用户名: 密码: 验证码:
地震灾害时空分布与紧急救援响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震灾害是我国自然灾害的众灾之首,对震后灾情时空分布的快速认识以及紧急应对的研究具有重要的理论和实践意义,也是目前灾害应对领域与政府工作的热点。地震灾害研究是一门交叉综合学科,涉及构造地质学、社会学、灾害学、公共管理和危机管理等众多领域,必须在多学科综合的框架下,研究“地震—地震灾害—地震灾害应对”这个链条上的各个环节。但目前地震灾害时空分布研究的尺度对一次特定地震紧急处置的应用价值有限;构造地质学研究地震发生发展规律,偏重于地震灾害的自然属性,而在震后应急救援中的应用研究比较薄弱;地震紧急救援的指挥布局等也未进行详细分析,缺少可借鉴的理论依据和模式。
     本文以地震灾害应对为导向,在一次地震灾害应对的时空框架内,开展地震灾害的时空分析和应急救援响应研究。在空间上,以龙门山前陆构造带与汶川特大地震灾害的空间分布关系分析为例,开展现今构造形态和地理环境下的地震灾害空间分布特征研究,利用地理信息系统的空间分析、叠加分析等技术,获取地震巨灾空间分布的规律性,并建立了基于大型逆冲推覆构造带分区的灾情区划概念模型;在空间分布规律和灾情分布的基础上,提出几种主要的地震灾害救援空间模式;在时间上,以多个国内外强震震后灾情时间变化过程分析为基础,通过统计分析获取地震巨灾几种主要灾害指标随时间变化的规律性。通过上述研究,论文主要获得了以下认识与结论:
     (一)灾害应对中的地震灾害时空分布认识
     在一次特定地震灾害应对时空框架内,地质构造的现今格局是地震灾害空间分布的主要制约因素之一,地震前后构造变化对灾害空间分布的影响可以忽略不计;由于地震原生灾害致灾时间远远小于灾情被认知的时间过程,地震灾害时间分布受人类认知的水平和特点影响明显,即地震灾害获取的能力和水平。因此,针对某个地震灾害的时空分布研究,应从两方面入手:从现今地质构造来研究地震巨灾的空间分布;从灾情被人类认知的过程来研究地震灾害的时间分布。
     (二)地震巨灾空间分布的认识
     1、根据龙门山构造带逆冲方向的分段性和走向上的分段性,划分了9个龙门山逆冲推覆构造带构造亚区;通过对汶川地震地表破裂带、滑坡崩塌、堰塞湖、水利水电工程、余震以及指示综合灾情的地震烈度等震害指标的分析表明,后山带中段是汶川地震灾情最严重的区域,后山带北段和前山带中段较重,前山带北段灾情中等,其他各构造亚区灾情分布较弱。
     2、建立了基于推覆构造带分区的灾情空间分布概念模型。控制推覆方向分带性的逆冲断裂(与逆冲方向垂直)是地震巨灾灾情分布的一级影响因素;大型或巨大型推覆构造带内,与逆冲断裂垂直的捩断裂对能量的调节作用,是地震巨灾灾情分布的二级影响因素;在一二级影响因素内,巨灾灾情还受较大尺度的具体场地和局部环境影响,如后山带内的刚性块体彭灌杂岩体对该亚区内的滑坡分布、映秀Ⅺ度形状等控制明显都有不同程度的影响。
     (三)地震专业救援空间分布的认识
     1、在汶川地震专业救援力量震后前3天的系列时空分布图上,明显看出震后救助力量(尤其是外来救助力量)从南向北迁移的趋势,反映出震后灾情在空间上的认识从震中向北东延伸的过程;通过对专业救援队跨区域作战行进路线的分析,结合推覆构造带地形地貌特征和汶川地震灾情空间分布研究成果,建立了汶川地震专业救援指挥调度的3级管理模式以及“单侧多路梳状”的救援空间形态;并进一步建立跨区域地震巨灾救援管理的宏观指挥框架和6种救援格局的空间形态,以及在该形态下的救援行进路线。
     2、从救援队属地、灾情信息来源、震后离逝时间与埋压情况等多种角度,分析了汶川地震救援成果。结果表明:即使遭受巨灾重创,地方救援队作为震后最早到达现场的专业人员,仍是进行浅表层埋压者救援的重要力量;有效的信息发布渠道是保证各个救援环节流畅、高效地运转的重要条件;人员埋压越深救援效果越差,需要具有重型装备和配置的专业救援队。
     (四)地震灾情时间分布的认识
     1、震后灾情信息总量表现为从零增加直至饱和的总体趋势,即体现为累积增加的性质;信息增量从零先增加到最大值,随后减少为零,增量达到最大值的时间小于总量信息趋于饱和的时间;从数学概念上,增量的时间变化函数就是总量时间变化函数的导数。
     2、震后人员死亡的时间曲线变化速度是非均一的,在震后初期有一个快速增长的过程,越趋近于饱和则变化的速度越慢。在论文选取的10个震例中,4个死亡总数超过万人的震例,其人员死亡统计的绝对数均在震后第二天首次超过1万人;在其余6个死亡总数在万人以下的震例中,其人员死亡统计的绝对数在第二天达到死亡总数的一半,绝大多数超过八成。在当前人类的灾情获取能力下,震后初期信息(48小时,甚至24小时内)对灾情规模的判定具有较大的贡献率。目前人类在人员死亡获取的效率是比较高的,在震后利用实时的人员死亡统计数进行灾害规模的估计也是可行的。
     3、在6个人员死亡超过5000人的震例中,人员死亡时增量K通常从震后7小时开始迅速增加,初次报道的人员死亡超过1000人的时间多数位于8—12小时之间。对于人员死亡规模在1000人左右的地震,初次报道的人员死亡总数超过100人的时间多数也在这个时段内,但窗口会向震后时间缩短的方向滑移。对于重大规模的地震灾害,震后24小时内,尤其是震后8—16小时报道的灾情是灾害规模判定的重要信息窗口。通常人员死亡时增量最大取值的时间也分布在这个时间段内,对要尽快做出决策的地震应急救援行动也具有重要的实用价值。
As earthquake disaster is one of the most severe natural disasters in China, the rapid analysis of spatio-temporal distribution of disasters and the studies on follow-up emergency responses have important theoretical and practical significance, which are the current focused issue of disaster management studies and arise general interests of governments at different levels as well.
     Since it is a comprehensive multidisciplinary research, involving structural geology, sociology, disaster management, public administration, crisis management and many other research fields, earthquake disaster studies must investigate the various aspects of the sequence chain of "earthquake-earthquake disaster-disaster response" within a multidisciplinary framework. However, the present studies have some shortages. For example, the scale of spatio-temporal distribution of earthquake disaster studies has limited application values on a particular emergency response event; structural geology focuses on the occurrence and evolution patterns of earthquakes, and emphasizes the natural properties of the disasters while is relatively weak in the study on its application to the post-earthquake relief mission. Furthermore, there is no detailed study on commanding management in the disaster relief mission and lack of theoretical basis and models for reference. These are worth in-depth studies.
     Oriented from the response to earthquake disasters, this thesis analyzes the spatio-temporal distribution of disasters and studies the following emergency response and rescue mission within the temporal and spatial framework of a specific earthquake. In space, taking the links between the foreland structural belt of the Longmen Shan Mountain and the disaster spatial distribution of the Wenchuan earhquake in 2008 as a case study, the paper studies the current structural patterns and features of disasters spatial distribution in the geographical environment by using the GIS spatial analysis, overlay analysis methods and the likes, in order to acquire the regularity of spatial distribution of earthquake disasters, and to establish a conceptual model of disaster damage based on the large-scale thrust nappe structure belt zone, thus to propose several major spatial modes of earthquake disaster rescue. In time, on the basis of the analysis on time successions of disaster situations after several major earthquakes, the paper selects death and injuered as index, by applying the statistical analysis, obtains the developing regularity of several major disaster indexes with time. Through this research, the thesis concludes the following results:
     (A) Spatio-temporal distribution of earthquake disasters in the disaster response
     In a specific earthquake response within the temporal and spatial framework, the current pattern of geological structure is the main constraints an earthquake disaster spatial distribution. The influences of structural changes before and after earthquakes on the disasters spatial distribution can be neglected. As the time of primary earthquake disaster is short, the major constrains on the disaster time distribution are the cognitive level and characteristic of the human beings, i.e., the social acquirement ability and level of earthquake disasters. Therefore, for the study on temporal and spatial distribution of earthquake disasters, this work will focus on the following two aspects:ⅰ) studying the spatial distribution of earthquake disasters from current geological structures;ⅱ) studying the time distribution of earthquake disaster damage from people's cognitive process on the disaster situation.
     (B) Spatial distribution of earthquake disaster
     1, According to the segmentation of in thrust and strike of the Longmen Shan mountain structural belt, the paper divides the Longmen Shan Mountain thrust structural belt into nine sub-regions. The comparison of different damage indexes of the Wenchuan Earthquake, such as, earthquake surface rupture zones, landslide collapses, damaged lakes, water conservancies and hydropower plants, aftershocks and seismic intensity which indicates the comprehensive disaster damages and so on, shows that the middle section of the Houshan belt is the worst damage area, the northern section of the Houshan Belt and middle section of the Qianshan belt are heavier damage ones, the northern part of the Qianshan Belt is moderately damaged, and the other sub-regions are slightly damaged.
     2, Establish the damage conceptual models based on zonation of the nappe structural belt
     The thrust fault (normal to the direction of thrust) which controls zonation in the nappe direction is the first class influence factor of earthquake disaster damage distribution. And, in the large or giant nappe structure zone and perpendicular to the thrust fault, the tear fault which regulates the energy is the second class influence factor. Among these two influence factors, the catastrophic damages are still impacted by large scale specific sites and local environment. For example, the distribution of slides in the sub-zones and the XI degree formation in Yingxiu County are more or less obviously affected by the rigid blocks of the western Yangtze block in the Houshan belt.
     (C) Spatial distribution of professional rescue forces
     1. The first 3-day series of temporal and spatial distribution of the professional earthquake rescue forces after the earthquake reflecting the obvious movements from south to north of rescue forces (especially the external rescue forces) shows that the understanding of the damages in space is processing from the epicenter to the northeast. By analysis of the marching routes of cross-region professional teams and integrating the features of nappe structural terrain and the studies of spatial distribution of the Wenchuan earthquake damage, the thesis constructs a 3-category commanding management mode and the comb-shape spatial distribution form of rescue forces, then further develops an inter-regional earthquake catastrophic relief management framework and six spatial forms of rescue forces, and the rescue routes in different forms.
     2, The thesis analyzes the results of the Wenchuan earthquake rescue mission from different views ranging from the places where the rescue teams came from, the sources of disaster information, the elapsed time after the earthquake and the buried situation of victims. The analysis shows that even if the area suffered a lot, as the first professional forces who arrived the affected area, the provincial rescue teams were the major forces in rescuing the shallow buried survivors; and the effective information dissemination channel was a critical condition for a smooth and efficient operation; and the deeper the survivors were buried, the worser the rescue effects. More professional rescue teams with heavy equipments were needed.
     (D) Study of temporal distribution of disaster damages
     1, the overall trend of total earthquake disaster information is from zero up to saturation, reflecting the cumulative nature. Information increase is from zero to the maximum value then decreasing to zero. The incremental time to reach the maximum value is less than the saturation time of total information. From the mathematical concept, the time variation function of incremental is the derivative of that of total information.
     2. The change rate of the time curve of the deaths after the earthquake is non-homogeneous. In the initial period after the earthquake, there is a rapid growth process, the closer to the saturation the slower the time changes.
     The thesis selects 10 earthquake cases,4 of which are with more than 10,000 deaths. And the absolute numbers of deaths are all beyond 10,000 in the second day after the earthquake. In the other 6 cases with the death toll below 10,000, the absolute number of deaths in the second day is half of the total death toll. Most of them are over 80%. Due to the limits of the current acquisition technology, the information early obtained within 48 hours, or even within 24 hours, contributes a lot in determining the scales of the disaster. Currently, the efficiency in obtaining the death toll is relatively high, and using the real-time statistics of death toll after an earthquake to estimate the scale of disaster is also feasible.
     3, The death-time statistic is selected as the index and hour-increasing death index (K) is defined. In the 6 cases with more than 5,000 deaths, the increment K usually increases rapidly in 7 hours after the occurrence of earthquakes. The time of firstly reported the overall death numbers over 1,000 is mostly between 8-12 hours. To those earthquakes with about 1,000 death numbers, the time of firstly reported death toll over 100 mostly is within the same time span, but the time window tends to be less than 7 hours. To the major scale earthquake disaster, the information of disaster within 24 hours after the earthquake, especially the 8-16 hours is most important for determination of the disaster scales. Usually, the maximum K is within this time window which is valuable for the decision-making for earthquake emergency and relief mission.
引文
安欧.1999.应力场重叠法预测龙门山断裂带测区大震时空强分布.中国地震局地壳应力研究所编,地地壳构造与地壳应力文集:108—114
    柴旭荣,韩军青.2004.山西地震时空分布概述.雁北师范学院学报,20(4):107—108
    曹毅.2008.地震救援队应急救援能力综合评价及应用研究.硕士学位论文,国防科学技术大学研究生院
    陈发景,汪新文,陈昭年.2007.前陆盆地分析.北京:地质出版社,1-109
    陈桂华,徐锡伟,郑荣章等.2008b.2008年汶川MS8.0地震地表破裂变形定量分析—北川-映秀断裂地表破裂带.地震地质,30(3):723~738
    陈国光,计凤桔,周荣军等.2007.龙门山断裂带晚第四纪活动性分段的初步研究,地震地质29(3):657—673
    陈虹,王志秋,周敏等.2004.伊朗巴姆地震中的国际救援情况.国际地震动态,(5):6—12
    陈化然,刘文兵.2002.中国大陆强震时空关联特征及应用.地震,22(1):25—31
    陈棋福,陈颙,陈凌.1997.利用国内生产总值和人口数据进行地震灾害损失预测评估.地震学报,19(6):640—649
    陈颙,刘杰.1995.地震灾害损失预测(综述).自然灾害学报,4(2):20—28
    陈颙,刘杰.1995.地震灾害损失预测(综述).十年尺度中国地震灾害损失预测研究.北京:地震出版社,
    陈文德.1997.中国南北地震带1900年以来强震的时空分布特征及其预报意义.四川地震,(3):17-22
    陈晓清,崔鹏,程尊兰等.2008.5—12汶川地震堰塞湖危险性应急评估.地学前缘(中国地质大学(北京);北京大学),15(4):244—249
    陈运泰,许力生,张勇等.2008.2008年5月12日汶川特大地震震源特性分析报告.http://www.csi.ac.cn/sichuan/chenyuntai.pdf
    崔鹏,韩用顺,陈晓清.2009.汶川地震堰塞湖分布规律与风险评估.四川大学学报(工程科学版),41(3):35—41
    董绍鹏,韩竹军,尹金辉等.2008.龙门山山前大邑断裂活动时代与最新构造变形样式初步研究.地震地质,30(4):996—1003
    崔鸿超.1996.日本兵库县南部地震震害综述.建筑结构学报,17(1):2—13
    邓贵生.2008.工程兵国际救援行动过程分析与效能评估.硕士学位论文,国防科学技术大学
    邓海潮,王文利.2003.中国灾害的军事救援及其机制研究.自然灾害学报,12(1):54—90
    邓起东,陈社发,赵小麟等.1994.龙门山及其邻区的构造和地震活动及动力学.地震地质,16(4):389—402.
    邓砚,苏桂武,聂高众.2005.中国地震应急二级分区的初步研究.防灾减灾工程学报,25(4):458-467
    丁香,王晓青,姜立新,1998.地震灾害损失现场评估的计算机辅助系统.地震,18(3):286—292
    付碧宏,时丕龙,张之武.2008.四川汶川MS8.0大地震地表破裂带的遥感影像解析.地质学报,82(12):1679—1687
    傅征祥,姜立新,李格平.1994.地震灾害生命损失的时空强分布特征分析.地震,(2):1—10
    傅征祥,李革平.1993.地震生命损失研究.北京:地震出版社
    傅征祥,刘桂萍,邵辉成等.2005.中国大陆百年(1901—2001年)浅源强震活动及生命损失回顾与分析.地震学报,27(4):367—376
    高建国.2004.地震应急期的分期.灾害学,19(1):11—15
    高建国,贾燕.2005.地震救援能力的一项指标——地震灾害发布时间的研究.灾害学,20(1):31—35
    高建国,贾燕.2006,1989—2005年中国启动地震应急预案的研究,灾害学,21(1):91—97
    高建国,聂高众,贾燕.2007.关于地震恢复正常生活秩序时间的讨论.中国可持续发展论坛
    高庆华.1991.自然灾害系统论概说.科技导报,(2):51—54
    高庆华.马宗晋,张业成等.2007.自然灾害评估.北京:气象出版社
    高庆华.马宗晋,聂高众.1996.地质科学在自然灾害综合研究中的作用.地球学报,17(3):241—248
    高庆华,张业成等.1997.自然灾害灾情统计标准化研究.海洋出版社
    龚文婧.2008.我国地震灾害预警机制中的政府行为分析——以唐山大地震中唐山市与青龙县为例.硕士学位论文,中共中央党校
    过洪洋.2006.我国公共危机管理多元主体参与机制研究.硕士学位论文,电子科技大学
    国家地震局震害防御司未来地震灾害损失预测研究组.1990.中国地震灾害损失预测研究.北京:地震出版社
    国家地震局震害防御司编.1993.震害评估细则,地震灾害预测和评估工作手册.北京:地震出版社.
    国家地震局震害防御司.1993.震害调查及地震损失评定工作指南(试行稿),地震灾害预测和评估工作手册.北京:地震出版社.
    郭增建,陈鑫连.1980.地震对策.北京:地震出版社
    洪时中.1995.对日本兵库县南部地震震灾统计时程曲线的初步分析.国际地震动态,(5): 10—141
    胡鞍钢.2008.特大地震灾害的应对周期.清华大学学报(哲学社会科学版),23(4):5—14
    黄建发、路鸣、陈虹等译.2007.国际搜索与救援指南和方法(INSARAG guidelines and methodology中文版).北京:地震出版社
    黄润秋,李为乐.2009.汶川地震触发崩塌滑坡数量及其密度特征分析.地质灾害与环境保护,20(3):1—7
    贾东,陈竹新,贾承造等.2003.龙门山前陆褶皱冲断带构造解析与川西前陆盆地的发育.高校地质学报,9(3):461-469.
    贾燕.2006.地震灾区恢复重建研究——以农村地震为例.硕士学位论文,中国地震局地质研究所
    贾燕,高建国.2004.辽宁海城7.3级地震死亡人数—年龄分布的分析.中国地震,20(4):394—398
    蒋铭.1988.中国大陆地震的时空强转换.地震,(4):35—41
    江娃利,谢新生.2009.龙门山后山断裂汶川MS8.0地震地表破裂带.国际地震动态,(4):4
    金文正,汤良杰,杨克明等.2007.川西龙门山褶皱冲断带分带性变形特征.地质学报,81(8):1072—1080
    金文正,汤良杰,杨克明等.2008.龙门山冲断带构造特征研究主要进展及存在问题探讨.地质评论:54(1):37—46
    兰青龙,霍拥军,张梅.2005.山西洪洞ML510地震应急反应时间序列与启示.山西地震,(3):24-27
    李成日,孙文欣.2006.中国国内救援队和国际地震灾害救援行动的简介与展望.防灾科技学院学报,8(3):8—14
    李传友,宋方敏,冉勇康.2004.龙门山断裂带北段晚第四纪活动性讨论.地震地质,26(2):248—258
    李海兵,付小方,van der Woerd J等.2008.汶川地震(Ms 8.0)地表破裂及其同震右旋斜向逆冲作用.地质学报,82(12):1623—1643
    李海兵,王宗秀,付小方等.2008.2008年5月12日汶川地震(Ms8.0)地表破裂带的分布特征.中国地质,35(5):803—813
    李钜章.1995.地震灾害宏观分析研究.地理研究,14(2):35—40
    李勇,黄润秋,周荣军等.2009.龙门山地震带的地质背景与汶川地震的地表破裂.工程地质学报,17(1):3—18
    李勇、曾允孚.1995.龙门山前陆盆地沉积及构造演化.成都:成都科技大学出版社
    李勇,周荣军,董顺利等.2008.汶川地震的地表破裂与逆冲-走滑作用.成都理工大学学报(自然科学版),35(4):404—413
    李勇,周荣军,DENSNIORE A L等.2006.青藏高原东缘龙门山晚新生代走滑.逆冲作用的地貌标志.第四纪地质,26(1):40—51.
    李永强,王景来.2007.云南地震灾害与地震应急.昆明:云南科技出版社
    李永强,王景来.2008.世界地震应急精选.昆明:云南科技出版社
    李志强,袁一凡,李晓丽等.2008.对汶川地震宏观震中和极震区的认识.地震地质,30(3):768—777
    李智武,刘树根,陈洪德.2008.龙门山冲断带分段.分带性构造格局及其差异变形特征.成都理工大学学报(自然科学版),35(4):440—454
    梁军.2009.汶川地震堰塞湖及其排险除险综述.汶川大地震工程震害调查分析与研究.北京:科学出版社,999—1007
    梁军,王华.2009.四川省水库地震应急排险及土石坝震损特点综述.汶川大地震工程震害调查分析与研究.北京:科学出版社,382—385
    林茂炳.1994.初论龙门山推覆构造带的基本结构样式.成都理工学院学报,21(3):222—225.
    林茂炳,马永旺.1995.论龙门山彭灌杂岩体的构造属性.成都理工学院学报,22(1):42—46
    林茂柄,吴山.1991.龙门山推覆构造变形特征.成都地质学院学报,18(1):46-55
    Liu B C.1993.美国新马德里地区地震灾害损失预测研究.北京:地震出版社
    刘保金,杨晓平,酆少英等.2008.龙门山山前疑似汶川MS8.0地震地表破裂的浅层地震反射调查.地震地质,30(4):908—916
    刘春平,林娟华.2008.龙门山造山带彭灌杂岩体形成模式研究.内蒙古石油化工,(19):1-4
    刘和甫.1995.前陆盆地类型及褶皱—冲断层样式.地学前缘(中国地质大学北京),2(3—4):59—68
    刘和甫,李晓清,刘立群等.2004.走滑构造体系盆山耦合与区带分析.现代地质,18(2):139—150
    刘和甫,梁慧社,蔡立国.1994.川西龙门山冲断系构造样式与前陆盆地演化.地质学报,68(2):101—118
    刘建国.2008.公安消防特勤部队参加四川汶川大地震应急救援的实践与启示.消防技术与产品信息,(9):52—55
    刘静,张智慧,文力等.2008.汶川8级大地震同震破裂的特殊性及构造意义——多条平行断裂同时活动的反序型逆冲地震事件.地质学报,82(12):1707—1722
    刘殊.2007.前陆褶皱冲断带构造特征研究.博士学位论文,中国地震局地质研究所
    刘殊,张虹,曲国胜等.2009.龙门山—米仓山褶皱冲断构造特征研究,成都:电子科技大学出版社
    刘树根,罗志立,曹树恒.1991.一种新的陆内俯冲类型—龙门山型俯冲成因机制研究[J].石油实验地质,13(4):314—323
    刘树根,罗志立,戴苏兰.1995.龙门山冲断带隆升和川西前陆盆地沉降.地质学报,69(3):205-213.
    刘树根,罗志立,赵锡奎.2003.中国西部盆山系统的耦合关系及其动力学模式—以龙门山造山带—川西前陆盆地系统为例.地质学报,77(2):177-186
    刘文兵,陈化然,张国民.2001.中国大陆强震时空关联特征的初步定量研究——西南西北地区.地震,21(3):77—84
    刘倬,吴忠良.2005.地震和地震海啸中报道死亡人数随时间变化的一个简单模型.中国地震,21(4):72—75.
    龙学明,罗志立.1994.龙门山冲断带的分区及其演化.见:罗志立,赵锡奎,刘树根,等.龙门山造山带的崛起和四川盆地的形成和演化.成都:成都科技大学出版社,317—329
    罗志立.试论中国型(C型)冲断带及其油气勘探问题.石油与天然气地质,1984,5(4):315-324
    罗志立,雍自权,刘树根等.2008.四川汶川大地震与C型俯冲的关系和防震减灾的建议.成都理工大学学报(自然科学版),35(4):337—347
    马保起,张世民,田勤俭等.2008.汶川810级地震地表破裂带.第四纪研究,28(4):513—517
    马玉宏,谢礼立.2002.地震人员伤亡估算方法研究.地震工程与工程振动,20(4):140-147
    马宗晋.2006.中国自然灾害和减灾的对策.防灾科技学院学报,(3):1—3
    马宗晋,杜品仁,洪汉净.2003.地球构造与动力学.广东:科技出版社:286-299,277-280
    马宗晋,高文学,方蔚青,高庆华等.1995.中国减灾重大问题研究.北京:地震出版社
    美国应用技术委员会.1991.加利福利亚未来地震的损失估计.北京:地震出版社
    聂高众,陈建英,李志强等.2002.地震应急基础数据库建设.地震,22(3):105—112
    聂高众,高建国,苏桂武.2001.地震应急救助需求的模型化处理——来自地震震例的经验分析.资源科学,23(1):69-76
    牛旺祥.1989.全球强震转移的某些时空特征.地震,(5):28—31
    裴韬,周成虎,李全林等.2002.华北地区强震时空相关性特征分析.地震学报:24(1):50—56
    祁生文,许强,刘春玲等.2009.汶川地震极重灾区地质背景及次生斜坡灾害空间发育规律.工程地质学,17(1):39—49
    曲国胜等.2009.汶川特大地震专业救援案例.北京:地震出版社
    曲国胜,陈杰,陈新安等.1998.西昆仑—帕米尔造山带及其北缘前陆盆地板内变形构造.地质论评44(4):p419—429
    曲国胜,高庆华,杨华庭.1996.我国自然灾害评估中亟待解决的问题.地学前缘,3(2):212—218
    曲国胜,李亦纲,林松建等.2003.福州市区地震灾害损失预测研究.防灾减灾工程学报,23(2):70—76
    曲国胜,李亦纲,宁宝坤等.2004.我国城市地震灾害风险评估及其在城市规划与管理中的应用.应用基础与工程科学学报(增刊),45—54
    曲国胜,李志强,马宗晋等.1999.泉州市防震减灾信息管理与辅助决策系统—我国城市防震减灾工程及其发展介绍.城市防震减灾,(2):22—26
    曲国胜,宁宝坤,胡卫建.2009.埋压人员典型废墟与救援队伍救援效果调查.汶川地震科学考察项目,内部资料
    曲国胜,马宗晋,张宁等.2008.准噶尔盆地及周缘断裂构造特征.新疆石油地质,29(3): 290—295.
    曲国胜,徐志忠,李彪等.2001.印度古吉拉特邦Kutch地区2001年1月26日地震成因初探.北京:新构造与环境,地震出版社,372—381
    冉勇康,陈立春,陈桂华等.2008.汶川MS8.0地震发震断裂大地震原地重复现象初析.地震地质,30(3):630—643
    单修政,徐世芳.2002.地震灾害紧急问题综述.灾害学,17(3):71—75
    邵志刚,马宏生,李志雄等.2009.中国大陆强震活动时空特征分析.地震,29(4):98—106
    宋瑞祥.2007.论减轻地震灾害的国家战略.防灾减灾文集,新华出版社:1—12
    宋胜武,王仁坤,蒋峰.2009.大中型水电工程地震应急排险及震害调查情况综述.汶川大地震工程震害调查分析与研究.北京:科学出版社,376—381
    宋岩,柳少波,赵孟军.2008.中国中西部前陆盆地油气分布规律及主控因素.北京:石油工业出版社,1-166
    苏桂武,高庆华.2003.自然灾害的风险要素分析.地学前缘(中国地质大学,北京),10(特刊):272—279
    苏桂武,聂高众,高建国.2003.地震应急信息的特征、分类与作用.地震,23(3):27-35
    苏凤环,刘洪江,韩用顺.2008.汶川地震山地灾害遥感快速提取及其分布特点分析.遥感学报,12(6):956—963
    苏幼坡,刘瑞兴.2000.城市地震灾害紧急救助的时序特性分析.灾害学,15(2):33—37
    孙柏涛,赵振东,林均岐.1996.城市震害时空序列的展开过程分析.自然灾害学报,5(4):41—49
    孙振凯,张洪由,梁凯利.2001.2001年1月26日印度古吉拉特邦7.8级地震综述.国际地震动态,(3):18—24
    孙志刚.2001.地震伤员及医疗救援的调查研究.硕士学位论文,第一军医大学卫生勤务学教研室
    童立强.2008.“5·12”汶川大地震极重灾区地震堰塞湖应急遥感调查.国土资源遥感,(3):61—64
    童圣江.2002.唐代地震灾害时空分布初探.中国历史地理论丛,17(4):55—64
    滕五晓.日美地震灾害紧急对应对中国灾害应急体制建立的启示.防灾减灾工程学报,24(3):323—328
    滕五晓,加藤孝明,小出治.2003.日本灾害对策体制.北京:中国建筑工业出版社
    王二七,孟庆任,陈智樑.2001.龙门山断裂带印支期左旋走滑运动及其大地构造成因.地学前缘,(4):375—384
    王健.2008.地震灾害管理研究.硕士学位论文,北京交通大学
    王景来,杨子汉.1997.地震灾害时间进程法.地震研究,20(4):424—430
    王理,徐伟,王静爱.2003.中国历史地震活动时空分异.北京师范大学学报(自然科学版),39(4):544—550
    王世新,周艺,魏成阶等.2008.汶川地震重灾区堰塞湖次生灾害危险性遥感评价.遥感学报,12(6):900—907
    王卫民,姚振兴.2008.再谈汶川8.0级地震震源破裂过程.http://www.csi.ac.cn/sichuan/ sichuan080512_110.htm.
    王艳茹,王宝光,戴君武等.2009.“5·12”汶川大地震人员伤亡的时空分布特点.自然灾害学报,18(6):52—56
    王瑶.2008.我国突发事件应急管理体制研究.硕士学位论文,东部师范大学
    魏国齐,李本亮,陈汉林.2008.中国中西部前陆盆地构造特征研究.北京:石油工业出版社,71-75
    吴山,赵兵,胡新伟.1999.再论龙门山飞来峰.成都理工学院学报,26(3):221~224.
    吴新燕.2006.城市地震灾害风险分析与应急准备能力评价体系的研究.博士学位论文,中国地震局地球 物理研究所
    吴新燕,顾建华,吴昊昱.2009.地震报道死亡人数随时间变化的修正指数模型.地震学报,31(4):457—463
    吴忠芳,周廷刚,张元华等.2008.汶川“5.12”地震序列余震时空分布的研究.生态环境,17(4):1662—1666
    许冲,戴福初,姚鑫.2009.汶川地震诱发滑坡灾害的数量与面积.科技导报,27(11):79—81
    徐钦.媒体在公共危机中的角色分析——以汶川大地震为例.硕士学位论文,苏州大学
    徐锡伟,闻学泽,叶建青等.2008.汶川MS8.0地震地表破裂带及其发震构造.地震地质,30(3):597—629
    徐旭辉.1993.川西龙门山前缘地质地球物理解释.石油实验地质,15(1):60—73
    薛澜,钟开斌.2005.突发公共事件分类、分级与分期:应急体制的管理基础.CPA中国行政管理学术论坛,(2):102—107
    晏凤桐.2003.地震灾情的快速评估.地震研究,26(4):282—287
    杨光,沈繁銮.2005.日本阪神地震灾害的一些调查统计数据.华南地震,25(1):83-86
    杨立明,徐辉,张勇.2002.青藏块体与相关区域7级地震相互关系研究.内陆地震,16(3):260—265
    杨懋源.2004.新中国地震应急工作历程(一).国际地震动态,(6):23—29
    杨懋源.2004.新中国地震应急工作历程(二).国际地震动态,(7):11—19
    杨懋源.2004.新中国地震应急工作历程(三).国际地震动态,(8):13—17
    杨懋源.2004.新中国地震应急工作历程(四).国际地震动态,(9):11—17
    杨懋源.2004.新中国地震应急工作历程(五).国际地震动态,(10):13—19
    杨懋源.2004.新中国地震应急工作历程(六).国际地震动态,(11):1—7
    杨晓平,蒋溥,宋方敏等.1999.龙门山断裂带南段错断晚更新世以来地层的证据.地震地质,21(4):341—345.
    姚清林,高建国.2005.制约地震紧急救灾效果的关键因素与改进途径.灾害学,20(4):48—52
    殷跃平.2008.汶川八级地震地质灾害研究.工程地质学报,16(4):433—444
    游志斌.当代国际救灾体系比较研究.博士学位论文,中共中央党校
    于泳,洪汉净,刘培洵等.2003.全球大地震时空分布与动力学机制的初步研究.地学前缘(中国地质大学,北京):10(特刊)5—10
    詹行礼,李远图,何绍府.1985.川西龙门山“彭灌杂岩”花岗岩成因类型及其构造环境初步探讨。成都地质学院学报,13(1):50—59
    张国伟,郭安林,姚安平.2004中国大陆构造中的西秦岭—松潘大陆构造结.地学前缘,(3):23—32
    张洪蛟.公共危机管理中的媒体角色与政府应对.硕士学位论文,苏州大学
    张军龙,申旭辉,徐岳仁等.2009.汶川8级大地震的地表破裂特征及分段.地震,29(3):149—162
    张培震,徐锡伟,闻学泽等.2008.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因.地球物理学报,51(4):1066—1073
    张培震,闻学泽,徐锡伟等.2009.2008年汶川8.0级特大地震孕震和发生的多单元组合模式.科学通报,54(7):944—953
    张鹏,陈新民,王旭东.2009.近断层地震动与汶川地震灾区滑坡破坏特征分析.南京工业大学学报(自然科学版),31(1):55—59
    赵阿兴,马宗晋.1993.自然灾害损失评估指标体系的研究.自然灾害学报,2(3):1—7
    赵伯明,徐锡伟.2008汶川M S 810地震断层与地震灾害初步分析.地震地质,30(4):839—854
    赵祎喆,吴忠良,蒋长胜等.2008.用地震资料估计的龙门山断裂深部形变及其对于汶川地震成因的意义.地质学报,82(12):1778—1787
    赵振东,林均歧,钟江荣等.1998.地震人员伤亡指数与人员伤亡状态函数.自然灾害学报,7(3):90—96
    尹之潜等.1990.中国地震灾害损失预测研究.北京:地震出版社
    尹之潜.1996.地震灾害及损失预测方法.北京:地震出版社
    袁一凡等.2007.地震现场工作第4部分灾害直接损失评估.北京:地震出版社
    周长山,周会娟,李如友等.2009.历史时期广西地震的时空分布.广西师范大学学报:哲学社会科学版,45(2):110—115
    周建平.2009.汶川地震灾区水电工程震损调查及其分析.汶川大地震工程震害调查分析与研究.北京:科学出版社,406—411
    周素琴,郭子雄.2004.地震人员伤亡的动态评估.华侨大学学报(自然科学版),25(1):54—57
    钟锴,徐鸣洁,王良书.2004.川西两期前陆盆地南北两段构造演化的地球物理特征.石油学报,(6):29-37
    朱夏.1983.中新生含油气盆地形成与演化.北京:科学出版社
    朱志澄.1990.构造地质学.武汉:中国地质大学出版社
    庄建琦,崔鹏,葛永刚等.2009.5.12汶川地震崩塌滑坡分布特征及影响因子评价—以都江堰至汶川公路沿线为例.地质科技情报,28(2):16—22
    庄培仁,常志忠.1996.断裂构造研究.北京:地震出版社,98—102
    Bilham R, Gaur V K, Molnar P.2001. Earthquakes:Himalayan seismic hazard. Science,293:1442~1444.
    Bowman D, King G C P.2001. Accelerating seismicity and stress accumulation before large eart hquakes. Geophysical Research Let ters,28 (21):4039—4042.
    Densmore A L, Ellis M A, Li Y, et al.2007. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau.Tectonics,26:TC4005, doi:10.1029/2006TC001987
    Dickinson W R.1974. Plate tectonics and Sedimentation. In:Tectonic and Sedimentation. SEMP Spec. Pwb.22:1-27
    Dong S W, Zhang Y Q, Wu Z H, Yang N, Ma Y S, Shi W, Chen Z L, Long C X, An M J.2008. Surface rupt ure and co2seismic displacement produced by t he MS8.0 Wenchuan eart hquake of May 12t h,2008, Sichuan, China: Eastwards growth of the Qinghai-Tibet Plateau. Acta Geologica Sinica,82 (5):938-948.
    Dunbar P K, Lockridge P A, Whiteside L S.1992. Catalog of Significant Earthquakes(2150 B.C.~1991A.D.). Report SE-49, World Data Center A for Solid Earth Geophysics
    Fedotov S A.1965. On distribution patterns for strong earthquakes in Kamchatka, the Kurile Islands and northeastern Japan. Trudy Inst Fir Zemli Akad, Nauk SSSR,,36:66-93.
    Fedotov S A.1968. The seismic cycle, quantitative seismic zoning, and long-term seismic forecasting. In: Medvedev S V, ed. Seismic Zoning in the USSR. Izdatel'stvo Nauka, Moscow,133-166.
    Ian I.Mitroff&Christine M.Pearson.Crisis Management:A Diagnostic Guild for Improving your Organization's Crisis-Preparedness.San Francisco:Jossey-Bass Publishers,1993.
    Jeanne-Marie Col.2007. Managing Disasters:the Role of Local Government. Public Administration Review.11
    JIA Dong, WEI Guoqi, CHEN Zhuxin, et al.2006. Longmen Mountain fold2thrust belt and it s relation to the western Sichuan Basin in cent ral China:New insight s f rom hydrocarbon exploration [J]. AAPG Bulletin,90 (9): 1425-1447.
    Juliano Macedo, Stephen Marshak.1999. Controls on the geometry of fold-thrust belt salients.GSA Bulletin, 111 (12):1808-1822
    Kagan Y Y, Jackson D D.1991. Long-term earthquake clustering[J].GeophysJ Int,104(1):117-133
    Lomnitz, C.,1970, Casualties and behavior of populations during earthquakes. Bull. Seism. Soc. Amer.,60: 1309-1313.
    Ma Z, Jiang M.1987. Strong earthquake period and episodes in China. Earthquake Research in China,3 (1):47 —51(in Chinese)
    Manny de Guzman.2002. Total disaster risk management approaeh:Towards effeetive police action in disaster reduetion and response. Regional Workshop on Total Disaster Risk Management.7—9August, Kobe, Japan.
    Mogi K.1974. Active periods in the world's chief seismic belts. Tectonophysics,22:265-282.
    Mogi K.1979. Global variation of seismic activity. Tectonophysics,57:T43-50.
    Olike K A.1991. discussion on the relation between magnitude and the number of the dead by earthquakes. International seminar on earthquakes prediction and hazard mitigation technology. Japan. Science and Technology Agency.
    Parsons T, Ji C, Kirby E.2008. St ress changes f rom t he 2008 Wenchuan eart hquake and increased hazard in t he Sichuan basin. Nature,454 (7203):509—510.
    Price R. A.1973. Large-scale gravitational flow supracrustal rocks, southern Canadian Rockies. In:DeJong K. A.& Scholten R. eds. Gravity and Tectonics. New York:John Wiley & Sons:491-502
    Samardjieva, E. and Badal, J.,2002. Estimation of the expected number of casualties caused by strong earthquakes.Bull.Seism.Soc.Amer.,92:2310-2322
    Sato K, Bhatia S C, Gupta H K.1996. The three-dimensional numerical modeling of deformation and stress in Himalaya and Tibet plateau with a simple geometry[J]. J phys Earth,44:227-254
    Shiono K, Krimgold F,Ohta y.1991. Post-event rapid estimation of earthquake fatalities for the management of rescue activity, Comprehensive Urban Studies.(44)
    Tsai, Y.-B., Yu, T.-M., Chao, H.-L., et al.,2001. Spatial distribution and age dependence of human-fatality rates from the Chi-Chi, Taiwan, earthquake of 21 September 1999. Bull. Seism. Soc. Amer.,91:1298-1309.
    W. Timothy Coombs.1999. Ongoing Crisis Communication:Planning, Managing, and Responding [M]. Sage Publications,Inc.
    William L. Waugh.2000. Living with Hazards, Dealing With Disasters:An Introduction to Emergency Management [M].M. E. Sharpe, Inc.
    Worley B A, Wilson C J L.1996. Deformation partitioning and foliation reactivation duing t ranspressional orogenesis, an example f rom t he Cent ral Longmenshan, China. Journal of St ructural Geology,18 (4):395-411.
    Xu Z H, Ji S H, Li H, et al.2008. Uplift of the Longmen shang range and the Wenchuan earthquake. Episodes,31: 291-301
    Xu Z Q, Ji S C, Li H B, Hou L W, Fu X F, Cai Z H.2008. Uplift of the Longmen Shan range and the Wenchuan eart hquake. Episodes,31 (3):291~301.
    Yeats R S, Sieh K.Allen C R.1997. The Geology of Earthquake [M]. Oxford Univ Press,Oxford.
    Zhang P Z, Shen Z K, Wang M, Gan W J, B rgmann R, Molnar P, Wang Q, Niu Z J, Sun J Z, Wu J C, Sun H R, You X Z.2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology,32 (9): 809~812.
    Zhou R, Li Y, Densmore A L, et al.2007. Active tectonics of the Longmen Shan region of the eastern margin of the Tibetan plateau. Acta Geol Sin,81:593-604

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700