书振,周宗桂.矿产资源定量预测的研究现状.地质找矿论丛, 2007b, 22(1): 9-12.
    李志伟,田敏,刘和林, et al.滇东南晚古生代—中生代沉积盆地内等时性地层界面及其与金矿成矿关系.云南地质, 2001, 20(2): 176-185.
    刘建明,叶杰,刘家军, et al.论我国微细浸染型金矿床与沉积盆地演化的关系—以右江盆地为例.矿床地质, 2001, 20(4): 367-377.
    刘显凡,吴德超,刘远辉, et al.黔西南低温成矿域中不同层位不同类型金矿的内在统一成矿机制探讨.沉积与特提斯地质, 2003, 23(3): 93-101.
    卢运梅. SVM-RFE算法在数据分析中的应用:吉林大学硕士学位论文, 2009
    吕新彪,赵鹏大.定量成矿预测的人工神经网络模型.地球科学, 1998, 23(6): 620-623.
    马志勇,张军海.数据挖掘与地学数据分析相结合的探讨.测绘科学, 2006, 31(6): 109-113.
    聂爱国.黔西南卡林金矿的成矿机制预测: [博士学位论文].昆明:昆明理工大学, 2007
    普传杰,高振敏.国内外卡林型金矿对比研究.云南地质, 2003, 22(1): 27-38.
    任纪舜,陈延恩,牛宝贵等.中国东部邻区大陆岩石圈构造演化与成矿. 北京:科学出版社, 1990
    任纪舜等.中国大地构造及演化.北京:科学出版社, 1985
    仕竹焕,杨云保.初论滇东南地区微细粒型金矿找矿标志.西部探矿工程, 2007, 5(2007): 65-68.
    四川省地质矿产局.四川省区域地质志.北京:地质出版社, 1991
    覃文明,何志美,徐自斌.滇东南微细浸染型金矿构造控矿型式.云南地质, 2007, 26(3): 298-302.
    涂光炽.中国金矿床若干特征.黄金, 1989, 6.
    王登红.卡林型金矿找矿新进展及其意义.地质地球化学, 2000, 28(1): 92-96.
    王世称,陈永良,夏立显.综合信息矿产预测理论与方法.北京:科学出版社, 2000
    王世称.综合信息矿产预测的理论与方法.长春地质学院学报, 1989, (增刊): 1-110.
    王硕儒,汪炳柱,赵举孝.找矿预测中神经网络与模糊聚类的联合应用. 中国有色金属学报, 1994, 4(1): 8-11.
    王硕儒,赵举孝,范德江.自组织神经网络用于地质样品分类.物探与化探, 1997, 21(2): 139-144.
    王砚耕,陈履安,李兴中, et al.贵州西南部红土型金矿特征及其分布规律.贵州地质, 2000, 17(1): 2-12.
    肖龙,叶乃清,张明华, et al.滇黔桂“金三角区”岩浆活动与金矿成矿的关系.桂林工学院学报, 1996, 16(3): 263-267.
    邢学文,胡光道.模糊逻辑法在秦岭一松潘成矿区金矿潜力预测中的应用. 吉林大学学报(地球科学版), 2006, 36(2): 298-304.
    徐伟,刘玉平等.滇东南八布蛇绿岩地球化学特征及构造背景.矿物学报, 2008, 28(1): 6-14.
    杨建刚.人工神经网络实用教程.杭州:浙江大学出版社, 2001
    杨云保.滇东南地区微细粒金矿成矿讨论.地质与勘探, 2004, 40(3): 31-35.
    杨中宝,彭省临,李朝艳, et al.基于GIS与ANN耦合技术的非线性矿产预测系统设计.化工矿产地质, 2004, 26(3): 175-180.
    杨中宝,彭省临,李朝艳.基于GIS的人工神经网络矿产预测系统设计及应用.地球科学与环境学报, 2005, 27(1): 30-33.
    叶天竺,肖克炎,严光生.矿床模型综合地质信息预测技术研究.地学前缘, 2007, 14(5): 11-19.
    於崇文.地质系统的复杂性.北京:地质出版社, 2004
    云南省地矿局.云南省区域地质志.北京:地质出版社, 1990a
    云南省地矿局.云南省区域矿产总结, 1990b
    张复新,肖丽,齐亚林.卡林型—类卡林型金矿床勘查与研究回顾及展望. 中国地质, 2004, 31(4): 407-412.
    张均.隐伏矿体定位预测的方法学基础及方法论.贵金属地质, 2000, 9(2): 100-104.
    张良培,张立福.高光谱遥感.武汉:武汉大学出版社, 2005
    张旗,周德进等.云南双沟蛇绿岩的特征和成因.岩石学报, 1995, 11(增刊): 190-202.
    张世涛,冯明刚.滇东南南温河变质核杂岩解析.中国区域地质, 1998, 17(4): 390-397.
    赵会庆.中国卡林型金矿成矿构造环境及热液特征.地质找矿论丛, 1999, 14(3): 34-41.
    赵鹏大,陈建平,张寿庭.“三联式”成矿预测新进展.地学前缘, 2003, 10(2): 455-463.
    赵鹏大,陈永清,刘吉平等.地质异常成矿预测理论与实践.武汉:中国地质大学出版社, 1999
    赵鹏大,池顺都.初论地质异常.地球科学——中国地质大学学报, 1991, 16(3): 241-248.
    赵鹏大,胡旺亮,李紫金.矿床统计预测.北京:地质出版社, 1983
    赵鹏大.“三联式”资源定量预测与评价——数字找矿理论与实践探讨.地球科学——中国地质大学学报, 2002, 27(5): 482-489.
    赵鹏大.宁芜地区铁矿床统计预测. In: (Eds.),宁芜火山岩铁矿床会议选集.北京,地质出版社, 1978.p.
    钟大赉,吴根跃等.滇东南发现蛇绿岩.科学通报, 1998, 43(13): 1365-1370.
    钟大赉等.滇川西部古特提斯造山带.北京:科学出版社, 1988
    朱赖民,刘显凡,金景福, et al.滇—黔—桂微细浸染型金矿床时空分布与成矿流体来源研究.地质科学, 1998, 33(4): 463-474.
    庄新国.桂西北地区古地热场特征及其在微细粒浸染型金矿床形成中的作用.矿床地质, 1995, 14(1): 82-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700