用户名: 密码: 验证码:
低成本高性能钢筋的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化进程的加速,未来钢筋的生产和消费量都将会大大提高。因而低成本高性能钢筋的研究与开发显得尤为重要。基于此,本文通过实验室和现场试验研究开发了低成本高性能钢筋的生产工艺并进行了现场工业大生产。论文主要内容如下:
     (1)通过实验室热模拟实验确定了新型钢在不同冷却速度下的生成相和奥氏体未再结晶区温度范围。实验表明在现场条件下,实验钢筋吐丝后单纯采用风冷时得到钢筋的组织全部为铁素体+珠光体,未再结晶区温度范围大约为770~950℃。利用单道次压缩实验,建立了实验钢的变形抗力模型并对其高温变形的动态行为进行了研究。研究表明在现场工业试验条件下,轧件在轧制过程中不会发生动态再结晶。采用双道次压缩实验,研究了实验钢不同热变形条件下的软化率。研究结果发现在现场控温轧制试验条件下,轧件在精轧阶段不会发生静态再结晶。
     (2)通过现场工业试验确定了不同控温轧制措施对盘圆螺纹钢筋性能的影响,制定了现场最佳控温轧制工艺。结合控温轧制和喷雾冷却,通过成分微调,成功实现了用普碳钢轧制400MPa级低成本高性能盘圆螺纹钢筋。
     (3)利用平面变形法对萍钢棒材厂轧制低成本高性能Φ25mm棒材时轧件在中轧和精轧阶段的温度进行了计算。计算结果表明轧件在中轧阶段轧制过程中就产生了温升。当入中轧温度控制在950℃,终轧速度控制在11m/s时,轧件在中轧阶段温升计算值为44.7℃,精轧阶段温升计算值为65℃,计算值与现场实测值吻合较好。
     (4)参照低成本高性能盘圆螺纹钢筋轧制工艺,提出了一种新的生产低成本高性能棒材的工艺。即通过优化轧后控制冷却工艺将奥氏体再结晶区轧制过程中形成的细的、强烈硬化的、具有大量缺陷的奥氏体晶粒快速冷却到相变温度附近后空冷,从而抑制其晶粒长大并使其转变为晶粒适度细化的铁素体+珠光体。钢筋表面不会生成回火组织,在提高钢筋强度的同时保证其强屈比。
     (5)利用ANSYS有限元模拟了Φ25mm棒材轧后不同穿水冷却条件下的温右时,棒材表面会生成闭环回火组织,影响其性能。要想在棒材表面不产生回火组织的前提下尽可能提高其性能,轧后最好采用两段水冷,钢筋回火后温度控制在800℃左右。
     (6)利用闪光对焊技术对新工艺生产的棒材进行了焊接试验,试验结果表明,采用新工艺生产的低成本高性能棒材焊接性能良好。Φ12mm试验钢时效20天后性能检测表明新工艺生产的钢筋基本不存在时效性。
With the acceleration of our country's urbanization process,the amount of steel bar's production and consumption will increase greatly in the future.Thus,it's very important to research and develop high-performance steel bar with low cost.In this article,a production technology of high-performance steel bar with low cost was developed based on the results of experimental and industrial investigation. Industrial trials were carried out in field conditions.The main works are shown as following:
     (1)New steel's microstructure in different cooling rate and temperature range of austenite in non recrystallization zone were determined through thermal-mechanical simulation. The experimental results indicate that experimental steel bar's microstructure is consisted of ferrite and pearlite using forced air cooling after rolling and its temperature range in non recrystallization zone is 770~950℃in field conditions.The experimental steel's model of resistance of deformation and dynamic behavior during high-temperature deformation were investigated using single hit compression test.The research indicates that the dynamical recrystallization of austenite doesn't occur at present industrial conditions.The experimental steel's softening fraction under different thermal deformation conditions was determined through double-hit compression tests.The research indicates that the static recrystallization of austenite doesn't occur in finishing area at present industrial conditions.
     (2)Through industrial field tests,the influence of different controlled temperature rolling means on the properties of hot rolled ribbed wire rods was determined and the best controlled temperature rolling technology was established. Utilizing controlled temperature rolling and spray cooling combined with adjusting billet's chemical composition,400MPa high-performance hot rolled ribbed wire rods with low cost using plain carbon steel was produced successfully.
     (3)During rolling 025mm high-performance bar with low cost in Pingxiang Iron and Steel Corporation, the stock's temperature in intermediate and finishing mill group was calculated using plane deformation method.The calculation results show that the stock's temperature increases in intermediate mill.When the stock's temperature in the entry of intermediate mill unit is controlled in 950℃and finishing rolling speed is controlled in 11m/s,the stock's theoretical temperature rise in intermediate and finishing mill unit is 44.7℃and 65℃respectively.
     (4)A new technology of producing high-performance steel bar with low cost was proposed according to the technology of producing high-performance hot rolled ribbed wire rods.The mechanism of new technology is cooling the fine and strongly hardened austenitic grain which is formed in the rolling process of austenite recrystallization zone and consisted of lots of lattice defects to phase transition temperature with optimized controlled cooling technology. Thus the austenite grain's growth trend is restrained and changes to ferrite with proper grain size and pearlite in the following air cooling process.There is no tempered microstructure in the steel bar's surface.The steel bar's strength increases and the ratio of tensile strength to yield strength doesn't decrease.
     (5) 025mm steel bar's temperature fields with different water cooling conditions after rolling was simulated by finite element method.The experimental results show that close-loop tempered microstructure will occur in the steel bar's surface and influence its performance when three segment water cooling is adopted after rolling and steel bar's temper temperature in the surface is about 660℃.In order to improve steel bar's performance under the condition of no close-loop tempered microstructure occurring in steel bar's surface as possible, two segment water cooling should be adopted and steel bar's temper temperature should be about 800℃.
     (6) Welding performance of the steel bar produced by new technology was tested by flash butt welding technique.The experimental results show that the welding performance of high-performance steel bar with low cost produced by new technology is well.Φ12mm steel bar's test results of mechanical properties after aging twenty days show that there is no aging problem in the steel bar produced by new technology.
引文
1.赵宗元,张希舜.HRB400MPa新Ⅲ级钢筋在结构工程中的应用[J],建筑技术开发,2000,27(4):3.
    2.方闻.推广应用HRB400MPa热轧带肋钢筋势在必行[J],福建建设科技,2001,2:4-5.
    3.徐寅.我国400MPa热轧带肋钢筋应用现状和发展建议[J],轧钢,2002,19(4):3-4.
    4.黄新苗,孟宪珩.承钢高强度钢筋的研制与开发[J],International Symposium 2003 on the Research and Application of High-Strength Reinforcing Bar:244.
    5.孙连清,王凤珍,李明等.邯钢HRB400钢筋的研制与开发[J],International Symposium 2003 on the Research and Application of High-Strength Reinforcing Bar:264.
    6.东涛,付俊岩.铌/钒微合金化400MPa级钢筋的生产技术[J],中国冶金,2004,5:1-5.
    7.王学忠,李成军,张万庆.铌钒复合微合金化400MPa级钢筋的研制与生产[J],山东冶金,2007,29(2):32-34.
    8.任一峰,吴小林,承江等.铌微合金化400MPa级钢筋的开发[J],特殊刚,2005,26(2):60-61.
    9.张学浩.浅析V-N微合金化400MPaⅢ级钢筋[J],山西冶金,2005,2:28-30.
    10.耿伟领,裴广林.细直径20MnSi400MPa热轧钢筋的开发实践[J],河南冶金,2003,11(1):39-40.
    11.王丽敏.正确理解热轧带肋钢筋新标准搞好贯彻实施[R],2008.
    12.杨忠民,赵燕,王瑞珍等.普通碳素钢超细晶临界奥氏体控轧工艺研究[J],钢铁,2001,36(8):43-46.
    13.杨平,傅云义,崔凤娥等.形变温度对Q235碳素钢应变诱导相变的影响[J],金属学报,2001,37:601-608.
    14.杨平,傅云义,崔凤娥等.Q235碳素钢应变强化相变的基本特点及影响因素[J],金属学报,2001,37:592-600.
    15.P. Rassoul, and Y. Steve.Dynamic Transformation of Austenite to Ferrite in Low Carbon Steel [J],ISIJ Int.,2000,34(2):270-279.
    16.H. Yada, Y. Matsumura and T. Senuma. Proceedings of International Conference on Physical Metallurgy of Thermomechanical Proceeding of Steels and Other Metals [J],ed.I.Iron and Steel Institute of Japan, Tokyo,1988:200.
    17.杨平,崔凤娥,傅云义,孙祖庆.Q235碳素钢应变诱导相变中的应力_应变曲线分析[J],金属学报,2001,37:609-616.
    18.杨平,崔凤娥,傅云义,孙祖庆.Q235碳素钢应变强化相变过程中的动力学问题[J],金属学报,2001,37:517-624.
    19.W. Y. Choo,K.K.Um, J.S.Lee,D.H.Seo and J.K.Choi.Proceedings of ISUG2001,ed. by S.Takaki and T. Maki, ISIJ,2001,2.
    20.H.C. Lee.Ferrite Transformation by Heavy Deformation of Austenite[C],Proceeding of the 4th Workshop on HIPERS-21,2002:35-42.
    21.W. Y. Choo.4th Year Progress of HIPERS-21 Project[C],Proceeding of the 4th Workshop on HIPERS-21,2002:1-15.
    22.W.Y. Choo.Present Developing Status of High Performance Steel in Korea [J],新一代钢铁材料研讨会论文集,中国金属学会,北京,2001:16-26.
    23.Y.Adachi,T. Tomida and S.Hinotani:Tetsu-to-Hagane,1999,85:620.
    24.Han Dong. Deformation Induced Ferrite Transformation in Microalloyed steels [J],新一代钢铁材料研讨会论文集,中国金属学会,北京,2001:41-47.
    25.Weng Yuqing. HSLA Steels'2000, ed.Liu Guoquan, Wang Fuming et al.Metallurgical Industry Process [J],Beijing,2000:3-10.
    26.杨忠民,王瑞珍,车彦民等.普通碳素钢超细晶组织的形成[J],新一代钢铁材料研讨会论文集,中国金属学会,北京,2001:283-286.
    27.杜明山,姚连胜,刘洪宾等.400MPa碳素钢筋的试验研究[J],新一代钢铁材料研讨会论文集,中国金属学会,北京,2001:327-328.
    28.侯豁然,宋立秋,刘清友等.一种超低碳微合金钢形变诱导相变过程的组织分析[J],新一代钢铁材料研讨会论文集,中国金属学会,北京,2001:329-332.
    29.杨忠民,赵燕,王瑞珍等.形变诱导铁素体的形成机制[J],金属学报,2000,36(8):818.
    30.杨忠民,赵燕,王瑞珍等.低温变形低碳钢超细铁素体的形成[J],金属学报,2000,36(10):1061.
    31.Bernhard Engl.冷轧高强度微合金钢板卷产品[M],北京:冶金工业出版社,2003,437
    32.王国栋,刘振宇,熊尚武译.高强度低合金钢的控制轧制和控制冷却[M],田村今男等著,北京:冶金工业出版社,1992,2-5
    33.Y. Adachi and S.Hinotani.Proc.3rd. Symposium on Super Metal [J],Tokyo, RIMCOF & JRCM,2001:73.
    34.杨德庄.位错与金属强化机制[M].哈尔滨:哈尔滨工业大学出版社,1990:200.
    35.陈全明.金属材料及强化技术[M].上海:同济大学出版社,1992,40.
    36.R. Bengochea, B.Lo'pez, and I.Gutierrez. Microstructural Evolution during the Austenite-to-Ferrite Transformation from Deformed Austenite[J].Metall.Trans.,A,1998, 29A:41
    37.M. K. Graf, H. G. Hillenbrand, P.A.Peter.“高强度大直径管材钢板的加速冷却”,钢的加速冷却[M],鞍钢钢研所译,1987:110
    38.William Roberts.Recent Innovations in Alloy Design and Processing of Microalloyed Steels [J].International Conference on Technology & Applications HSLA Steels.Philadelphia, Pennsylvania, Published by:American Society for Metals, Metas Park, Ohio 44073,3-6 October 1983:33-65
    39.Kop,T. A.,J. Sietsma, et al.(2001).Dilatometric analysis of phase transformations in hypo-eutectoid steels [J].Journal of Materials Science,36(2):519-526.
    40.Meyer L.著,李述创等译.钢的微合金化及控制轧制[M].北京:冶金工业出版社, 1984:199.
    41.王祖滨,东涛.低合金高强度钢[M].北京:原子能出版社,1996:42.
    42.钟土红.钢的回火工艺和回火方程[M].北京:机械工业出版社,1993.
    43.Matumura Y, Yada H. Evolution of Ultrafine-grainer Ferrite in Hot Successive Deformation. Transformation[J].ISIJ,1987,27:492.
    44.Yada H, Matumura Y. and Nakajima K.Ferrite Steel Having Ultra-fine and a Method for Producing the Same [J]. United States Patent.1984.
    45.俞德刚,谈育煦.钢的组织强度学-组织与强韧性[M],上海:上海科学技术出版社,1983:16.
    46.波户村太根生等.形变热处理强化微T、N钢的机理研究[J],重钢技术,1997(6)
    47.Tadeusz SIWECHI.再结晶控轧期间显微组织演变的模拟[J],重钢技术,1996(3):49-59
    48.D.L.BARAGAR, the high temperature and high strain-rate behavior of a plain carbon and an HSLA steel [J],Journal of Mechanical Working Technology,1987(14),295-307
    49.Wang, S.-H.,Y. Zhang, et al.(2001).Room temperature creep and strain-rate-dependent stress-strain behavior of pipeline steels [J].Journal of Materials Science,36(8):1931-1938.
    50.J.S.Lee,D.H.Seo,J.K. Choi, et al.Effect of Steel Composition on Enhancement of Strain-Induced Dynamic Transformation[J],Proceeding of the 4th Workshop on HIPERS-21, 2002:147-150.
    51.K.K.Um, J. K. Choi and W. Y.Choo.Mechanical Properties of Dual Phase Steel Containing Strain-Induced Dynamically Transformed Ferrite [J],Proceeding of the 4th Workshop on HIPERS-21,2002:151-154.
    57.S.Torizuka, O.Umezaw and K.Tsuzaki.Shape, Size and Crystallographic Orientation of the Ferrite Grain Formed at Grain Boundaries of Deformed Austenite in a Low Carbon Steel[J],铁と鋼,2000,86(12):23-29.
    58.李维娟.钢的晶粒细化工艺与理论研究[D],东北大学博士学位论文,2001:65-73.
    59.张红梅,刘相华,王国栋等.采用累积连续大压下细化铁素体组织[J],钢铁研究学报,2001,13(1):36.
    60.李维娟,刘相华,王国栋等.变形晶界对低碳钢显微组织的影响[J],钢铁研究学报,2001,13(6):27.
    61.张红梅.低碳钢γ→α相变和晶粒细化机制的研究,东北大学博士学位论文[D],2001:71-75.
    62.张红梅,杜林秀,刘相华等.采用低温大压下细化铁素体晶粒机制的研究[J],2001中国钢铁年会论文集,2001:857.
    63.李维娟,杜林秀,刘相华等.低碳钢的晶粒细化与碳化物析出,2001中国钢铁年会论文集,2001:897.
    64.王国栋,刘相华,李维娟等.超级Super-SS400钢的工业轧制实验,钢铁,2001,36(5):39.
    65.张红梅,刘相华,王国栋等.采用低温急冷大压下细化铁素体组织,东北大学学报,2001,22(4):431.
    66.刘相华,王国栋,杜林秀等.普碳钢产品升级换代的现状与发展前景[J],2002年全国轧钢生产技术会议暨中国金属学会第七届轧钢年会,2002:415.
    67.李维娟,刘相华,王国栋.应变诱发铁素体相变对低碳钢晶粒细化的影响,钢铁研究学报,2000,12(5):36.
    68.Hua Ding, Linxiu Du, Xianghua LIU et al.Development of 400MPa Super Steel,Proceeding of the Workshop on HIPERS-21,2002:65
    69.小指军夫,李夫桃,于世界译.控制轧制与控制冷却[M],北京:冶金工业,出版社,2002:2-7.
    70.王占学.控制轧制与控制冷却.北京:冶金工业出版社,1987,2.
    71.D.Porter. Thermomechanical procession on hot strip and plate mills[J],Iron making and Steelmaking,2001,28(2):164-169.
    72.李曼云,孙本荣.钢的控制轧制与控制冷却[M].北京:冶金工业出版社,1990,2-4.
    73.M. Cohen and W. S.Owen Proc.of Int. Symp. on High-Strength Low-Alloy Steels (Microalloying-75),ed.by M. Korchynsky, Union Carbide Corporation, New York,(1977),2.
    74.F. B. Pickering Low Carbon Structural Steels for the Eighties,ed. by R. S.Irani, Manadon, Plymouth,(1977),1.
    75.H.Sekine, T. Maruyama, H.Kageyama and Y. Kawashima. Thermomechanical Processing of Microalloyed Austenite, ed.by A.J. DeArdo,G. A.Ratz and P. J. Wray, AIME, Pennsylvania, (1982),141.
    76.F. B.Pickering. HSLA Steels:Technology and Applications, ed.by M. Korchynsky, ASM, Metals Park, Ohio,(1984),1
    77.I.Tamura. Proc.of Conf.on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals (THERMEC-88),ed.by I.Tamura, ISIJ, Tokyo,(1988),1.
    78.A.J. DeArdo.HSLA Steels:Processing, Properties and Applications, ed. by G. Tither and S.H. Zhang, TMS,Warrendale,Pennsylvania,(1992),21.
    79.A.J. DeArdo.Proc.of Int. Conf. on Thermomechanical Processing of Steels and Other Materials (THERMEC-97),ed.by T. Chandra and T. Sakai, TMS,Warrendale, Pensylvania, (1997),13.
    80.A. J. DeArdo.Proc.of 3rd Int. Conf. on HSLA Steels (HSLA Steels-95),ed.by G.X.Liu, H. Stuart, H. T. Zhang and C.G. Li, The Chinese Society for Metals,Beijing,(1995),99.
    81.刘东升.控轧控冷钢力学性能各向异性及其机理的研究[D],东北大学硕士学位论文,1989.
    82.马家骥.16Mn钢厚板控制轧制、控制冷却研究[D],东北大学硕士学位论文,1992.
    83.张晓明.控轧控冷16Mn钢强韧化机制的研究[D],东北大学硕士学位论文,1993.
    84.王兆毅.轴承钢GCr15控轧控冷对球化退火工艺及质量影响规律的研究[D],东北大学硕士论文,1993.
    85.魏岩.HQ685钢连续冷却相变行为及控轧控冷工艺[D],东北大学硕士论文,1997.
    86.C.M.Sellers and J.A.Whiteman, recrystallization and grain growth in hot rolling [J],Metal Science,1979(3-4):187-194
    87.Kop,T. A.,P. G. W. Remijn, et al.(2001).Some observations on the effect of austenitisation conditions on the transformation kinetics in an HSLA steel and related C-Mn steels[J]. Journal of Materials Science,36(8):1863-1871.
    88.野村茂树等.成型性能优良的热轧高强度钢板的开发[J],武钢技术,1994(12):39-43
    89.S.F.MEDINA and J.E.MANCILLA.determination of static recrystallization critical temperature of austenite in microalloyed steels[J],ISIJ international,Vol 33, 1993(12):1257-1264
    90.刘东生.钢铁材料变形奥氏体相变的研究及应用[D],东北大学博士学位论文,1999
    91.李箭,徐文崇,孙福玉.控制轧制中的微合金碳氮化物的析出行为[J],钢铁,1991(1):24-27
    92.王昭东.应用形变热处理原理开发HQ685高强钢板[D],东北大学博士学位论文.,1998
    93.S.Ranganathan. Materials Science and Technology[J],1999(5):523-530
    94.杨玉钥,胡安民,孙祖庆等.低碳钢奥氏体晶粒大小控制[J],新一代重大基础研究论文集(上册):48-52.
    95.Hanzaki A Z, Hodgson P D. The influence of bainite on retained austenite characteristics in Si-Mn TRIP steels[J],ISIJ Int.,1995,35:79-85.
    96.李飞,范银平.400MPa级细晶钢筋盘条工业化生产实践[J],冶金丛刊,2007,2:10-12.
    97.张立新,符仁钰.HRB335和HRB400钢筋的控轧控冷工艺研究[J],上海金属,2006,28(6):46-49.
    98.高少东,段小勇.线材生产中的控轧和控冷工艺[J],科技情报开发与经济,2001,11(4):112.
    99.任吉堂,陈连生.棒线材生产新工艺分析[J],河北理工学院学报,2002,24(1):28-34.
    100.支艳斌,曹树卫,彭南等.超细晶粒钢筋热轧生产工艺研究[J],上海金属,2008,30(1):24-26.
    101.王瑞珍,杨忠民,车彦民等.低碳钢热轧钢筋再结晶控制轧制与控制冷却实现晶粒细化[J],钢铁,2004,39(2):47-50.
    102.王才仁,谢志雄,庄庆辉.韶钢热轧带肋钢筋控轧控冷工艺生产实践[J],轧钢,2007,24(6):69-71.
    103.李泽武,成计民.线材高速轧后的控制冷却技术[J],重型机械,2002,4:4-7.
    104.刘旭东,盛光敏,蒋莉萍.轧后水冷对400钢筋力学性能的影响[J],重庆大学学报,2008,31(1):24-28.
    105.张海,仝金平,梁云彩.超细晶螺纹钢生产线改造及工艺实践[J],钢铁,2007,42(11):48-52.
    106.张嘉谋,殷兵,黄乐枧.控轧控冷级螺纹钢的开发及性能研究[J],江西冶金,2007,27(4): 1-4.
    107.焦根鹏,刘大为,李娜等.利用控轧控冷技术生产精品高速线材[J],河北冶金,2007,1:49-51.
    108.高秀华,齐克敏,邱春林等.20MnSiⅢ级热轧螺纹钢筋的开发[J],钢铁研究学报,2006,18(7):43-45.
    109.张晓光,王云阁.HRB400低合金螺纹钢筋工艺试验研究[J],金属制品,2006,32(6):35-37.
    110.于漫子.20MnSi热轧螺纹钢筋性能的提高[J],本溪冶金高等专科学校学报,2002,4(2):31-33.
    111.满新梅,李雪龙,陶文圣.高线生产HRB335盘条的控轧控冷工艺探讨[J],新疆钢铁,2004.2:8-10.
    112.LIU Xianghua, WANG Guodong, DU Linxiu, DING Hua, LI Hongbin.New Generation Plain Steel in China-present situation and development foreground [J],Proceeding of Symposium on Development of Advanced Steels:3.
    113.钟廷珍,乔德庸,强十涌等.线材生产[M].北京:冶金工业出版社,1983,121.
    114.陈扬.棒材轧后控冷技术的探讨[J],江苏冶金,1998(1):38-47.
    115.王廷溥,齐克敏.金属塑性加工学-轧制理论与工艺[M],北京:冶金工业出版社,2001,161.
    116.H.Sekine and T. Maruyama. Seitetsu Kenkyu,1976,289:11920.
    117.Y. E. Smith and C.A.Siebert. Metall.Trans.,1971,2:1711-1725.
    118.D.J. Walker and R. W. K.Honeycombe.Metal Sci,1978,23:445-452.
    119.J. J. Jonas and R. A. do Nascimento.Fundamentals of Dual Phase Steels, Metallurgical Society AIME, Warrendale,PA,1981:95-112.
    120.T. Kato, K.Hashiguchi, I.Takahashi, et al. Fundamentals of Dual Phase Steels,Metallurgical Society AIME, Warrendale, PA,1981:199-220.
    121.V. M. Khlestov, E.V. Konopleva and H. J. Mcqueen. Kinetics of Austenite Transformation during Thermomechanical Processes [J],Canadian Metallurgical Quarterly,1998,37(2): 75-89.
    122.林彗国,傅代直.钢的奥氏体转变曲线-原理、测试与应用[M],北京:机械工业出版社,1988,227.
    123.周纪华,管克智.金属塑性变形阻力[M],北京:机械工业出版社,1989,59.
    124.李树国,刘持平,王宝森等.20钢变形抗力模型的建立及轧制力预报[J],轧钢,2001,18(1):26-27.
    125.Hodgson P D, Gibbs R K.A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels[J],ISIJ International,1992,32(12):1932.
    126.K.Ito.Zeitschrift fur Metal Kundle,1925,98.
    127.陈振韬,冯亚暄.低合金钢热轧多道次变形抗力试验研究[J],鞍钢技术,1995,11:26-34.
    128.Yoshie A,Fujioka M, Watanabe Y, et al.Modeling of microstructural evolution and mechanical properties of steel plates produced by thermo-mechanical control process [J].ISIJ International,1992,32(3):395-404.
    129.Y.Tomoda and I.Tamura. Mechanical Properties of Two-Ductile Steels [J],Tetsu-to-Hagane, 1981,67:439.
    130.H.Yada and T. Senuma. Jpn. Inst.Metals,29(1990),430.
    131.G.J.Richardson, D. N. Hawkins, C.M.Sellars.Worked Examples in Metalworking[M], London:The Institute of Metals,1985:97.
    132.赵松筠,唐文林.型钢孔型设计[M],北京:冶金工业出版社,1993,76.
    133.周晓锋,刘战英,侯大华.20MnSiV钢变形抗力数学模型和连续冷却转变曲线[J],河北冶金,2006.3:35-38.
    134.蔡晓辉.中厚板控制冷却数学模型的研究及应用[D],沈阳东北大学,2004.
    135.斯米尔诺夫,鹿守理,黎景全译.轧辊孔型设计[M],北京:冶金工业出版社,1985,100.
    136.刘英瑞,严凤荣,袁训亮.按英标BS4449:1988生产460 MPa钢筋的工艺与实践[J],钢铁,2000,35(4):28-32.
    137.刘宏玉,刘洪涌,王凯等.Φ40 mm英标460 MPa级余热处理钢筋的几个问题探讨[J],钢铁,2000,35(12):30-33.
    138.Pierre Simon,Mario Economopolos.A New Process for the Production of High-quality reinforcing Bars[J],Iron and Steel,1984(3);40-44.
    139.孔祥谦.有限单元法在传热学中的应用[M],北京:科学出版社,1998.
    140.闻雷.大规格钢筋余热处理工艺及温度场有限元分析[D],沈阳:东北大学,1998.
    141.Morales R D,Lopez A G,Olivares L M.Heat Transfer Analysis during Water Spray Cooling of Steel Rods[J].ISIJ International,1990,30(1):48.
    142.刘庄.热处理过程的数值模拟[M],北京:科学出版社,1982.
    143.梁志芳,李午申,王迎娜等.20MnSi钢筋在线冷却中自回火温度的数值模拟[J],金属热处理,2003,28(9):42-44.
    144.张文军.英标460级钢筋性能时效的研究[J],冶金标准化与质量,2000,38(1):22-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700