用户名: 密码: 验证码:
低成本超细晶耐候钢的开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的快速发展,耐候钢作为一种经常大量使用的材料,仅具有良好的耐腐蚀性能已经不能满足生产使用的需要,在降低成本的基础上提高强韧性等综合力学性能是耐候钢发展的方向。超细晶耐候钢是既具有较高的强度和韧性,又具有优良的耐大气腐蚀性能的钢种,日益受到人们的重视。本文结合国家二期973计划项目“工业大气环境下铁素体/珠光体型耐候钢合金化与组织控制理论研究”,进行了低成本Mn-Cu耐候钢热加工过程中的组织变化规律、晶粒细化机制、贝氏体相变强化工艺方面的研究,通过实验室干湿交替加速腐蚀试验、电极化曲线试验研究其耐腐蚀性能,论文主要工作如下:
     (1)研究了变形温度、变形量和应变速率对耐候钢动态再结晶行为及组织演变的影响。结果表明,在变形温度高、应变速率低时表现出典型的动态再结晶特征,确定了动态再结晶激活能。研究了变形参数对变形抗力的影响规律,回归出了一种较高精度的变形抗力数学模型。
     (2)研究了耐候钢奥氏体热变形后等温保持时间里的静态再结晶行为,得到了静态软化率曲线,讨论了变形温度、预变形量对静态再结晶行为的影响,确定静态再结晶激活能,建立了相应的静态再结晶动力学模型。
     (3)采用热膨胀法测定了不同变形量的连续冷却转变曲线,结合金相分析,给出了变形以及冷却速度对耐候钢显微组织的影响规律;研究了变形工艺参数对铁素体相变和贝氏体相变的影响。结果表明,变形扩大了铁素体区和珠光体区,缩小了贝氏体区,促进了铁素体相变;随着变形量的增大,铁素体和贝氏体开始转变温度升高。
     (4)利用热模拟实验,研究了变形工艺参数对显微组织的影响规律;在此基础上,利用实验轧机进行了热轧实验,对细晶化工艺进行了研究,得到了轧制工艺参数对显微组织和力学性能的影响规律,制定了合理的控轧控冷工艺制度。实验结果表明,随着终轧温度和卷取温度的降低,实验钢的强度提高,屈强比略有提高,延伸率稍有降低;随着锰含量的增加,组织中贝氏体含量增加,铁素体含量减少,晶粒变细,实验钢的强度提高。
     (5)对实验钢与参比钢SPA-H钢和Q345钢在实验室进行了干湿交替加速腐蚀试验和电化学试验,研究了耐候钢的耐蚀性能及不同晶粒尺寸对耐腐蚀性能的影响,同时对比分析了耐候钢和碳钢锈层结构的差异,分析了合金元素在耐腐蚀性能方面的作用,并讨论了耐候钢的耐腐蚀机理。
     (6)根据热模拟实验和热轧实验的结果,确定了耐候钢集装箱板的控轧控冷工艺参数,在济钢1700热连轧机组上进行了工业轧制实验,并对轧出的产品进行了耐腐蚀性能、力学性能的检测及显微组织分析,得出了耐腐蚀性良好、各项力学性能均达到要求的耐候钢。结果表明,制定的控轧控冷工艺参数合理可行。
With the rapid development of national economy, only good corrosion resistance could not meet the needs as a kind of widely used steel. Improving combination property including the strength and toughness and reducing the cost of production is the new development direction. Ultra-fine grain weathering steel has high strength and toughness, as well as better corrosion resistance, and more and more attention has been paid to them. Under the background of National Secondly 973 Project, which is about the theory research for ferrite and pearlite weathering steel of alloying and microstructure controlling in industry atmospheric environment, the present work is to investigate the microstructure changing, grain refinement, the strengthening of bainite transformation for low cost Mn-Cu weathering steel during hot rolling process, to investigate corrosion resistance by dry/wet cyclic accelerated corrosion experiment and electro-polarization experiment. The main work is as follows:
     (1) The influence of the deformation temperature, strain value and strain rate of the weathering steel on the austenite dynamic recrystallization behavior and microstructure evolution were investigated. The result indicates that the typical dynamic recrystallization characters are showed when the samples are deformed with small strain rate and high deformation temperature. The activation energy of dynamic recrystallization was obtained. Meanwhile, the influence of deformation parameters on resistance of deformation were investigated and its mathematical model was established.
     (2) The behavior of austenite static recrystallization of the weathering steel during constant temperature after the hot deformation was investigated and the softening rate curves of the weathering steel were obtained. The influence of deformation temperature and pre-strain value on static recrystallization was discussed. The activation energy of static recrystallization was obtained and the static recrystallization kinetic model was established.
     (3) The thermal expansion method was taken to test the CCT curves on condition of different stain value. With the metallographic analysis, the influence of strain value and cooling rates on microstructure of the weathering steel was obtained. The influence of deformation parameters on ferrite transformation and bainite transformation was investigated. The results indicate that deformation make ferrite and perlite area be enlarged, bainite area be reduced, promoted the transformation of austenite to ferrite. The starting transformation temperature of austenite to ferrite and bainite increased with increasing strain value.
     (4) By the thermal simulation experiment, the influence of the deformation parameters on microstructure was investigated. Based on the thermal simulation experiment, the grain refining technology of the steel was investigated through the hot rolling test in the laboratory. The influence of the deformation parameters on the microstructure and mechanical property of the weathering steel was obtained, and the proper TMCP parameters were made. The experiment indicated that the strength and yield ratio of weathering steels increased and elongation percentage decreased a little with decreasing finish rolling and coiling temperature. The results indicate that the volume fraction of bainite increased and ferrite decreased, and the grain is refined and the strength increased with increasing Mn content.
     (5) Dry/wet cyclic accelerated corrosion experiment and electro-chemistry experiment were conducted on the weathering steels as well as SPA-H steel and Q345 steel, to investigate the corrosion resistance for weathering steels with different grain size. Meanwhile, the difference of rust layer structure between weathering steels and carbon steel was analyzed, so as to have a better understanding of the role of alloying elements on corrosion resistance, and the principle of corrosion resistance of weathering steel was investigated.
     (6) On the basis of thermal simulation and hot rolling experiment at laboratory, TMCP parameters were determined for container plate of weathering steel, then the industrial experiment was carried out on 1700 hot strip mill. Through analysis on corrosion resistance, the mechanical properties and microstructure of samples obtained under industrial experiment condition, the weathering steel strip was obtained that corrosion resistance and mechanical properties met the requirement. The results indicate that the TMCP parameters are rational schedule.
引文
[1]翁宇庆.中国钢铁材料发展现状及迈入新世纪的对策[J],钢铁,2001,36(10):1-5..
    [2]刘忠侠,顾海澄.钢铁仍将是21世纪中国结构材料的支柱[J],钢铁,2001,36(7):68-73.
    [3]干勇,董瀚.先进钢铁材料技术的进展[J],中国冶金,2004(8):1-6.
    [4]宋立秋,左军,佘广夫,等.超细晶粒钢的强韧性研究[J],钢铁钒钛,2004,25(2):1-5.
    [5]翁宇庆.超细晶粒钢-钢的组织细化理论与控制技术[M],北京:冶金工业出版社,2003.
    [6]徐坚.腐蚀金属学及耐腐蚀金属材料[M],杭州:浙江科学技术出版社,1981,3-7.
    [7]孙秋霞.材料腐蚀与防护[M],北京:冶金工业出版社,2001,34-40,84-89.
    [8]Misawa T, Rinqshall N, Knott J. F. et al. Fatigue crack propagation in low alloy steel in a de-aerated distilled water environment [J], Corrosion Science,1976,16(11):805-818.
    [9]杜元龙,柯克.腐蚀科学与防护技术值得注意的发展动向[J],材料保护,2000,33(1):16-20.
    [10]杨德钧,沈卓身.金属腐蚀学[M].北京:冶金工业出版社,1999.
    [11]Stout D.A., Lumsden J.B., Staehle R.W. An investigation of pitting behavior of iron-molybdenum binary alloys[J], Corrosion,1979,35(4):141-147.
    [12]Yamashita M, Miyuki H, Matsuda Y. Long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century[J], Corros science,1994,36(2):283-299.
    [13]Yamashita M, Miyuki H, Nagano H. Corrosion resistance of weathering steel and its application[J], Sumitomo search,1995,57(50):12-17.
    [14]Yamashita M, Nagano H, Misawa T et al. Structure of protective rust layers formed on weathering steels by long term exposure in the industrial atmospheres of Japan and North America [J], ISIJ International,1998,38(3):285-290.
    [15]杨建春.关于耐候钢开发的探讨[J],马钢职工大学学报,2003,(13)4:1-5.
    [16]C.P. Larrabee. Corrosion resistance of high-strength low-alloy steels as influenced by composition and environment[J], Corrosion,1953,9(8):259-271.
    [17]松岛岩著,靳裕康译.低合金耐蚀钢—开发、发展及研究[M],北京:冶金工业出版社,2004,12.
    [18]刘丽宏,齐慧滨,卢燕平等.耐大气腐蚀钢的研究概况[J],腐蚀科学与防护技术,2003,15(2):86-89.
    [19]梁彩凤,郁春娟,侯文泰.不锈钢的大气腐蚀研究—12年暴露试验总结[J],中国腐蚀与防腐学报,1999,19(4):228-232.
    [20]梁彩凤,侯文泰.碳钢、低合金钢16年大气暴露腐蚀研究[J],中国腐蚀与防腐学报, 2005,5(1):183-186.
    [21]王凤林.新日铁开发出新耐大气腐蚀钢材[J],轧钢,1999,3:32-32.
    [22]丁元法,范钜琛.低合金钢在海洋环境中的腐蚀规律[J],钢铁,1992,27(11):33-34.
    [23]严谨,熊长清.低合金钢耐大气腐蚀性能研究-15年大气曝露试验总结[J],中国腐蚀与防护学报,1986,6(1):1-14.
    [24]陆匠心,李爱柏,李自刚等.宝钢耐候钢产品开发的现状及展望[J],中国冶金,2004(12):23-28.
    [25]邓兆义,姚振甫.新编世界钢号手册[M],北京:机械工业出版社,1995:615,761.
    [26]梁彩凤,候文泰,陈帮文,等.一种新型经济耐候钢的大气腐蚀行为研究[J],中国腐蚀与防护学报,2000,20(3):135-139.
    [27]陈新华.合金元素对经济耐候钢大气腐蚀协同抑制作用[D],沈阳:中科院金属研究所,2007.
    [28]张全成.大气腐蚀过程中耐候钢表面保护性锈层的表征及其改性研究[D],上海:上海交通大学博士学位论文.2002
    [29]缪龙秀.耐候钢的使用方法及其在车辆上的应用(上)[J],国外铁道车辆,1993,1:12-17.
    [30]Yukio T. Newly developed high performance structural steels for long span bridge construction [J], Corrosion Engineering,1998,47(11),684-690.
    [31]张朝生.新型耐大气腐蚀性能钢板处理技术的开发[J],宽厚板,1999,5(5):21-24.
    [32]王占学.控制轧制与控制冷却[M],北京:冶金工业出版社,1988,55-67.
    [33]翁宇庆,超细晶钢理论及技术进展[J],钢铁,2005,40(3):1-8.
    [34]刘相华,杜林秀,王国栋.热轧钢材的晶粒细化与超级钢开发[J],河南冶金,2004,12(3):3-6.
    [35]Setsuo Takaki. Ultra grain refining of iron and the mechanism of grain refining strengthening[C],新一代钢铁材料研讨会(N.G. STEEL'2001)中国金属学会,2001,92-99.
    [36]Wang Guodong, Liu Xianghua, Du Linxiu et al. Research and development of C-Mn super-steels[C], Proceedings of second international conference on advanced structure steels, Shanghai,2004,60-67.
    [37]Liu Xianghua, Du Linxiu, Huyanhui et al. Development of 500MPa super-steel strip[C], proceedings of second inter- national conference on advanced structure steels, Shanghai, 2004,200-203.
    [38]雷毅,余圣甫,许晓锋.微米级超细晶粒钢细化技术的研究进展[J],兵器材料科学与工程,2005,28(2):62-66.
    [39]牧正志.细化钢铁材料晶粒的原理方法[J],热处理,2006,21(1):1-10.
    [40]杜林秀,高彩茹,张彩碚,等.低碳钢应变诱导铁素体相变发生的温度条件[J],金属 学报,2002,38(10):1031-1036.
    [41]牧正志.钢铁组织控制的现状与展望[M],21世纪的钢铁材料(译文专集).首钢集团公司技术中心,1999:78-79.
    [42]牧正志.钢经形变热处理的组织控制及强韧性改善[J],上海金属,1993,15(6):9-15.
    [43]刘东升.钢铁材料变形奥氏体相变的研究及应用[D],沈阳:东北大学博士学位论文,1999.
    [44]孙建林,康永林,魏欣亚,等.800MPa级低合金中厚板的工艺及力学性能分析[J],新一代钢铁材料研讨会[C],北京:中国金属学会,2001,345-348.
    [45]T.Furuhara, Y.Mizuno, T.Maki. Mater. Trans. JIM,1999(40):815.
    [46]K.Tsuzaki, Huang Xiaoxu, T.Maki. Acta Mater.,1996,(44):4491.
    [47]T.Furuhara, K.Hikita, T.Maki. Material Science. Forum,1999,53:304-306.
    [48]A. Quispe, S. F. Medina, P. Valles. Recrystallization induced precipitation interaction in a medium carbon vanadium microalloyed steel [J], ISIJ International,1997,37 (8):783-788.
    [49]S. F. Medina, A. Quispe. Improved model for static recrystallization kinetics of hot deformed austenite in low alloy and Nb/V microalloyed steels [J], ISIJ International,2001, 41 (7):774-781.
    [50]Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation [J], ISIJ International,2003,43(5):684-691.
    [51]Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J], Acta Materialia,1996,44(1):127-136.
    [52]Ryan N D, McQueen H J. Dynamic softening mechanisms in 304 austenitic stainless steel [J], Canadian Metallurgical Quarterly,1990,29 (2):147-162.
    [53]A. Laasraoui, J J. Jonas. Prediction of steel flow stresses at high temperatures and strain rates[J], Metallurgical Transactions A,1991,22 A(7):1545-1558.
    [54]D. Partington, L.Talbot. Hot working and forming processes[J], The metal society, London: 1980,176.
    [55]W. P. Sun, E. B. Hawbolt. Comparison between static and metadynamic recrystallization-an application to the hot rolling of steels[J], ISIJ International,1997, 37(10):1000-1009.
    [56]Gessinger G H, Bomford M J. Powder metallurgy of super alloys[J]. International Metallurgical Reviews,1974,19:53-73.
    [57]Hu H. Recovery recrystallization of metals[M], New York:Interscience Publishing,1963, 311-326.
    [58]王占学.控制轧制与控制冷却[M],北京:冶金工业出版社,1988,25-28.
    [59]刘相华,胡贤磊,杜林秀.轧制参数计算模型及其应用[M],北京:化学工业出版社,2007,20-21.
    [60]周纪华,管克智.金属塑性变形阻力[M],北京:机械工业出版社,2001,211-229.
    [61]S FMedina, J EMancilla. Static recrystallization modelling of hot deformed steels containing several alloying elements [J], ISIJ International,1996,36 (8):1070-1076.
    [62]窦晓锋,鹿守理,赵辉,等.Q235钢亚态再结晶模型的建立[J],钢铁,1999,34(4):34-36.
    [63]BaiD Q, Yue S, Maccagno T et al. Static recrystallization of Nb and Nb-B steels under continuous cooling conditions [J], ISIJ International,1996,36 (8):1084-1093.
    [64]Fermndez A I, Lopez B, Rodriguez Ibabe J M. Relationship between the austenite recrystallization fraction and the softening measured from the interrupted torsion test technique[J], Script Materialia,1999,40(5):543-549.
    [65]任安超,吉玉,赵隆崎,等.0.75C-0.11V微合金钢的静态再结晶行为[J],特殊钢,2008,29(2):26-27.
    [66]Y. Xu, Y. Cui and H. Shong. Mechanical working and steel processing conference proceeding[J], ISS,1997,34:641-649.
    [67]G. Li, T. M. Maccagno, D.Q. Bai et al. Effect of initial grain size on the static recrystallization kinetics of Nb microalloyed steels[J], ISIJ International,1996, 36(12):1479-1485.
    [68]Essadiqi E, Jonas J J. Effect of deformation on the austenite-to-ferrite transformation in a plain carbon and two microalloyed steels[J], Metallurgical Transactions A,1988,19A(3): 417-426.
    [69]Khlestov V M, Konopleva E V, McQueen H J. Effect of deformation in controlled rolling on ferrite nucleation[J], canadian metallurgical quarterly,2001,40(2):221-233.
    [70]Bengochea R, Lopez B, Gutierrez I. Microstructural evolution during the austenite-to-ferrite transformation from deformed austenite[J], Metallurgical and Materials Transactions A,1998,29A(2):417-426.
    [71]杜林秀,刘东升,刘相华,等.低碳钢应变诱导相变区变形行为的研究[J],机械工程材料,2000,24(6):8-10.
    [72]杜林秀,丁桦,刘相华,等.低碳钢控制轧制的温度范围及组织变化[J],东北大学学报,2002,23(10):972-975.
    [73]杜林秀,高彩茹,张彩碚,等.低碳钢应变诱导铁素体相变发生的温度条件[J],金属学报,2002,38(10):1031-1036.
    [74]杨王玥,齐俊杰,孙祖庆,等.低碳钢形变强化相变的特征[J],金属学报,2004,40(2):135-140.
    [75]杨王玥,胡安民,齐俊杰,等.低碳钢多道次热变形中的应变强化相变与铁素体动态再结晶[J],金属学报,2000,36(11):1192-1196.
    [76]Kaspar R, Lotter U, Biegus C. The influence of thermomechanical treatment on the trahsformation behavior of steels[J]. Steel Research,1994,65(6):242-247.
    [77]田村今男等著,王国栋,刘振宇,熊尚武译.高强度低合金钢的控制轧制与控制冷却[M],北京:冶金工业出版社,1992,104.
    [78]T. Tanaka. High strength low alloy steels[M], Wollongong, Australia,1984:107-172.
    [79]Davies C H J, Cizek P, Wynne B P et al. Effect of composition and austenite deformation on the transformation characteristics of low-carbon and ultra low-carbon microalloyed steels[J], Metallurgical and Materials Transactions A,2002,33A(5):1331-1349.
    [80]崔忠圻.金属学与热处理[M],北京:机械工业出版社,1999,231-344.
    [81]Daveport E S, Bain E C. Transformation of austenite at constant subcritical temperatures [J], Trans. AIME,1930,90:117-125.
    [82]俞德钢,王世道.贝氏体相变理论[M],上海:上海交通大学出版社,1998.
    [83]康沫狂,杨思品,管敦惠.钢中贝氏体[M],上海:上海科学技术出版社,1990.
    [84]Reynolds W T, Aaronson H I, Spanos G. A summary of the present diffusionist views on bainite [J], Materials Transaction, JIM,1991,32(8):737-746.
    [85]Shipway P H, Bhadeshia H K D H. Mechanical stabilization of bainite [J], Materials Science and Technology,1995,11(11):1116-1128.
    [86]Mesplont C, Cooman B C. Effect of austenite deformation on crystallographic texture during transformations in microalloyed bainitic steel [J], Materials Science nad Technology, 2003,19(7):875-885.
    [87]Fang H S, Yang J B, Yang Z G, Bai B Z. The mechanism of bainite transformation in steels [J], Scripta Materialia,2002,47(3):157-162.
    [88]Shiflet G J, Hackenberg R E. Partitioning and the growth of bainite [J], Scripta Materialia, 2002,47(3):163-167.
    [89]Quidort D, Brechet Y. The role of carbon on the kinetics of bainite transformation in steels [J], Scripta Materialia,2002,47(3):151-156.
    [90]Muddle B C, Nie J F. Formation of bainite as a diffusional-displacive phase transformation [J], Scripta Materialia,2002,47(3):187-192.
    [91]赵四新.中低碳钢贝氏体形核长大动力学研究[D],上海:上海交通大学,2007.
    [92]Bramfitt B L, Speer J G. A perspective on the morphology of bainite [J], Metallurgical Transactions A,1990,21A (4):817-829.
    [93]P. A.Manohar, T. Chandra and C. R. Killmore et al. Continuous cooling transformation behaviour of microalloyed steels containing Ti,Nb,Mn and Mo [J], ISIJ International,1996, 36(12):1486-1493.
    [94]P. A. Manohar, T. Chandra. Continuous cooling transformation behavior of high strength microalloyed steels for linepipe applications[J], ISIJ International,1998,38(7):766-774.
    [95]Bhadshia H K D H, Christian J W. Bainite in steel[J], Metallurgical Transactions A,1990, 21A(4):767-797.
    [96]Babu S S, Bhadshia H K D H. Stress and acicular ferrite transformation[J], Materials Science and Engineering,1992, A156(1):1-9.
    [97]Shipway P H, Bhadshia H K D H. The effect of small stress on the bainite transformation[J], Materials Science and Engineering,1995, A201(1-2):143-149.
    [98]Bhadshia H K D H, David S A, Vitek J M et al. Stress induced transformation to bainite in fe-cr-mo-c pressure vessel steel[J], Materials Science and Technology,1991,7(8):686-698.
    [99]Matsuzaki A, Bhadshia H K D H, Harada. Stress affected bainitic transformation in a fe-c-si-mn alloy[J],Acta Metallurgica, 1994,42(4):1081-1090.
    [100]Wu X L, Zhang X Y, Kang M K et al. Displacive mechanism of bainitic formation in carbon-depleted region of austenite[J], Materials Transactions, JIM,1994,35(11):782-786.
    [101]H.K.D.H. Bhadeshia. The bainite transformation:unresolved issues[J], Materials Science and Engineering A, A273-275(12),1999:58-66.
    [102]Hillert M. Diffusion in growth of bainite[J], Metallurgical Transactions A,1994,25A(9): 1957-1966.
    [103]Reynolds W T, Aaronson H I, Spanos G. A summary of the present diffusionist views on bainite[J], Materials Transactions, JIM,1991,32(8):737-746.
    [104]Spanos G, Fang H S, Aaronson H I. A mechanism for the formation of lower bainite[J], Metallurgical Transactions A,1990,21A(6):1381-1389.
    [105]Aaronson H I, Reynolds W T, Shiflet G J et al. Bainite viewed three different ways[J], Metallurgical Transactions A,1990,21A(6):1343-1380.
    [106]Kinsman K R, Eichen E, Aaronson H I. Thickening kinetics of proeutectoid ferrite plate in Fe-C alloys[J], Metallurgical Transactions A,1975,6(2):303-317.
    [107]Enomoto M. Thermodynamics and kinetics of the formation of widmanstatten ferrite plates in ferrous alloys[J], Metallurgical and Materials Transactions A,1994,25A(9):1947-1955.
    [108]Fang H S, Wang J J, Zheng Y K. Formation mechanism of bainitic ferrite and carbide[J], Metallurgical and Materials Transactions A,1994,25A(9):2001-2007.
    [109]刘秀晨,安成强,崔作兴等.金属腐蚀学[M],北京:国防工业出版社,2002,219-223.
    [110]王戈,陈俊明.铁锈的阴极行为及其对腐蚀与防护的影响[J],中国腐蚀与防护学报,1985,5(4):258-263.
    [111]张全成,吴建生,郑文龙,等.耐候钢的研究与发展现状[J],材料导报,2000,14(7):12-14.
    [112]U. R. Evans, C. A. Taylor. Mechanism of atmospheric rusting[J], Corrosion Science,1986, 8(6):447-455.
    [113]U. R. Evans, C. A. J Taylor. Mechanism of atmospheric rusting[J], Corrosion Science, 1972,12(3):227-246.
    [114]U. R. Evans. Mechanism of rusting[J], Corrosion Science,1969,9(9):813-82.
    [115]I. Suzuki, Y. Hisamatsu. Nature of atmospheric rust on iron[J], Journal of the Electrochemical Society,1980,127(10):2210-2215.
    [116]张全成,吴建生,郑文龙,等.耐候钢表面稳定锈层形成机理的研究[J],腐蚀科学与防护技术,2001,13(3):143-146.
    [117]于福洲.金属材料的腐蚀性[M],北京:科学出版社,1982,3.
    [118]H.托马晓夫.金属腐蚀理论[M],北京:科学出版社,1957,17-20.
    [119]J. Dunnwald, A. Otto. An investigation of phase transitions in rust layers using raman spectroscopy[J], Corrosion Science,1989,29(9):1167-1175.
    [120]M. Yamashita, H. Miyuki, H. Nagano. Compositional gradient and ion selectivity of Cr-substituted fine goethite as the final protective rust layer on weathering steel[J], Tetsu to Hagane(铁と钢),1997,83(7):448-445.
    [121]T. Kamimura, M. Stratmann. The influence of chromium on the atmospheric corrosion of steel[J], Corrosion Science,2001,43(3):429-447.
    [122]张全成,吴建生,郑文龙,等.合金元素的二次分配对耐候钢抗大气腐蚀性能的影响[J],材料保护,2001,34(4):4-6.
    [123]刘永辉,张佩芬.金属腐蚀学原理[M],北京:航天工业出版社,1993,151-159.
    [124]H. Kihira, S. Ito, S. Mizoguchi et al. Creation of alloy design concept for anti air-born salinity weathering steel[J],材料と环境,2000,49(1):30-40.
    [125]T. Nishimura, H. Katayama, K. Noda et al. Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments[J], Corrosion Science,2000,42(9):1611-1621.
    [126]J. O. Sei, D. C. Cook, H. E. Townsend. Atmospheric corrosion of different steels in marine, rural and industrial environments[J], Corrosion Science,1999,41(9):1687-1702.
    [127]郭锋,林勤,张志平,等.稀土对碳锰钢耐候性能的影响[J],稀土,2003,24(5):30-33.
    [128]林勤,陈帮文,郭锋,等.稀土改善09CuPTiRE耐候钢耐蚀性的作用机理[J],稀土,2003,24(5):26-28.
    [129]王龙妹,杜挺,王跃奎.09CuPTi (RE)耐候钢中稀土作用机制研究[J],中国稀土学报,2003,21(5):491-494.
    [130]H. Kihira, S. Ito, T. Murata. The behavior of phosphorous during passivation of weathering steel by protective patina formation[J], Corrosion Science,1990,31:383-388.
    [131]T. Misawa, K. Asami, K. Hashimoto et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J],Corrosion Science,1974,14(4):279-289.
    [132]J. T. Keiser, C. W. Brown. Characterization of the passive film formed on weathering steels [J], Corrosion Science,1983,23(3):251-259.
    [133]M. Yamashita, H. Konishi, J. Mizuki et al. Nano-Structure of protective rust layer on weathering steel exposed in nation-wide environments in Japan[C], First International Conference on Advanced Structural Steels,2002,3:287-292.
    [134]M. Yamashita, H. Miyuki, Y. Matsuda et al. The long term grouth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century[J], Corrosion Science,1994,36(2):283-299.
    [135]M. Yamashita, H.Nagano, T. Misawa et al. Structure of protective rust layers formed on weathering steels by long term exposure in the industrial atmospheres of Japan and North America[J], ISIJ International,1998,38(3):285-290.
    [136]U. R. Evans, C. A. J Taylor. Mechanism of atmospheric rusting[J], Corrosion Science, 1972,12(3):227-246.
    [137]M.Yamashita, H. Miyuki, H.Nagaro et al. The long term growth of the protective rust later formed on weathering steel by atmospheric corrosion during a quarter of a century[J], Corrosion Science,1994,36(2):283-290.
    [138]M. Pourbaix, J. V. Muylder. A. Pourbaix. Atmospheric corrosion (ed.W.H.Ailor)[M], New York:John Wiley,1982,167-170.
    [139]曹楚南.腐蚀电化学[M],北京:化学工业出版社,1994.
    [140]宋诗哲.腐蚀电化学研究方法[M],北京:化学工业出版社,1988.
    [141]Y. S. Choi, J. J. Shim, J. G. Kim. Effects of Cr, Ni, and Ca on the corrosion behavior of low carbon steel in synthetic tap water[J], Journal of Alloys and Compounds,2005, 391(1-2):162-169.
    [142]T. Nishimura, H. Katayama, K. Noda et al. Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments[J], Corrosion Science,2000,42(9):1611-1621.
    [143]T. Nishimura, H. Katayama, K Noda et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions[J], Corrosion,56,2000(9): 935-941.
    [144]贾志鑫.低碳微合金化管线钢的组织性能控制[D],沈阳:东北大学,2006.
    [145]Cho S H, Kang K B, Jonas J J. Mathematical Modeling of the Recrystallization Kinetics of Nb Microalloyed Steels[J], ISIJ International,2001,41(7):766-773.
    [146]C.M.Sellars, GJ.Davies(eds.). Proceedings of the international conference on hot working and forming processes, metals society, london,1980.
    [147]王秉新.齿套用22CrSH钢管的研制[D],沈阳:东北大学博士学位论文,2004.
    [148]王秉新,徐旭东,刘相华,等.新型Mn-Cr齿轮钢的动态再结晶行为研究[J],钢铁,2004,39(9):54-57.
    [149]刘振宇,许云波,王国栋.热轧钢材组织-性能演变的模拟和预测[M],沈阳:东北大学出版社,2004.
    [150]Salvatorl I, Inoue T, Nagai K. Ultrafine grain structure through dynamic recrystallization for type 304 stainless steel[J], ISIJ International,2002,42(7):744-750.
    [151]Derby B. The dependence of grain size on stress during dynamic recrystallization [J], Acta Metallurgica et Materialia,1991,39(5):955-962.
    [152]Derby B, Ashby M F. On dynamic recrystallization[J], Scripta Metallurgica,1987,21(6): 879-884.
    [153]何宜柱,陈大宏,雷廷权,等.形变Z因子与动态再结晶晶粒尺寸间的理论模型[J].钢铁研究学报,2000,12(1):26-30.
    [154]Ryan N D, McQueen H J. Comparison of dynamic softening in 301,304,316 and 317 stainless steels[J], High Temperature Technology,1990,8(3):185-200.
    [155]张国滨,徐树成,曹会改,等.再结晶软化程度对C-Mn钢变形抗力的影响[J],钢铁,2004,39(6):59-66.
    [156]杜林秀,刘东升,刘相华,等.低碳钢应变诱导相变区变形行为的研究[J],机械工程材料,2000,24(6):8-10.
    [157]戴铁军,刘战英,刘相华,等.30MnSi钢金属塑性变形抗力的数学模型[J],塑性工程学报,2001,8(3):17-20.
    [158]Sun W P, Hawbolt E B. Comparison between static and metadynamic recrystallization-an application to the hot rolling of steels [J], ISIJ Intertational,1997,37(1):1000-1007.
    [159]SangHyun CHO, KiBong KANG, Jonas J J. Mathematical modeling of the recrystallization kinetics of nb microalloyed steels [J], ISIJ Intertational,2001,41(7):766-773.
    [160]Medina S. F., Mancilla J. E. Static recrystallization modeling of hot deformed steels containingseveral alloying elements[J], ISIJ International,1996,36(8):1070-1076.
    [161]Medina S F, Mancilla J E. Determination of static recrystallisation crytical temperature of austenite in microalloyed steel[J], ISIJ International,1993,33(12):1257-1264.
    [162]Siwecki T. Modeling of microstructure evolution during recrystallisation controlled rolling[J], ISIJ International,1992,32(3):368-376.
    [163]Samuel F H, Yue S, Jonas J J. Effect of dynamic recrystallization on microstructural evolution during strip rolling[J], ISIJ International,1990,30(3):216-225.
    [164]王庆山.黑色金属强度-硬度换算经验公式[J],理化检验-物理分册,1995,31(2):39-41.
    [165]Lee C H, Bhadshia H K D H, Lee H C. Effect of plastic deformation on the formation of acicular ferrite[J], Materials Science and Engineering A,2003,360(1-2):249-257.
    [166]Babu S S, Bhadshia H K D H. Mechanism of the transition from bainite to acicular ferrite[J], Materials Transactions, JIM,1991,32(8):679-688.
    [167]Bodriar R L, Hansen S S. Effect of austenite grain size and cooling rate on widmanstatten ferrite formation in low-alloy steels[J], Metallurgical and Materials Transactions A,1994, 25A:665-675.
    [168]陈铭谟.贝氏体的转变机制和高强度贝氏体钢设计[M],北京:国防工业出版社,1989,62-63.
    [169]杜林秀.低碳钢变形过程中的组织演变与控制[D],沈阳:东北大学,2003.
    [170]刘东升.钢铁材料变形奥氏体相变的研究及其应用[D],沈阳:东北大学,1999.
    [171]徐祖耀.应力对钢中贝氏体相变的影响[J],金属学报,2006,40(2):113-119.
    [172]Biss V, Cryderman RL. Martensite and retained austenite in hot-rolled, low carbon bainitic steels[J], Metal Transaction A,1971,2(8):2267-2276.
    [173]徐祖耀.贝氏体相变简介[J],热处理,2006,21(21):1-20.
    [174]方鸿生,刘东雨,等.贝氏体钢的强韧化途径[J],机械工程材料,2001,25(6):1-5.
    [175]雍岐龙,马鸣图,吴宝榕.微合金钢—物理和力学冶金[M],北京:机械工业出版社,1989.
    [176]中华人民共和国国家标准GB/T 1172,1999—黑色金属硬度及强度换算值[J],理化检验—物理分册,2001,37(9):406-409.
    [177]束得林.金属的力学性质[M],北京:机械工业出版社,1987,86-92.
    [178]G.亨利(法国),D.豪斯特曼(联邦德国)著.宏观断口学及显微断口学[M],北京:机械工业出版社,1990,5-7.
    [179]S. Dasa, A. Ghoshb, S. Chatterjeeb. Influence of thermo-mechanical processing and different post-cooling techniques on structure and properties of an ultra low carbon cu bearing HSLA forging[J], Scripta Materialia,2003,48:51-57.
    [180]谈愈煦.金属电子显微分析[M],北京:机械工业出版社,1989,27-28.
    [181]上海交通大学《金属断口分析》编写组.金属断口分析[M],北京:国防工业出版社,1979,114-115.
    [182]Y. S. Choi, J. J. Shim, J. G. Kim. Effects of Cr, Ni, and Ca on the corrosion behavior of low carbon steel in synthetic tap water[J], Alloys and Compounds,2005,391(2):162-169.
    [183]张全成,吴建生,郑文龙,等.耐候钢的研究与发展现状[J],材料导报,2000,14(7):12-14.
    [184]K.Y.Kim, Y.H.Hwang, J.Y.Yoo, Effect of Silicon Content on the Corrosion Properties of Calcium-Modified Weathering Steel in a Chloride Environment[J], Corrosion,2002, 58 (7):570-583.
    [185]张全成,吴建生,陈家光,等.暴露1年的耐大气腐蚀用钢表面锈层分析[J],中国腐蚀与防护学报,2001,21(5):297-300.
    [186]王笑天.金属材料[M],西安:西安交通大学出版社,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700