用户名: 密码: 验证码:
高氮奥氏体不锈钢的组织稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来不断增长的不锈钢需求与有限的镍资源之间的矛盾日趋严重。另外,人体器官对作为生物工程材料的含镍奥氏体不锈钢存在过敏性。这些原因使得人们把目光聚焦到既具有低的成本又具有优异的力学性能及耐腐蚀、耐氧化、耐磨损等性能的资源节约型不锈钢——高氮不锈钢上。但是,对于这种新型的先进钢铁材料,在热加工、焊接和使用时,在奥氏体中可能会有碳氮化物和金属间化合物的析出发生,降低奥氏体的稳定性。这些第二相的析出将会严重破坏材料的各种加工和使用性能。因此,研究它的析出行为和对性能的影响具有重要的理论意义和实用价值。
     本研究熔炼了一系列以Mn、N完全代Ni的高氮奥氏体不锈钢,通过金相显微镜、扫描电镜、透射电镜、X射线衍射、热模拟和显微硬度等测试技术和热力学计算,系统地研究了这种资源节约型不锈钢等温时效过程中第二相析出的热力学和动力学规律,合金成分、处理制度和第二相析出之间的关系,奥氏体组织稳定性对热塑性的影响,冷变形和合金元素Mn、Mo等对析出行为的影响。获得的主要结论如下:
     1、Fe-18Cr-Mn-C-N系和Fe-18Cr-Mn-Mo-C-N系的热力学平衡相图计算所提供的信息与实验结果基本一致,表明此种热力学计算可为Fe-18Cr-Mn-C-N和Fe-18Cr-Mn-Mo-C-N合金系的合金设计、奥氏体化及等温时效处理工艺提供热力学依据。
     2、在Cr-Mn-N系低碳高氮奥氏体不锈钢中,固溶处理后时效的析出相主要为M2N相。随着时效时间的增加,M2N相由晶界的粒状析出过渡到向晶内长大的胞状析出。当钢中残留少量的碳时,会有极少量的粒状M23C6相在晶界析出,随着时效时间的增加,M23C6的析出量没有增加。
     3、在Fe-18Cr-12Mn-0.48N钢中,析出的温度区间为625-925℃。根据实验数据测定的M2N的析出动力学曲线,M2N析出的鼻尖温度为800℃,相应的孕育期为30min,析出激活能为296kJ/mol。
     4、高氮奥氏体不锈钢Fe-18Cr-12Mn-0.55N的热塑性分为三个特征区:(1)高于1150℃的高温脆性区;(2)温度区间为850-150℃的高温塑性区;(3)低于850℃的中温半脆性区。高温脆性和中温半脆性分别由δ铁素体和M2N析出相在奥氏体晶界上的形成所致。在高温塑性区的优良的热塑性是由于在此温度区间拉伸试样为稳定的单相奥氏体组织。
     5、冷变形促进M2N相的析出,除了在晶界上率先析出外,冷变形材料在孪晶界上也有析出;冷变形还促进金属间化合物σ相的析出。
     6、实验用钢经30%冷变形以后,大约在750℃开始发生再结晶。在750℃时效过程中,析出的发生优先于再结晶,大量的第二相粒子在位错、晶界和亚晶界等缺陷位置优先形核,这些粒子的析出阻碍了再结晶晶核的形成。在900℃时效过程中,再结晶和析出同时发生,第二相粒子在亚晶和再结晶的晶界和晶内均有发生,M23C6、M2N析出发生在晶界上,σ相析出发生在晶内。
     7、在低碳的Fe-18Cr-(18/12)Mn-0.4N高氮奥氏体不锈钢中,合金元素Mn的增加对析出类型没有影响,M2N仍然是主要的析出相。Mn的增加对M2N的析出有促进作用,会使M2N析出的上限温度提高。
     8、高氮奥氏体不锈钢Fe-18Cr-18Mn-0.6N中添加Mo,使钢中出现另一种金属间化合物χ相,χ相不仅在晶界析出,也在晶内析出。加Mo的高氮奥氏体不锈钢的氮化物析出也呈现了不连续的胞状方式。
The contradiction between continuously increasing requirement of stainless steels and limited Ni resources has become more and more serious in recent years. In addition, human organs exhibit irritability to austenitic stainless steel with Ni as bioengineering materials. As a result, great attention is now focused on resource-saving stainless steels, that is high-nitrogen stainless steel having not only low cost but also excellent mechanical properties, corrosion resistance, oxidization resistance and wear resistance etc.. However, the precipitation of carbides, nitrides and intermetallics may occur in austenite of this advanced steel material during thermal processes, welding and service at the elevated temperatures, which reduce austenitic stability. The precipitation of second phases will heavily damage various working and service properties of materials. Therefore, investigation on precipitation behavior and its effects on properties are of academic significance and practical importance.
     In the present study, a series of high-nitrogen austenitic stainless steels completely replacing Ni by Mn and N were smelted. Through optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermomechanical simulation, micro-hardness test and thermodynamic calculation, we systemically investigated the thermodynamic and kinetic behaviors of precipitation during isothermal aging, the relationship among alloy compositions, treatment conditions and second phase precipitation, the effect of austenitic stability on hot ductility and the effects of cold deformation and alloying elements of Mn and Mo on precipitation behavior. The major conclusions are as follows:
     1. The information provided by calculation of thermodynamic equilibrium diagram on Fe-18Cr-Mn-C-N system and Fe-18Cr-Mn-Mo-C-N system is consistent with the experimental results, indicating that this kind of thermodynamic calculation can provide thermodynamic instructions for alloy composition design, establishing of austenization and isothermal aging heat treatment conditions in Fe-18Cr-Mn-C-N system and Fe-18Cr-Mn-Mo-C-N system.
     2. M2N phase is the main precipitate in low carbon high-nitrogen Cr-Mn-N austenitic stainless steel during aging after solution treatment. The precipitation of M2N phase transits from initial granular precipitation at grain boundary to cellular precipitation growing towards to grain inside with increasing aging time. When small amount of carbon remains in the steels, thimbleful of granular M23C6 phase precipitates at grain boundary. The volume fraction of M23C6 precipitates does not increase with increasing aging time.
     3. The temperature region of precipitation is between 625℃and 925℃in Fe-18Cr-12Mn-0.48N steel. According to the isothermal precipitation kinetics curve of M2N mensurated from experimental data, the nose temperature of M2N precipitation is determined to be 800℃, the corresponding incubation period is 30min and the corresponding activation energy of precipitation is calculated as 296 kJ/mol.
     4. The hot ductility curve of Fe-18Cr-12Mn-0.55N high-nitrogen austenitic stainless steel can be divided into three regions:(1)the high-temperature brittlement region higher than 1150℃; (2)the high-temperature ductility region from 850℃to 1150℃; (3)the middle-temperature half brittlement region lower than 850℃. The high-temperature brittlement and middle-temperature half brittlement are caused by the appearances ofδferrite and the precipitation of M2N phase at austenitic grain boundaries, respectively. The excellent hot ductility region between the two brittlement temperature regions results from the stable single phase austenitic microstructure.
     5. Cold deformation accelerates the precipitation of M2N phase. Beside the precipitation firstly occurs at grain boundaries, the precipitation also occurs at twin grain boundaries in cold-deformated materials. Cold deformation also induces the precipitation ofσphase.
     6. After 30% cold deformation, the test steel begins to recrystallize at about 750℃. During aging at 750℃the precipitation occurs prior to recrystallization. Large numbers of the second phases preferentially nucleate at defect sites such as dislocations, grain boundaries and subgrain boundaries. The precipitation of these second-phase particles hinders the formation of recrystallization nucleus. During aging at 900℃, the recrystallization and precipitation simultaneously occur, the precipitation of second phases occurs both at subgrain and recrystallized grain boundaries and inside grains. M2N and M23C6 precipitation occurs at grain boundaries andσphase precipitation occurs inside grains.
     7. In Fe-18Cr-(18/12)Mn-0.4N low carbon high-nitrogen austenitic stainless steels, increasing of Mn content has no effect on the precipitation type and M2N phase is still major precipitate. Increasing of Mn content accelerates precipitation of M2N phase and increases upper limit temperature of M2N precipitation.
     8. The addition of Mo to Fe-18Cr-18Mn-0.6N high-nitrogen austenitic stainless steel causes the precipitation of another precipitate, intermetallicsχphase. The precipitation ofχphase occurs not only at grain boundaries but also inside grains. The nitrides also precipitate by the discontinuous cellular way in high-nitrogen austenitic stainless steel with Mo.
引文
1.张仲秋,李新亚,娄延春等.含氮不锈钢研究的进展[J],铸造,2002,51(11):661-665.
    2. Andrew J H. Nitrogen in iron[J], Carnegie Scholarship Memoirs,1912,11:227-235.
    3. Uhlig H H. The role of nitrogen in 18-8 stainless steel[J], Transactions, American Society for Metals,1942,30:947.
    4.康显澄.含氮不锈钢[J],特钢技术,1994,(3):1-14.
    5. Douthett J A. Nitronic family of nitrogen-bearing stainless steels[J], Metal Progress,1975, 108(3):50-54.
    6. Mudali U K, Raj B. High nitrogen steels and stainless steel-manufacturing, properties and applications[M], New Delhi:Narosa Publishing House,2004,1-3.
    7.张朝生.高氮不锈钢的开发及其机械性能[J],上海金属,2003,25(2):23.
    10.李惠萍.高氮不锈钢[J],中国钼业,2001,25(5):18.
    11. Freudenberger J, Gaganov A, Hickman A L, et al. Mechanical behaviour of high nitrogen stainless steel reinforced conductor for use in pulsed high field magnets at cryogenic temperature[J], Cryogenics,2003,43(2):133-136.
    12. Di Schino A, Kenny J M. High temperature resistance of a high nitrogen and low nickel austenitic stainless steel[J], Journal of Materials Science Letters,2003,22(9):691-693.
    13. Balachandran G, Bhatia M L, Ballal N B, et al. Influence of mechanical processing and heat treatment on microstructure evolution in nickel free high nitrogen austenitic stainless steels[J], ISIJ International,2000,40(5):491-500.
    14. Diener M, Speidel M O. Fatigue and corrosion fatigue of high-nitrogen austenitic stainless steel[J], Materials and Manufacturing Processes,2004,19(1):111-115.
    15. Bregliozzi G, Di Schino A, Kenny J M, et al. Influence of atmospheric humidity and grain size on the friction and wear of high nitrogen austenitic stainless steel[J], Journal of Materials Science,2004,39(4):1481-1484.
    16. Rashev T. Development of laboratory and industrial installations for one stage production of HNS[J], Materials and manufacturing processes,2004,19(1):31-40.
    17.陆世英,张廷凯,康喜范等.不锈钢[M],北京:原子能出版社,1995,5-7.
    18.周维智,孙晓洁,徐国涛.Mn18Cr18N护环钢生产工艺研究概况[J],大型铸锻件,2001,(1):52-54.
    19.赵林,金东国,高建军等.Mn18Cr18N护环钢电渣重熔工艺的研究[J],大型铸锻件,1997,(3):22-27.
    20.姜周华,刘喜海,赵林等.Mn18Cr18N护环钢电渣重熔技术开发[J],特殊钢,1999,20(增刊):82-87.
    21.陈志强.高氮不锈钢研究的发展近况[J],宝钢技术,2005,(5):11-17.
    22.任伊宾,杨柯,张炳春等.真空感应炉充氩冶炼高氮Cr-Mn-Mo-Cu奥氏体不锈钢[J],特殊钢,2004,25(4):13-15.
    23.高亦斌,陈根保,金卫强.AOD精炼高氮奥氏体不锈钢1Cr22Mn15N的工艺实践[J],特殊钢,2005,26(2):51-53.
    24.李花兵,姜周华.不锈钢熔体中氮溶解度的热力学计算模型[J],东北大学学报(自然科学版),2007,28(5):672-675.
    25. Simmons J W. Overview:high-nitrogen alloying of stainless steels[J], Materials Science and Engineering A,1996,207(2):159-169.
    26.瞿天才,吴强,夏重如等.高氮钢领域的现状及其发展方向[J],上海钢研,1990,(3):51-57.
    27.启明.高氮不锈钢的试生产[J],金属功能材料,1999,(5):230-231.
    28.蒋国昌.纯净钢及二次精炼[M],上海:上海科学技术出版社,1996,268-269.
    29. Andreev N, Rashev T. Influence of the counter-pressure casting on the macrostructure of high nitrogen steel industrial blocks[J], Materials Science Forum,1999,318-320: 281-288.
    30. Andreev N, Rashev T, Popov S. Investigation of the non-metallic inclusions in a high nitrogen steel block cast by counter-pressure [J], Materials Science Forum,1999,318-320: 365-370.
    31.向大林,王克武,朱孝渭.18-18护环用钢的电渣重熔技术研究和应用[J],大型铸锻件,1997,(1):16-20.
    32.李殿魁.高氮钢的工艺技术[J],上海钢研,1996,(1):58-59.
    33. Stein G, Hucklenbroich I. Manufacturing and application of high nitrogen steels[J], Materials and Manufacturing Processes,2004,19(1):7-17.
    34.干勇,董瀚.先进钢铁材料技术的进展[J],中国冶金,2004,(8):1-6.
    35. Torkhov G F, Latash Y V, Fessler R R, et al. Development of melting and thermomechanical-processing parameters for a high-nitrogen stainless steel prepared by plasma-arc remelting[J], Journal of.Metals,1978,30(12):20-27.
    36. Siwka J, Svyazhin A G, Jowsa J, et al. HNS steelmaking process using thermal plasma in a ceramic crucible[J], Materials Science Forum,1999,318-320:359-364.
    37. Rawers J C, Dunning J S. High-pressure-nitrogen alloying of steels [J], Advanced Materials and Processes,1990,138(2):50-52.
    38. Simmons J W, Atteridge D G, Rawers J. Microstructural characterization of as-cast high-nitrogen Fe-15Cr-15Ni alloys[J], Journal of Materials Science,1992,27(22): 6105-6115.
    39.李科,曲选辉,崔大伟.粉末冶金高氮不锈钢的研究现状[J],粉末冶金工业,2005,15(2):20-25.
    40. Rawers J, Croydon F, Krabbe R, et al. Tensile characteristics of nitrogen enhanced powder injection moulded 316L stainless steel[J], Powder Metallurgy,1996,39(2): 125-129.
    41. Hirano M, Kawai N. Effect of nitrogen on high speed steels [J], Metal Powder Report, 1986,41(7):527-531.
    42. Simmons J W, Kemp W E, Dunning J S. P/M processing of high-nitrogen stainless steels[J], JOM,1996,48(4):20-23.
    43. Gammal T E, Abdel-Karim R, Walter M T, et al. High nitrogen steel powder for the production of near net shape parts[J], ISIJ International,1996,36(7):915-921.
    44.周灿栋,蒋国昌,朱钰如等.粉末锻造制备含氮奥氏体不锈钢[J],粉末冶金技术,2004,22(1):41-44.
    46.任伊宾,杨柯,张炳春等.真空感应炉冶炼高氮钢的影响因素[J],材料与冶金学报,2004,3(1):8-12.
    47. Gavriljuk V G. Nitrogen in iron and steel[J], ISIJ International,1996,36(7):738-745.
    48.周灿栋.高氮35CrMoV钢的制备和研究[D],上海:上海大学,2001.
    49. Byrnes M L G, Grujicic M, Owen W S. Nitrogen strengthening of a stable austenitic stainless steel[J], Acta Metallurgica,1987,35(7):1853-1862.
    50. Rawers J C, Dunning J S, Asai G, et al. Characterization of stainless steels melted under high nitrogen pressure[J], Metallurgical Transactions A,1992,23(7):2061-2068.
    51. Werner E. Solid solution and grain size hardening of nitrogen-alloyed austenitic steels[J], Materials Science and Engineering A,1988,101:93-98.
    52. Hanninen H, Romu J, Ilola R, et al. Effects of processing and manufacturing of high nitrogen-containing stainless steels on their mechanical, corrosion and wear properties [J], Journal of Materials Processing Technology,2001,117(3):424-430.
    53. Andreev C, Rashev T. Chromium-manganese stainless steels with nitrogen content up to 2.10 wt%[J], Materials Science Forum,1999,318-320:255-258.
    54.易邦旺,胡燕,郎文运等.氮含量对Cr18Mn18N无磁不锈钢力学性能,磁导率和组织的影响[J],钢铁,1998,33(3):43-45.
    55. Rhodes G O, Conway J J. High-nitrogen austenitic stainless steels with high strength and corrosion resistance [J], JOM,1996,48(4):28-31.
    56. Sakamoto T, Nakagawa Y, Yamauchi I. Nitrogen-containing 25Cr-13Ni stainless steel as a cryogenic structural material[J], Advances in Cryogenic Engineering,1984,30:137-144.
    57. Uggowitze P J, Magdowski R, Speidel M O. Nickel free high nitrogen austenitic steels [J], ISIJ International,1996,36(7):901-908.
    58. Di Schino A, Kenny J M. Grain refinement strengthening of a micro-crystalline high nitrogen austenitic stainless steel[J], Materials letters,2003,57(12):1830-1834.
    59. Tomota Y, Xia Y, Inoue K. Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steels[J], Acta Materialia,1998,46(5):1577-1587.
    60. Speidel H J C, Speidel M O. Nickel and chromium-based high nitrogen steel[J], Materials and Manufacturing Processes,2004,19(1):95-109.
    61. Tobler R L, Meyn D. Cleavage-like fracture along slip planes in Fe-18Cr-3Ni-13Mn-0.37N austenitic stainless steel at liquid helium temperature [J], Metallurgical Transactions A,1988,19(6):1626-1631.
    62.袁志钟,戴起勋,程晓农等.高氮奥氏体钢的CVN低温冲击断裂研究[J],江苏大学学报(自然科学版),2004,25(3):247-251.
    63.刘世程,王学芝.高氮奥氏体钢低温脆断机理的研究[J],大连铁道学院学报,1999,20(3):65-67.
    64. Byung S R, Soo W N. Effects of nitrogen on low-cycle fatigue properties of type 304L austenitic stainless steels tested with and without tensile strain hold[J], Journal of Nuclear Materials,2002,300(1):65-72.
    65.何国求,陈成澍,高庆.氮对316系列不锈钢低周疲劳特性的影响[J],西南交通大学学报,1999,34(3):343-348.
    66. Di Schino A, Barteri M, Kenny J M. Fatigue behavior of a high nitrogen austenitic stainless steel as a function of its grain size[J], Journal of Materials Science Letters,2003, 22(21):1511-1513.
    67. Vogt J B. Fatigue properties of high nitrogen steels[J], Journal of Materials Processing Technology,2001,117(3):364-369.
    68. Di Schino A, Valentini L, Kenny J M, et al. Wear resistance of a high-nitrogen austenitic stainless steel coated with nitrogenated amorphous carbon films[J], Surface and Coatings Technology,2002,161(2-3):224-231.
    69. Valentini L, Di Schino A, KennyJ M, et al. Wear resistance of a high nitrogen austenitic stainless steel coated with amorphous carbon films:influence of grain size and film composition[J], Materials Letters,2003,57(7):1281-1287.
    70.许崇臣,冈毅民.氮含量对高纯奥氏体不锈钢耐蚀性能的影响及机理的研究[J],钢铁研究学报,1996,8(增刊):20-25.
    71.郎宇平,康喜范.超级高氮奥氏体不锈钢的耐腐蚀性能及氮的影响[J],钢铁研究学报,2001,13(1):30-35.
    72. Kuroda D, Hiromoto S, Hanawa T, et al. Corrosion behavior of nickel-free high nitrogen austenitic stainless steel in simulated biological environments [J], Materials Transactions, 2002,43(12):3100-3104.
    73. Bandy R, Lu Y C, Newman R C, et al. Role of nitrogen in improving resistance to localized corrosion in austenitic stainless steels[J], Proceedings-the Electrochemical Society,1984,84-89:471-481.
    74. Di Schino A, Kenny J M. Effect of grain size on the corrosion resistance of a high nitrogen-low nickel austenitic stainless steel[J], Journal of Materials Science Letters, 2002,21(24):1969-1971.
    75. Bregliozzi G, Di Schino A, Haefke H, et al. Cavitation erosion resistance of a high nitrogen austenitic stainless steel as a function of its grain size[J], Journal of Materials Science Letters,2003,22(13):981-983.
    76. Sagara M, Katada Y, Kodama T. Localized corrosion behavior of high nitrogen-bearing austenitic stainless steels in seawater environment J], ISIJ International,2003,43(5): 714-719.
    77. Briant C L, Andresen P L. Grain boundary segregation in austenitic stainless steels and its effect on intergranular corrosion and stress corrosion cracking[J], Metallurgical Transactions A,1988,19(3):495-504.
    78. Beneke R, Sandenbergh R F. The influence of nitrogen and molybdenum on the sensitization properties of low-carbon austenitic stainless steels[J], Corrosion Science, 1989,29(5):543-555.
    79.陈颜堂.Cr2N对高氮奥氏体不锈钢腐蚀敏感性的影响[J],国外金属热处理,1995,16(4):22-26.
    80. Simmons J W, Covino B S, Hawk J A J, et al. Effect of nitride (Cr2N) precipitation on the mechanical, corrosion, and wear properties of austenitic stainless steel [J], ISIJ International,1996,36(7):846-854.
    81. Rashev T V, Dzhambazova L P, Kovacheva R S. Processes of precipitation and intercrystalline corrosion in high-nitrogen Cr-Mn steels after isothermal annealing[J], 1981,23(5-6):310-313.
    82.袁志钟,陈康敏,戴起勋等.高氮奥氏体钢的Cr2N晶间析出研究[J],金属热处理,2004,29(3):37-40.
    83. Vanderschaeve F, Taillard R, Foct J. Discontinuous precipitation of Cr2N in a high nitrogen, chromium-manganese austenitic stainless steel[J], Journal of Materials Science, 1995,30(23):6035-6046.
    84. Shankar P, Sundararaman D, Ranganathan S. Clustering and ordering of nitrogen in nuclear grade 316LN austenitic stainless steel[J], Journal of Nuclear Materials,1998, 254(1):1-8.
    85.傅万堂,王正,刘文昌等.18Mn-18Cr-0.5N钢氮化物等温析出动力学研究[J],钢铁,1998,33(9):45-48.
    86. Lee T H, Kim S J, Jung Y C. Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo(N) superaustenitic stainless steels aged at 900℃[J], Metallurgical and Materials Transactions A,2000,31(7):1713-1723.
    87. Santhi Srinivas N C, Kutumbarao V V. On the discontinuous precipitation of Cr2N in Cr-Mn-N austenitic stainless steels[J], Scripta Materialia,1997,37(3):285-291.
    88. Knutsen R D, Lang C L, Basson J A. Discontinuous cellular precipitation in a Cr-Mn-N steel with niobium and vanadium additions[J], Acta Materialia,2004,52(8):2407-2417.
    89. Kikuchi M, Kajihara M, Choi S K. Cellular precipitation involving both substitutional and interstitial solutes:cellular precipitation of Cr2N in Cr-Ni austenitic steels[J], Materials Science and Engineering A,1991,146(1-2):131-150.
    90. Stein G, Hucklenbroich I, Wagner M. P2000- a new austenitic high nitrogen steel for power generating equipment[J], Materials Science Forum,1999,318-320:167-174.
    91.张春红.人体用耐蚀无镍奥氏体不锈钢[J],上海钢研,2001,(4):13.
    92. Mudali U K, Raj B. High nitrogen steels and stainless steel-manufacturing, properties and applications[M], New Delhi:Narosa Publishing House,2004,253.
    93. Shankar P, Shaikh H, Sivakumar S, et al. Effect of thermal aging on the room temperature tensile properties of AISI type 316LN stainless steel[J], Journal of Nuclear Materials, 1999,264(1-2):29-34.
    94. Simmons J W. Mechanical properties of isothermally aged high-nitrogen stainless steel [J], Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science, 1995,26(10):2579-2595.
    95. Maribel L S M, Yutaka W, Tetsuo S, et al. Effect of microstructure evolution on fracture toughness in isothermally aged austenitic stainless steels for cryogenic applications [J], Cryogenics,2000,40(11):693-700.
    96. Simmons J W. Influence of nitride (Cr2N) precipitation on the plastic flow behavior of high-nitrogen austenitic stainless steel[J], Scripta Metallurgica et Materialia,1995,32(2): 265-270.
    97. Simmons J W, Atteridge D G, Rawers J C. Sensitization of high-nitrogen austenitic stainless steels by dichromium nitride precipitation [J], Corrosion,1994,50(7):491-501.
    98. Ha H Y, Kwon H S. Effect of Cr2N on the pitting corrosion of high nitrogen stainless steels[J], Electrochimica Acta,2007,52(5):2175-2180.
    99. Sundman B, Jansson B, Andersson J O. The thermo-calc databank system[J], Calphad, 1985,9(2):153-190.
    100.Sundman B. Thermodynamic databanks, visions and facts[J], Scandinavian Journal of Metallurgy,1991,20(1):79-85.
    lO1.Briant C L, Hall E L. A comparision between grain boundary chromium depletion in austenitic stainless steel and corrosion in the modified strauss test[J], Corrosion,1986, 42(9):522-531.
    102.Betrabet H S, Nishimoto K, Wilde B E, et al. Electrochemical and microstructural investigation of grain boundary precipitation and AISI 304 stainless steels containing nitrogen[J], Corrosion,1987,43(2):77-84.
    103.孙振岩,刘春明.合金中的扩散与相变[M],沈阳:东北大学出版社,2002,62.
    104.肖纪美.合金相与相变[M],北京:冶金工业出版社,1987,187-251.
    105.Gust W. Discontinuous precipitation in binary metallic systems[J], Phase Transformations, 1979,1(11):27-68.
    106.Williams D B, Butler E P. Grain boundary discontinuous precipitation reactions[J], International Metals Reviews,1981,26(3):153-183.
    107.Solorzano I G, Purdy G R, Weatherly G C. Studies of the initiation, growth and dissolution of the discontinuous precipitation product in aluminum-zinc alloys[J], Acta Metallurgica,1984,32(10):1709-1717.
    108.刘青,张立强,王良周等.汽车用钢连铸坯的高温力学性能[J],北京科技大学学报,2006,28(2):133-137.
    109.Lai J K, Wickens A. Microstructural changes and variations in creep ductility of 3 casts of type 316 stainless steel[J], Acta Metallurgica,1979,27(2):217-230.
    110.Martin J W, Doherty R D. Stability of Microstructure in Metallic Systems[M], London: Cambridge University Press,1976,148-150.
    111.张新明,吴文祥,刘胜胆等.退火过程中AA3003铝合金的析出与再结晶[J],中南大学学报(自然科学版),2006,37(1):1-5.
    112.Krejci J, Karmazin L. Phase transformations and recrystallization in Ni-33 at.%Cr alloy[J], Materials Science and Engineering A,1994,188(1-2):185-191.
    113.刘平,曹兴国,康布熙等.快速凝固Cu-Cr-Zr-Mg合金时效析出与再结晶的交互作用及其对性能的影响[J],功能材料,2000,31(2):167-169.
    114.胡赓祥,钱苗根.金属学[M],上海:上海科技出版社,1980,316.
    115.Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena[M], Oxford:Elsevier Science Ltd,1995,276.
    116.Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena[M], Oxford:Elsevier Science Ltd,1995,165.
    117.Lee T H, Oh C S, Lee C G, et al. Precipitation of σ-phase in high-nitrogen austenitic 18Cr-18Mn-2Mo-0.9N stainless steel during isothermal aging[J], Scripta Materialia,2004, 50(10):1325-1328.
    118.Wang 1, Beckermann C. Prediction of reoxidation inclusion composition in casting of steel[J], Metallurgical and Materials Transactions B,2006,37(4):571-588.
    119.Weiss B, Stickler R. Phase instabilities during high temperature exposure of 316 austenitic stainless steel[J], Metallurgical Transactions,1972,3(4):851-856.
    120.Jargelius-Pettersson R F A. Phase transformation in a manganese-alloyed austenitic stainless steel[J], Scripta metallurgica et Materialia,1994,30(9):1233-1238.
    121.Joanna M, Maria S. Qualitative and quantitative analysis of σ and χ phases in 2205 duplex stainless steel[J], Materials Characterization,2006,56(4-5):355-362.
    122.Mudali U K, Raj B. High nitrogen steels and stainless steel-manufacturing, properties and applications[M], New Delhi:Narosa Publishing House,2004,69.
    123.Michael P, Oliver S, Thomas G. Effect of intermetallic precipitations on the properties of duplex stainless steel[J], Materials Characterization,2007,58(1):65-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700