用户名: 密码: 验证码:
微生物固定化技术在室内养殖海水净化中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属、有毒有机物排放入海后,被海洋生物吸收并随食物链积累与放大,严重损害海产品的质量,威胁生态环境与人类健康。因此,开展室内养殖海水主要污染重金属、有机物的有效净化技术研究,对于提高养殖海水环境质量和保证水产养殖业可持续健康发展具有重要意义。
     本文针对室内养殖海水污染特点和海水高复杂体系对重金属测定的化学干扰问题,研究和建立了测定重金属离子新方法;从海水中筛选出耐重金属离子的细菌,借助现代分子生物学技术对微生物进行研究;用海藻酸钠和四氧化三钴固定化,进行室内养殖海水中重金属吸附和有机物去除研究。借助XPS、XRD、FTIR、SEM等手段研究了海水中重金属离子去除机理。主要研究结论如下:
     1.合成了新型三氮烯类显色剂,建立了光度法测定海水中重金属离子铅(II)、锌(II)、汞(II)和镍(II)的新方法。这些方法具有分析简便、快速、准确度高特点,同时避免了国标测定方法中有毒试剂使用。
     2.从海水中筛选出对重金属有较好耐受性细菌。通过生理生化检测、显微镜镜检方法,并借助现代分子生物学技术对微生物进行鉴定,确定筛选的微生物为鞘氨醇单胞菌Sphingomonas sp. XJ2。经过多次诱导驯化后,菌体对Pb~(2+)的最大去除率可以提高到95 %,吸附效果优于文献报道中绝大多数菌种。试验中发现菌体对其它重金属如Hg~(2+)、Zn~(2+)、Ni~(2+)和COD也有较高去除率,对海水中污染物净化表现出良好效果。
     3.以海藻酸钠作为包埋剂,同时添加硅藻土对鞘氨醇单胞菌进行固定化,制备固定化小球化学稳定性好,溶胀性及破裂率低,减少微生物流失,使用周期可达30天以上。固定化小球对海水中Pb~(2+)饱和吸附量达到163.9 mg/g,且受海水中共存盐类影响较小。吸附Pb~(2+)后,可以用EDTA解吸,解吸五次后对Pb~(2+)解吸率仍可保持90%,可以重复使用降低成本。
     固定化小球在不同温度条件下表现出对Pb~(2+)、Hg~(2+)、Zn~(2+)、Ni~(2+)等重金属离子良好吸附性能,可对不同季节养殖海水进行净化,重金属含量可达到海水水质II类标准。
     4.固定化小球吸附Pb~(2+)动力学过程由液膜扩散与孔内扩散共同控制,满足准二级动力学模型条件,其等温吸附过程符合Langmuir模型。红外光谱及XPS研究表明,Pb~(2+)主要是与C-H、C-O发生络合反应。XPS及XRD分析发现Pb~(2+)与氧结合形成PbO无机微沉积晶体,这表明Pb~(2+)在吸附剂上吸附主要是离子交换和无机微沉积过程。
     5.海藻酸钠固定化菌体具有生物吸附和生化降解两重功能。COD最佳去除条件为37℃,pH值7.0,搅拌强度120 r/min,振荡90 min,COD去除率达到86%,去除效果明显优于单独使用菌种的效果。净化后出水水质达到海水质量Ⅱ类标准。
     6.利用合成新型Co3O4纳米带材料吸附性能、再生性能好优点,去除养殖海水中重金属离子,其重金属吸附能力顺序为Hg~(2+) >Ni~(2+) >Pb~(2+) >Zn~(2+)。处理后水质达海水水质II类标准。Co3O4负载鞘氨醇单胞菌制备复合吸附剂进行海水中重金属离子动态吸附试验,当流速为1.2 L/h,时间为100~120min左右,重金属离子去除率达到90%以上,处理后水质达海水质量I类标准;连续出水COD值均低于3.2 mg/L, COD去除率达85%。毒理学研究表明,纳米Co3O4粒子在吸附重金属过程中可能携带Pb~(2+)进入细胞,使Pb~(2+)在细胞膜或者细胞质中释放蓄积,联合导致对菌体的毒性。
With the development of industry and agriculture alongshore, a large volume of waste water was discharged into the ocean, resulting serious pollution to the near shore seawater. It is very likely for the harzdous substances to accumulate in the food chain, which will induce the serious impairment of aquatic product and human health.
     Aiming to the aquaculture seawater pollution, bacterium resistant to heavy metals was screened and immobilized with sodium polymannuronate and nano Co3O4, obtaining complex sorbents. These sorbents were used for the removal of heavy metals and organic matter in the indoor aquaculture seawater. The adsorption mechanism for the removal of heavy metal, lead, was investigated through the media of XPS, XRD, FTIR and SEM. The results show that:
     1. Novel chromogenic agents were synthesized, a new determination methods for Pb(II), Ni(II), Zn(II), and Hg(II) in the media of seawater were established. These methods had the merit of convenience, rapid, good accuracy and no use of deleterious chemical regent in the national standard method.
     2. The bacterium was identified as Sphingomonas sp. XJ2 by means of microscopic examination, physiological, biochemical detection, and modern molecular biology technology. After acclimatization for several times, this bacterium has good performance in removing heavy metals and organic matter from seawater.
     3. The bacterium was embedded with sodium polymannuronat and diatomite, the resulting ball had good mechanical strength、chemical stability and reduce the loss in the immobilized microorganisms process . The saturated extent of adsorption amounted to 163.9 mg/g at the temperature of 37℃with a little of adverse effect of coexisted salts.
     Batch adsorption studies showed that the ball also has good performance for the removal of Hg~(2+), Zn~(2+), and Ni~(2+) from seawater. The seawater quality after the treatment met the II level of Sea water quality standard (GB 3097-1997).
     The Pb~(2+) fixed by the immobilized ball can be desorbed with EDTA. The removal ratio amounted to 90% after recycled for 5 times, which indicated the feasibility of reutilization.
     4. The adsorption process of Pb(II) was controlled by liquid membrane diffusion and intrapore diffusion and conformed to pseudo-second dynamic model. The isothermal adsorption process agreed to Langmuir model. The adsorption was an endothermic reaction and spontaneous in nature.
     FTIR and XPS study indicated that Pb(II) was complexed by C-H and C-O bonds. XPS and XRD analysis showed inorganic micro crystal, PbO was precipitated, sugguesting an chemical mechanism.
     5. The optimal condition for the degradation of COD with the bacterium immobilized with sodium polymannuronat in the medium of seawater was pH 7.0 at 37℃oscillated at 120 rpm for 90 min with the dosage of 1.0 g/L.
     The degradation ratio for the COD with the bacterium immobilized with sodium polymannuronat reached 86%. The effluent quality met the second level of Sea water quality standard (GB 3097-1997), which was suitable for aquaculture.
     6. Novel nano material, Co3O4, was synthesized take the advantages that with adsorbing capacity and good regenerate capacity of belt that used for removing heavy metals from seawater. The effluent quality met the II level of Sea water quality standard (GB 3097-1997). The sequence of adsorption capacity was Hg~(2+) >Ni~(2+)>Pb~(2+)>Zn~(2+). The continuous-flow experiments were conducted with the bacterium immobilized with Co3O4 for the removal of Ni~(2+), Pb~(2+), Zn~(2+), and Hg~(2+) from aquaculture seawater.
     The removal ratio arrived to 90% at the flow rate of 1.2 L/h for 100-120 min. The water quality met I level. The COD value after treatment was less than 3.2 mg/L, equivalent to the removal ratio of 85%.
     FTIR study showed that ion exchange was conducted between Pb(II) and hydroxyl radical, resulting Pb-O bond. Toxicology studies showed that the nano particle may act as cockhorse in bringing the Pb~(2+) into the cell and then release and accumulate in the cell membrane or cytoplasm, resulting to the toxicity to the cell.
引文
[1]徐颖.连云港附近海域水环境质量评价[J].海洋环境科学,2001,20(4): 54-60.
    [2] BAUDOUIN C, CHARVERON M, TARROUX R, et a1. Environmental pollutants and skin cancer[J].Cell Biol Toxicol, 2002, 18(5): 341-348.
    [3]刘鹰,杨红生,刘石林,等.封闭循环系统对虾合理养殖密度的试验研究[J].农业工程学报,2005, 21(6), 122-125.
    [4] Ming-Shiou Jenga, Woei-Lih Jengb, Tsu-Chang Hungb, et al. A review of Cu and other metals in various marine organisms in Taiwan[J]. Environmental Pollution, 2000, 110: 207-215.
    [5] Mohamed Maanan. Heavy metal concentrations in marine molluscs from the Moroccan coastal region[J]. Environmental Pollution, 2008, 153: 176-183.
    [6] PAULAMI M, SAMIR B,MAITI P, et al. Accumulation of heavy metals in different tissues of the fish oreochromis nilotica exposed to waste water [M]. Environment and Ecology,1999:859-898.
    [7]赵玲,尹平河.海洋赤潮生物原甲藻对重金属的富集机理的研究[J].环境科学,2001,22(4):42-45.
    [8]尹平河,赵玲.海藻生物吸附废水中Pb、Cu、Cd的研究[J].海洋环境科学,2000,19(3):11-15.
    [9]潘进芬,林荣根.海洋微藻吸附重金属的机理研究[J].海洋科学,2000,24(2):31-34.
    [10]李坤,李琳,侯和胜. Cu2+,Cd2+,Zn2+对两种单胞藻的毒害作用.应用与生物环境学报, 2002, 8(4): 395-398.
    [11]袁有宪,辛福言,孙耀,等.对虾养殖池沉积环境中TOC、TP、TN和pH及质量评价模型[J]:水产科学, 2000, 24(3): 247-253.
    [12]杨庆霄,蒋岳文,张昕阳,等.虾塘残饵腐解对养殖环境影响的研究:虾塘底层残饵腐解对沉积物环境的影响[J].海洋环境科学, 1999, 18(3): 11-15.
    [13]翟美华.烟台市养虾废水排放及控制[J].海洋环境科学,1996, 15(4): 58-61.
    [14]暨卫东.厦门马銮湾有机污染,富营养化状况下的生化关系报道[J].海洋学报, 1998, 20(1): 134-143.
    [15]林林,丁美丽,孙舰军,等.有机污染提高对虾对病原菌易感性研究.海洋学报,1998,20(1): 90-93
    [16]马建新,刘爱英,宋爱芹.对虾病毒病与化学需氧量相关关系研究.海洋科学,2002,26(3): 68-71.
    [17]林鹏,陈荣华.九龙江口红树林对汞的循环和进化作用[J].海洋学报, 1989, 11(2);242-247.
    [18]郑文教,王文卿,林鹏.九龙江口桐花树红树林对重金属的吸收与积累[J].应用与环境生物学报,1996, 2(3): 207-213.
    [19] Chandra, P. et al. Bioremediation of chromium from water dna soil by vascular acuatic plants.Phytoremediation of soil and water contaminats.USA. American Chemical Society, 1997, 274-282.
    [20]刘剑彤,丘昌强,陈珠金,等.复合生态系统工程中高效去除磷、氮植被植物的筛选研究[J].水生生物学报,l998,22(1):1-8.
    [21]陆健健,唐亚文.崇明东滩湿地生态系统中重金属元素的分布和迁移[A].中国湿地研究和保护[c].上海:华东师范大学出版社,1998.
    [22] S.Gifrord, H Dunstan, W0 Connor, et a1. In teractive accumulation no fmercuryands elenium in the sea star A sterias rubens [J]. Marine Pollution Bulletin, 2005, 50(4): 417-422.
    [23]袁秀堂.刺参Apostichopusjaponicus(Selenka)生理生态学及其生物修复作用的研究[D].青岛:中国科学院海洋研究所,2005.
    [24]张锡辉.高等环境化学与微生物学原理及应用[M].北京:化学工业出版社,2001.
    [25]欧阳新星,王兆守.微生物修复农药污染的研究进展[J].湖南农业科学2007,(6):131-135.
    [26]曹小红,杨亚静,鲁梅芳,等.耐铅、铜微生物的筛选及吸附性能研究[J].环境保护科学,2008,34(5) :15-18.
    [27]程东祥,李绪谦,李红艳,等.淡水中丝状绿藻对重金属Pb2+的吸附[J].吉林大学学报,2008,38(2):305-308.
    [28]张汉波,郑月,曾凡,等.几株细菌的重金属抗性水平和吸附量[J].微生物学通报,2005,32(3):24-29.
    [29]刘桂萍,刘长风,关丽杰,等.霉菌菌丝球对Pb2+的吸附研究[J].沈阳化工学院学报,2005,19(2):93-96.
    [30]李英敏,杨海波,张欣华,等.新月藻生物吸附Pb2+影响因素的研究.生物学杂志, 2002,19(3): 18-19.
    [31] Anita L,Kalpana M,Bhavanath J. Biosorption ofheavymetals by a marine bacterium [J].Marine Pollution Bulletin, 2005, 50(3): 340- 343.
    [32] FOUREST E,VOLESKY B. Contribution of sulphonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans[J]. Environ Sci Technol,1996(30):277-282.
    [33] CHOJNACKA K,CHOJNACKI A,GORECKA H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp,kinetics,equilibrium and the mechanism of the process[J]. Chemosphere,2005(59): 75-84.
    [34] Sk.Masud Hossain and N.Anantharaman. Studies on Bacterial Growthand Arsenic(Ⅲ) Biosorption Using Bacillussubtilis [J]. Biochem.Eng.Q, 2006, 20 (2): 209-216.
    [35] I.P. Suhasini,G. Sriram,S.R. Asolekar,et al. Biosorptive removal and recovery of cobalt from aqueous systems [J]. Process Biochemistry, 1999, (34): 239–247.
    [36] Donghee Park,Yeoung-Sang Yun,Jong Moon Park .Use of dead fungal biomass for the detoxification of hexavalent chromium[J]. screening and kinetics Process Biochemistry,2005, (40): 2559–2565.
    [37] Jian-Zhong Chen, Xian-Cong Tao, Jun Xu, et al. Biosorption of lead, cadmium and mercury by immobilized Microcystis aeruginosa in a column. Process Biochemistry, 2005, (40): 3675-3679.
    [38] Mehta, S.K., Tripathi, B.N. Gaur. Influence of pH, temperature, culture age and cations on adsorption and uptake of Ni by Chlorella vulgaris. European Journal of Protistology, 2000, 36(4): 443-450.
    [39] Zu mriye Aksu,Unsal Ac?ikel. A single-staged bioseparation process for simultaneous removal of copper(Ⅱ)and chromium(Ⅵ)by using C. ulgaris [J]. Process Biochemistry,1999, (34): 589–599.
    [40] Ayla zer,Dursun zer,H. Ibrahim Ekiz.Application of Freundlich and Langmuir models to multistage purification process to remove heavy metal ions by using Schizomeris leibleinii[J]. Process Biochemistry, 1999, (34): 919–927.
    [41] Gen c,Y.Yal c?nkaya, E.Buyu ktuncel, et al. Uranium recovery by immobilized and dried powdered biomass: characterization and comparison [J]. Miner Process,2003,(68):93-107.
    [42] O.Genc,Y.Yalc. Bektas.Uranium recovery by immobilized and dried powdered biomass: characterization and comparison[J].Miner Process,2003, 68: 93– 107
    [43] C. Palmieri,Mauricio a, Oswaldo. Biosorption of Uranium from aqueous solution by a bacterial dead Streptomyces rimosus biomass [J]. Process Biochemistry, 2004, (39): 1643–1651.
    [44] A.Saglam,Y.Yalcnkayab,A. Denizlia,et al. Biosorption of mercury by carboxymethyl cellulose and immobilized Phanerochaete chrysosporium[J]. Microchemical Journal,2002(71):73-81.
    [45] Razmovski,M. Sriban. Iron(Ⅱ)biosorption by Polyporus squamosus[J].African Journal of Biotechnology, 2008, (3): 1693-1699.
    [46] Jane S. White,John M. Tobin,Joseph J. Cooney. Organotion compounds and theirinteractions with microorganisms [J].Can. J. Microbiol., 2006, (45): 541-554.
    [47] K.H.Kok,M.I.A. Karim, A. Ariff. Bioremoval of Cadmium, Lead and Zinc Using Non-living Biomass of Aspergillus flavus[J]. Pakistan Journal of Biological Sciences, 2001, 4(7): 849-853.
    [48] G.H. Pino,L. M. S. Mesquita,M. L. Torem .Biosorption of cadmium by green coconut shell powder [J]. Minerals Engineering 2006, (19): 380–387.
    [49] V?′tor J.P.Vilar, Cidaiia M.S.Botelho, Rui A.R. Boaventura. Equilibrium and kinetic modelling of Cd(II) biosorption by algae Gelidium and agar extraction algal was te, [J]. WATER RESEARCH, 2006, (40): 29-34.
    [50] Yuh-Shan Ho. Second-order kinetic model for the sorption of cadmiumonto tree fernA:comparison of linear and non-linear methods[J].Environmental Sciences, 2005, (45): 108-113.
    [51] Y.Nuhoglu, E.Oguz. Removal of copper(II) from aqueous solutions by biosorption on the cone biomass of Thuja orientalis [J]. Process Biochemistry 2003, (38): 1627-1631.
    [52] Rachana Singh,B.B.Prasad. Trace metal analysis: selective sample copper(II) enrichment on an Alga sorb column [J]. Process Biochemistry, 2000, (35): 897-905.
    [53] Doulati Ardejani Faramarz, Marandi Reza,Marandi Amid,et al.Effects of pH and biomass concentrations in the removal of selenitefrom acid mine drainage by Aspergillus niger as biosorbent in Sarcheshmeh porphyry copper mine [J]. International Mine Water Congress. 2005, (51): 51-55.
    [54] E.Galli1,F. Di Mario1,P.Rapana.Copper biosorption by Auricularia polytricha[J]. Letters in Applied Microbiology, 2003,(37): 133–137.
    [55] K.M.Khoo, Y.P. Ting. Biosorption of gold by immobilized fungal biomass [J]. Biochemical Engineering Journal, 2001,(8): 51–59.
    [56] Zu mriye Aksu,Derya Akpinar,Elif Kabasakal,et al. Simultaneous biosorption of phenol nd nickel(Ⅱ)from binarymixtures onto dried aerobic activated sludge[J]. Process Biochemistry, 1999, (35): 301-305.
    [57] N.Akhtar,J.Iqbal,M.Iqbal. Microalgal-luffa sponge immobilized disc: a new efficient biosorbent for the removal of Ni(Ⅱ) from aqueous solution[J]. Process Biochemistry, 2003, (24): 384-388.
    [58] Betul Arican, Celal F, Gokcay. Mechanistics of nickel sorption by activated sludge[J]. Process Biochemistry, 2002, (37): 1307-1315.
    [59] F.B. Dilek, A.Erbay, U.Yetis. Ni(Ⅱ)biosorption by Polyporous ersicolor [J]. Process Biochemistry, 2002, (37): 723-726.
    [60] Wei Ma, J.M. Tobin. Determination and modelling of effects of pH on peat biosorption of chromium, copper and cadmium [J]. Biochemical Engineering Journal, 2004, (18): 33–40.
    [61] F. Beolchinia, F. Pagnanellib, L.Torob.Ionic strength effect on copper biosorption by Sphaerotilusnatans: equilibrium study and dynamic modelling in membrane reactor [J].Water Research, 2006, (40): 144 -152.
    [62] Zumriye Aksu, Derya Akpinar. Competitive biosorption of phenol and chromium(Ⅵ)frombinary mixtures onto dried anaerobic activated sludge[J]. Biochemical Engineering Journal, 2001, (7): 183-193.
    [63] M.Yakup Ar?ca,I˙lhami Tuzunb,Emine Yalc. Utilisation of native, heat and acid-treated microalgae Chlamydomonas reinhardtii preparations for biosorption of Cr(Ⅵ)ions [J]. Process Biochemistry, 2005, (40): 2351–2358.
    [64] L.P.Christov, B.van Driessel, C.A.du Plessis. Fungal biomass from Rhizomucor pusillus as adsorbent ofchromophores from a bleach plant effluent [J].Process Biochemistry, 1999, (35): 91–95.
    [65] A.I. Zouboulis,M.X. Loukidou,K.A. Matis. Biosorption of toxic metals from aqueous solutions by bacteriastrains isolated from metal-polluted soils [J].Process Biochemistry, 2004, (39): 909–913.
    [66] Ming Zhou,Yunguo Liu,Guangming Zeng,et al. Kinetic and equilibrium studies of Cr(Ⅵ)biosorption by deadBacillus licheniformis biomass[J].World J Microbiol Biotechnol, 2007, (23): 43-48.
    [67] Srinivasa Rao Popuri,Ajithapriya Jammala,Kachireddy Venkata Naga Suresh Reddy. Biosorption of hexavalent chromium using tamarind (Tamarindus indica) fruit shell-a comparative study[J].Electronic Journal of Biotechnology, 2002, (17): 34-38.
    [68] Neetu Tewari,P. Vasudevan,B.K.Guha. Study on biosorption of Cr(Ⅵ) by Mucor hiemalis[J].Biochemical Engineering Journal,2005, (23): 185-192.
    [69] Gonul Donmez,Zumriye. Removal of chromium(Ⅵ)from saline wastewaters by Dunaliella species[J]. Process Biochemistry. 2002, (38): 751-762.
    [70] Margarita Enid R.Carmona, Mo nica Antunes Pereira daSilva, Selma G.Ferreira Leite. Biosorption of chromium using factorial experimental design(Ⅵ). Process Biochemistry,2005, (40): 779-788.
    [71] Yasemin S?ahin,Ayten. Biosorption of chromium(Ⅵ)ions from aqueous solution by the bacterium Bacillus thuringiensis,Process Biochemistry [J]. 2005, (40): 1895-1901.
    [72] Veglio F,Beolchini F.Removal of metals by biosorption: a review[J]. Hydrometallurgy,1997,44: 301-316.
    [73]郑天凌,鄢庆枇,林良牧,等.海洋微生物对甲胺磷农药的降解作用[J].台湾海峡,1999,18(1):95-99.
    [74]庄铁诚,张瑜斌,林鹏.红树林土壤微生物对甲胺磷的降解[J].应用与环境生物学报,2000,6(3):276-280.
    [75]胡忠,吴奕瑞,徐艳.海洋苯酚降解菌Candida sp.P5的分离鉴定及其降解特性术[J].应用与环境生物学报,2007,13(2):243-247.
    [76]陈碧娥,刘祖同.海洋丝状真菌转化石油烃的研究[J].石油学报(石油加工), 2002, 18(3): 13-16.
    [77]昊琳,杨惠宁,张笑,等.黄单胞菌的筛选及其降解烷烃性能[J].大连轻工业学院学报, 2004, 23(2): 88-91.
    [78]郭楚玲,哈里德,郑天凌,等.海洋微生物对多环芳烃的降解[J].台湾海峡, 2001, 20(1): 43-47.
    [79]张瑞安.光合细菌净化水质防止赤潮技术研究[J].海洋通报, 1994, 13(2): 93-94.
    [80]吉海平,陈金山.光合细菌在净化水质中的应用试验研究[J].生物工程进展, 1998, 18(2): 29-32.
    [81]张庆,李卓佳,陈康德.复合微生物对养殖水体生态因子的影响[J].上海水产大学学报,1999, 8(1): 43-47.
    [82]陈娜丽,冯辉霞,王冰,等.固定化细胞载体材料的研究进展.化学与生物工程, 2009, 26(10): 13-17.
    [83]金若菲,周集体,王竞,等.固定化工程菌对偶氮染料脱色及强化作用.环境科学, 2007, 28(11): 2598-2602.
    [84]朱柱,李和平,郑泽根.固定化细胞技术中的载体材料及其在环境治理中的应用[J].重庆建筑大学学报,2000,10(5):95-101.
    [85]李超敏,韩梅,张良,等.细胞固定化技术-海藻酸钠包埋法的研究进展[J].安徽农业科学, 2006, 34(7): 1281- 1284.
    [86]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社,2002.
    [87]曹德菊,谷小伟,庞晓坤.固定化枯草杆菌生物吸附去除水中Cd的研究[J].激光生物学报, 2005, 14 (1): 17 -21.
    [88] Wilkinson S. C. Goulding K. H., Robinson P. K. Mercury accumulation and volatilization in immobilized algal cell systems[J]. Biotech. Letter, 1989,11(12):861 - 864.
    [89] Arica M.Y,Kaar Y and Genc O. Entrapment owhite rot fungus Trametesversi color in Ca alginate beads:Preparationand biosorption kinetic analysis for cadmium removal froman aqueous solution[J].BioresourceTechno1,2001,80(2):121-129.
    [90] KaearY,Arpac,TanS,et a1. Biosorption of Hg(II)an Cd(II) from aqueous solutions:Comparison of biosorption capacity of alglnate and immobilized live and heat in activated Phone rochaet echrysosporium[J]. Process Biochemistry,2002,37(6):601-610.
    [91]杨芬.固定化藻细胞对水中Cu(II)的吸附研究[J].曲靖师专学报,2000,19(6):6-48.
    [92]徐容,汤岳琴,王建华,等.固定化产黄表霉废菌体吸附铅与脱附平衡[J].环境科学, 1998, 19(4): 72-75.
    [93] Wang J L,QuarI X,Han L P,et a1.Microbial degradation of quinoline by immobilized cells of Burkholderia Picketti[J].Water Research,2002,36(9):2288-2296.
    [94]王翠红,徐建红,辛晓芸,等.固定化藻菌系统处理含酚废水[J].水处理技术, 2000, 26(4): 236-240.
    [95]张晓姣,李正魁,杨竹攸,等.固定化土著氮循环细菌在城市湖泊水体净化中的应用[J].湖泊科学, 2009, 21(3): 351-356.
    [96]蒋丽娟,何雪香,王晓琳,等.固定化泛菌对底泥中孔雀石绿的降解[J].环境科学与技术, 2008, 31(11): 51-53.
    [97]索宏图,李鑫钢,夏柳荫,等.耐酚优势菌的固定化及降解性能研究[J].安徽农学通报学学报,2008,14(9): 59-61.
    [98]常钢,江祖成,彭天右,等.溶胶-凝胶法制备高比表面积的纳米氧化铝及其对过渡金属离子吸附行为的研究[J].化学学报,2003,61(1):100-103.
    [99]喻德忠,邹菁,艾军.纳米二氧化锆对砷(1lI)和砷(V)的吸附性质研究[J].武汉化工学院学报,2004,26(3):1-4.
    [100] M. Pedio, K. Hevesi, N. Zema, et al. C60/metal surfaces: adsorption and decomposition. Surface Science, 1999, 437(1-2): 249-260.
    [101] DePena Y P,Gallego M.Valcarcell.Fullerene:A sensitive and selective sorbent for the continuous preconcentration and atomic absorption determination of cadmium.Journal of Analytical Atomic Spectrometry, 1997, 12(4): 453-457.
    [102] Gonzalez M M,Gallego M,Valcarcel M.Effectiveness of fuilerene as a sorbent for the determination of trace amounts of cobalt in wheat flour by electrothermal atomic absorption spectrometry.Journal of Analytical Atomic Spectrometry,1999,14(4):711-716.
    [103] M.G. Pereira, E.R. Pereira-Filho, H. Berndt, et al. Determination of cadmium and lead at low levels by using preconcentration at fullerene coupled to thermospray flame furnace atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2004, 59(4): 515-521.
    [104] Baena J R,Gallego M,Valcarcel M. Speciation of inorganic lead and trialkyllead compounds by flame atomic absorption spectrometry following continuous selective reconcentration from aqueous solutions.Spectrochimica Acta Part B-AtomicSpectroscopy,1999,54(13):1869-1879.
    [105]杨兰浩,胡斌,江祖成,等.不同晶型和粒径的二氧化钛微粉对金属离子的吸附行为[J].中国稀土学报,2004,22(5):704-707.
    [106] HANG Y,QIN Y.Separation and preconcentration of trace heavy metal ions with nanometer-size titanium dioxide(anatase)and determination by fluorination assisted ETV-ICP-AES with slurry sampling[J].Journal of Analytical Chemistry,2003,58(11):1049-l053.
    [107] Peng Yuan, Mingde Fan, Dan Yang, et al. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium Cr(VI) from aqueous solutions. Journal of Hazardous Materials, 2009, 166(2-3): 821-829.
    [108]王新新,张颖,王元芬,等.底泥铬污染的纳米铁粉修复及其土壤酶活性动态.生态环境, 2008, 17(5): 2207-2211.
    [109]周庆祥,林海英,肖军平.纳米零价铁在环境修复中的应用.安徽农业科学, 2008, 36(1): 283-284.
    [110] J F Liu , Q H Li , T H Wang, et al . A On-line separation and preconeentratidn of cadmium,lead and nickel in a ful lerene(C-60)minicolumn coupled to flow injection tungsten coil atomic absorption spectrometry[J].ngew. Chem. Int . Ed. , 2004 , 43 : 5048-50521.
    [111]欧阳主才,王奕恒,李小妮,等.鞘氨醇单胞菌株XJ对农药的降解效能[J].华南农业大学学报,2008,29(2):47-49.
    [112] KYOUNG C,ZYLSTRA K Y,GERBEN J, et al. Catabolic role of a three-component salicylate oxygenase from Sphingom onas yanoikuyae B1 in polycyclic aromatic hydrocarbon degradation [J].Biochemical & Biophysical Research Communications, 2005,327 (3):656-662.
    [113]林文莲,吕红,周集体,等.鞘氨醇单胞菌完整细胞对溴氨酸的好氧降解[J].环境科学与技术,2007,30(6):32-35.
    [114]李晓慧,贾开志,何健,等.一株毒死蜱降解菌株Sphingomonas sp. Dsp22的分离鉴定及降解特性[J].土壤学报,2007,44 (4): 734-738.
    [115]贺艳辉,张红燕,袁永明,等.净水微生物对水产养殖环境的修复作用[J].金陵科技学院学报,2005,21(3):96-100.
    [116]李秋芬,袁有宪.海水环境生物修复技术研究展望[J].中国水产科学, 2000, 7(2):90-92.
    [117]田美娟,邵宗泽.深海抗锰细菌的分离鉴定.厦门大学学报,2006,45.
    [118]贺廷龄,陈爱侠,等.环境微生物学.北京:中国轻工业出版社,1996.
    [119]杨文博.微生物学试验.北京:化学工业出版社, 2004.
    [120]李礫,喻子牛,何绍江.农业微生物学试验技术.北京:中国农业出版社,1996.
    [121]翟晓萌,李道棠.有机微污染源水生物预处理微生物菌种的筛选.环境科学, 2000(5): 77-79.
    [122]唐晓萍.三峡库区城市污水生物处理高效降解菌的分离纯化[J].自然科学的研究,2004, 20(2).
    [123]曹小红,杨亚静,鲁梅芳. Study on Screening of Tolerant-Lead & Copper Strains and Its Adsorption Capability [J].环境保护科学,2008,34(5):15-18.
    [124]王海涛,刘大岭,李世川. Safe and Selective Compositions Screened for Specific Microbial Biosorption Capability to Heavy Metal Lead [J].食品科学,390-395.
    [125]李忠国,李金惠,段华波.钡盐共沉法处理酸性含铅废水[J].环境工学报,2007(11),1(11):51-54.
    [126]王晓蓉.环境化学[M].南京大学出版社,1993.11.
    [127] Dong De-Ming,Yang Fan,Li Yu etal.Adsorption of Pb,Cd,to Fe,Mn Oxides in natural freshwater surface coatings developed in different season[J].Journal of Environmental Sciences,2005,17(1):30-36.
    [128]国家环保局.水和废水监测分析方法(第三版)[M].北京:中国环境科学出版社,1989.
    [129]李超敏,韩梅,张良,等.细胞固定化技术-海藻酸钠包埋法的研究进展[J].安徽农业科学,2006,34(7):1281-1282.
    [130] Dong De-Ming,Yang Fan,Li Yu, et al. Adsorption of Pb,Cd,to Fe,Mn Oxides in natural freshwater surface coatings developed in different season[J].Journal of Environmental Sciences, 2005, 17(1): 30-36.
    [131]黄川,王里奥,崔志强,等.采用海藻酸钠固定化微生物技术处理甲醇废水.中国给水排水, 2008, 24(7): 78-81.
    [132]王建龙.生物固定化技术与水污染控[M].北京:科学出版社.20O2.
    [133]陈熹兮,李堃宝,李道棠.低温微生物及其在生物修复领域中的应用.自然杂志, 2001, 23 (3): 163-166.
    [134]朱丽宏,等.三元电极电解在水处理中的应用[J].环境科学,I985,6(66):36-40.
    [135] M S Mo, J H Zeng, XM Liu, et al. NaTeO3 autoclave preparation Te nanobelts [J]. Adv. Mater.2002,14(2) : 1658-16621.
    [136] J Liu, J Cai, Y C Son et al. Solvothermal Synthesis of ultrasonic agitation with MgO nano-manganese[J].J.Phys.Chem.B, 2002, 10: 9761-97681. [137 ] Z P Liu,S Li,Y Yang, et al . Complex surfactant-assisted synthesis of nano-Ni with[J].Adv. Mater, 2003,15(22) : 1946-19481.
    [138] J G Yu ,J C Yu,W Ho, et al. Solvothermal synthesis of single crystals under hydrothermal conditions Na2V6O16·3H2O nanobelts[J].J.Am.Chem.Soc, 2004, 26 : 3422-34231.
    [139] J F Liu, Q H Li, T H Wang, et al. Ammonium alum preparation of metastable monoclinic VO2 single crystal nanobelts[J].Angew.Chem.Int.Ed,2004, 43 : 5048-50521.
    [140] R Q Song ,A W Xu,B Deng et al.In thepresence of surfactant CTMAB andalkylamineswerw preparde MoO3 nanobelts[J].Phys.Chem.B,2005,109: 22758-227661.
    [141]徐如人,庞文琴.无机合成与制备化学.北京:高等教育出版社, 2001, 128-129.
    [142] H. W. Liao,Y. F. Wang, X. M. Liu, et al. Preparation of water phase and Characterization of MoO3 nanobelts[J].Chem.Mater, 2000, 12:2819-2814.
    [143] G. R. Patzke,A. Michailovski, F. Krumeich, et al. Preparation of water phase Dy (OH)3 with and Characterization of Nano Research[J].Chem. Mater, 2004, 16, 1126-1130.
    [144]Gadupudi Purnachadra Rao, Chungsying Lu, Fengsheng Su. Sorption of divalent metal ions from nanotubes: A review[J]. Separation and Purification Technology, 2007, 58: 224-231.
    [145]郭桂悦,梁忠越,荣丽丽.纳米材料对腈纶废水可生化性影响研究[J].工业水处理,2009,29(2):35-37.
    [146] R. Jothiramalingam, M.K. Wang.Synthesis, characterization and photocatalytic activity of porous manganese oxide doped titania for toluene decomposition[J].Journal of Hazardous Materials, 2007, (147): 562-569.
    [147] C. Lahousse, A. Bernier, P. Grange, B.Delmon,et al. Evaluation ofγ-MnO2 as a VOC Removal Catalyst: Comparison with a Noble Metal Catalyst[J]. Ournal of Catalysis, 1998,(178): 214-225.
    [148]林家敏,谢吉民,吕晓萌,等.CuFe2O4纳米粉体的制备及其可见光催化性能[J].环境科学与技术,2008,31(10):21-23.
    [149] Lu ZS, Li CM, Bao HF, et al. Mechanism of Antimicrobial Activity of CdTe Quantum Dots [J].Langmuir, 2008, 24: 5445-5452.
    [150] Kloepfer JA, Mielke RE, Wong MS, et al. Quantum dots as strain- and metabolismspecific microbiological labels [J]. Appl. Environ. Microbiol,2003, 69 (7): 4205-4213.
    [151] Kloepfer JA, Bradforth SE, Nadeau JL. Photophysical properties of biologically compatible CdSe quantum dot structures [J]. J.Phys.Chem. B, 2005, 109 (20): 9996-10003.
    [152] M. Ristic, S. Popovic, S. Music. Absorption band of nano-materials research and application[J].Mater. Lett, 2004, 58: 2494-2499.
    [153] Kimura T, Nishioka H. Intracellular generation of superoxide by copper sulphate in Escherichia coli [J].Mutation Research,1997, 389: 237-242.
    [154] Lu ZS, Li CM, Bao HF, et al. Mechanism of Antimicrobial Activity of CdTe Quantum Dots [J]. Langmuir. 2008, 24: 5445-5452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700