用户名: 密码: 验证码:
高寒山区降水垂直分布规律及融雪径流模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对高寒山区降水分布不清、融雪因子多变等阻碍了融雪降雨径流形成的研究与洪水预报的应用,并考虑到分布式水文模型在融雪径流模拟与洪水预报方面具有一定的优势,以地理信息系统(GIS)为平台,以天山山区典型流域为实例,以三水源新安江模型为基础构建了分布式流域水文模型,充分利用基本水文站、气象站、自动测报站和遥感数据以及挖掘基层水情技术人员的经验。基于TRMM/TMI卫星降水数据与实测站点降水数据探讨了TRMM/TMI卫星对天山山区降水的探测能力及其在受自然和地形条件限制而无法监测地区降水分析预测中的可用性,通过流域出流过程分解识别与流域总出流划分水源的合理性分析方法,研究天山山区降水的垂直分布、融雪因子的时空分布规律,提出分布规律的分析方法与表达方式,为观测资料缺乏流域水文预报模型中参数确定提供依据,提高融雪径流研究的科学水平,为降水资料观测缺乏地区水文预报模型中参数的确定提供一定依据。同时,为新疆防洪预警支持系统提供具体的预报模型与方法。主要结果如下:
     (1)天山西部山区降水的空间分布变异性很大,但具有明显的规律性。从降水的水平分布来看,流域内高山区比低山区降水量多,但是较低高程迎风坡上的降水量会大于更高山区迎风坡上的降水量,因此,在一个流域上年降水量的平面分布,是按流域山脊线高程从上到下存在一位于迎风坡上的高值区,中高山区年降水量分布与水汽来向和坡向的组合具有很好的对应关系。从垂直分布来看:
     1)降水随高程的变化规律天山南北坡明显不同:在天山山区不同坡段,表现出不同的垂直变化特点,伊犁河流域和天山南坡中段,有一个降水高值带,伊犁河流域最大降水高度在3241m左右,天山南坡中部最大降水高度在3558m,天山北麓中段5000m以下区域降水量随高程的变化略呈“S”型,没有明显的变化拐点;天山北麓西段总的趋势是4000m以下降水量随高程变化而增加,但波动较多,呈现两个“S”型相接状。
     2)降水垂直变化率在天山山区南北坡有较大的差异:伊犁河流域4500m以下区域年降水量垂直变化率在-7.42~5.64mm/100m之间,天山南坡中部4500m以下区域年降水量垂直变化率在-13.39~37.78mm/100m之间,天山北麓中段5000m以下区域年降水量垂直变化率在1.14~8.95mm/100m之间;天山北麓西段年降水量垂直变化率在-9.98~17.80 mm/100m之间。
     (2)研究区积雪覆盖率和NDVI除自身的变化规律外,两者之间存在较好的相关关系。自2001~2008年研究区积雪覆盖率有减少的趋势,而植被覆盖度普遍存在改善的趋势,但改善的幅度不大。
     (3)天山山区气温存在明显的升高趋势,但径流变化趋势不明显。基于80年代和2000年分辨率为1km的土地利用类型对比分析,耕地向草地和居民点及工矿用地的转换构成了土地利用变化的主导过程,其中居民点及工矿用地变化率最大。山区土地利用未发生大的变化,融雪径流对LUCC的响应基本一致。
     (4)建立了天山西部山区分布式水文模型。为降低模型开发成本,基于GIS开源项目GDAL和MapWinGIS实现了GIS基本功能,并开发了流域信息提取模块。基于三水源新安江模型开发了一个耦合融雪、融冰和土壤冻融过程的分布式水文模型,并在喀什河流域应用,得到了比较好的效果。
The research on snowmelt and rainfall runoff and the application of flood forecasting is restricted in high cold alpine areas because of the complexity of precipitation distribution law, the variability of snowmelt factor, the lack of monitored data and so on. Considering the distributed hydrological model reflects some advantages in snowmelt runoff and flood-forecast research, so the distributed hydrological model is built in Tianshan Mountain areas based on the Xinanjiang Model using DEMs, GIS technology and snow monitoring data from remote sensing satellite data of study area. It will be fully used that measured data are from the basic station, from the meteorological station, from automatic system of hydrologic data collection and transmission, from remote sensing data and that experience gained by the engineering and skilled workers in the primary river management unit. The detection ability of TRMM/TMI satellite for precipitation in Tianshan Mountains is discussed based on TRMM/TMI satellite precipitation data and observed precipitation data, and the availability of TRMM/TMI satellite in precipitation analysis and forecast in where no precipitation monitoring as the limitation on natural and terrain condition is analyzed. By disassembling the outflow of watershed and selecting rationality analysis methods on delineation hydrological process, the laws on precipitation vertical distribution and space and time distribution of snowmelt factor in Tianshan Mountains are analyzed, and found the expression ways on before-mentioned laws and distribution. It is important that laws will provide the basis for parameter identification of hydrology forecast model in lack-data watershed, and advance the snowmelt runoff research means. At the same time, they provide the concrete forecast model and the method for Xinjiang floods prevents and early warning support system. The main results as follow:
     (1) The spatial distribution variability of precipitation is complex in the west of Tianshan Mountains, but it has obvious law. From horizontal distributions of precipitation we find that the precipitation is more in high mountainous areas than low mountainous areas, but there is more precipitation in windward slope of lower elevations zones than higher elevations zones. The horizontal distribution law of annual total precipitation is that there is a high value area where is located in windward slope based on the ridge line elevations from the top down, precipitation distribution law is correlative with vapor origins and aspect in middle-high mountain areas. From the vertical direction we know the rules are: 1) Precipitation variation rule is obviously different with elevation on the north and south slopes of the Tianshan Mountains, and it represents different vertical variation characters in different slope gradients of Tianshan Mountain areas. There is a high-value zone on precipitation in Yili river basin and the middle part of southern slope of Tianshan Mountains. The maximum belt of precipitation is about 3241m in Yili river basin and the middle part of southern slope of Tianshan Mountains is about 3558m. The precipitation showes a S-shaped autocatalytic characteristics with the elevation changing at elevations lower than 5000m in the west of northern slope of Tianshan Mountains, there are no obviously changing inflexions. The precipitation variation tendency is precipitation increasing with the change of elevaions, but the fluctuate is larger, and it showes two S-shaped autocatalytic characteristics.
     2) There are larger differences on the vertical change rate of precipitation. The vertical change rate of precipitation is -7.42~5.64mm/100m at elevations lower than 4500m in Yili river basin; the vertical change rate of precipitation is -13.39~37.78mm/100m at elevations lower than 4500m in the middle part of southern slope of Tianshan Mountains; the vertical change rate of precipitation is 1.14~8.95mm/100m at elevations lower than 5000m in the middle northern piedmont of Tianshan Mountains; the vertical change rate of precipitation is -9.98~17.80mm/100m in the west of northern slope of Tianshan Mountains.
     (2)The snow cover and NDVI have better correlation besides themselves variation laws. The snow cover rate represents decrease tendency between 2001 and 2008, and land cover commonly exists obvious ameliorating tendency, but the scope is small.
     (3) Through analyzing the long-term trend of hydrological and meteorological changes in study area showed that temperature presents an obvious increasing tendency, and the variable tendency of precipitation is not obvious. Contrast analysis the land-use types with resolution 1km between 1980's and 2000 showed that the land use types had been changed not much in mountainous area. The mainly changing is cultivated land to grassland and the proportion of residential and mining land. The proportion of residential and mining land increase quickly. Using the SWAT model we found the response on snowmelt runoff in the mountainous regions to LUCC was a close correspondence between 1980's and 2000, and the influence on LUCC to runoff basically had no large change.
     (4) The distributed hydrological model on the west Tianshan Mountains is built. In order to reduce the model development cost, the GIS open source project GDAL and MapWinGIS are used and the software has some functions such as the basic function of GIS, the module for watershed information extraction is developed, it could easily realize the watershed information extraction by DEM data. Based on three-water-source Xinanjiang Model, the digital hydrological model which considered snowmelt, ice and frozen soil hydrology process is built. The model is applied to simulate the snowmelt-runoff of Kashen river watershed in 2005 and the results are better and reflect the actual changing trend of the runoff.
引文
[1]翟浩辉.水与经济社会发展问题[R].天津市:中国水利经济研究会第七届全国会员代表大会, 2004.
    [2] 21世纪水安全——海牙世界部长级会议宣言[A].第二届世界水论坛部长级会议[C].荷兰海牙: 2000
    [3]刘俊峰,杨建平,陈仁升,等. SRM融雪径流模型在长江源区冬克玛底河流域的应用[J].地理学报. 2006, 61(11): 1149-1159.
    [4]杨利普,吴申燕.干旱区水文学发展形势展望[J].干旱区地理. 1985, 8(1): 11-13.
    [5]陆忠艳,马力,缪启龙,等.起伏地形下重庆降水精细的空间分布[J].南京气象学院学报. 2006, 29(3): 408-412.
    [6]章曙明,王志杰,尤平达,等.新疆地表水资源研究[M].北京:中国水利水电出版社, 2008: 17-47.
    [7]石朋,芮孝芳.降雨空间插值方法的比较与改进[J].河海大学学报:自然科学版. 2005, 33(4): 361-365.
    [8]熊立华,郭生练.分布式流域水文模型[M].北京:中国水利水电出版社, 2004.
    [9] Marqu Nez J, Lastra J, Garc A P. Estimation models for precipitation in mountainous regions: the use of GIS and multivariate analysis[J]. Journal of hydrology. 2003, 270(12): 1-11.
    [10] Vicente-Serrano S M, Saz-Sánchez M A, Cuadrat J M. Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature[J]. Climate Research. 2003, 24(2): 161-180.
    [11] Goovaerts P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall[J]. Journal of Hydrology. 2000, 228(12): 113-129.
    [12] Jeffrey S J, Carter J O, Moodie K B, et al. Using spatial interpolation to construct a comprehensive archive of Australian climate data[J]. Environmental Modelling and Software. 2001, 16(4): 309-330.
    [13] Wong K W, Wong P M, Gedeon T D, et al. Rainfall prediction model using soft computing technique[J]. Soft Computing-A Fusion of Foundations, Methodologies and Applications. 2003, 7(6): 434-438.
    [14]朱会义,贾绍凤.降雨信息空间插值的不确定性分析[J].地理科学进展. 2004, 23(2): 34-42.
    [15] Hutchinson M F. Interpolation of rainfall data with thin plate smoothing splines-Part I: Two dimensional smoothing of data with short range correlation[J]. Journal of Geographic Information and Decision Analysis. 1998, 2(2): 139-151.
    [16] Hutchinson M F. Interpolation of rainfall data with thin plate smoothing splines. Part II: Analysis of topographic dependence[J]. Journal of Geographic Information and Decision Analysis. 1998, 2(2): 152-167.
    [17]詹道江,叶守泽.工程水文学[M].北京:中国水利水电出版社, 2000.
    [18]芮孝芳.水文学原理[M].中国水利水电出版社, 2004.
    [19] Gotway C A, Ferguson R B, Hergert G W, et al. Comparison of kriging and inverse-distance methods for mapping soil parameters[J]. Soil Science Society of America Journal. 1996, 60(4): 1237.
    [20] Gemmer M, Becker S, Jiang T. Observed monthly precipitation trends in China [J]. Theoretical and Applied Climatology. 2004, 1(2): 39-45.
    [21]孟庆香,刘国彬,杨勤科.黄土高原降水量的空间插值方法研究[J].西北农林科技大学学报. 2006, 34(3): 83-88.
    [22] Daly C, Helmer E H, Quinones M. Mapping the climate of Puerto Rico, Vieques and Culebra[J]. International Journal of Climatology. 2003, 23(11): 1359-1381.
    [23] Hasenauer H, Merganicova K, Petritsch R, et al. Validating daily climate interpolations over complex terrain in Austria[J]. Agricultural and Forest meteorology. 2003, 119(12): 87-107.
    [24]邬伦,刘瑜,张晶,等.地理信息系统原理方法和应用[M].北京:科学出版社, 2001: 178-192.
    [25]冯锦明,赵天保,张英娟.基于台站降水资料对不同空间内插方法的比较[J].气候与环境研究. 2004, 9(002): 261-277.
    [26] Hutchinson M F. Interpolating mean rainfall using thin plate smoothing splines[J]. International Journal of Geographical Information Science. 1995, 9(4): 385-403.
    [27] Cross E R, Sheffield C, Perrine R, et al. Predicting areas endemic for schistosomiasis using weather variables and a Landsat data base[J]. Military medicine. 1984, 149(10): 542-544.
    [28]章淹.地形对降水的作用[J].气象. 1983: 9-13.
    [29]汤懋苍.祁连山区降水的地理分布特征[J].地理学报. 1985, 40(4): 323-332.
    [30]蒋忠信.山地降水垂直分布模式讨论[J].地理研究. 1988, 7(1): 73-79.
    [31]孙安健.美国山地降水量垂直分布的研究[J].地理研究. 1989, 8(1): 32-39.
    [32]傅抱璞.地形和海拔高度对降水的影响[J].地理学报. 1992, 47(4): 302-314.
    [33]张克映,张一平,刘玉洪,等.哀牢山降水垂直分布特征[J].地理科学. 1994, 14(2): 144-151.
    [34]陈明,傅抱璞.山区地形对暴雨的影响[J].地理学报. 1995, 50(3): 256-263.
    [35]喻家龙,喻洁.山地降水垂直分布模式计算方法的改进[J].山地研究. 1995, 13(3): 195-198.
    [36]王菱.华北山区坡地方位和海拔高度对降水的影响[J].地理科学. 1996, 16(2): 150-158.
    [37]喻洁,喻家龙.山地降水垂直分布三参数高斯模式及其应用[J].地理研究. 1996, 15(4): 82-86.
    [38]孙强,曾维华,沈珍瑶,等.基于地统计学方法的泾河流域降水空间变异规律研究[J].干旱区资源与环境. 2004, 18(5): 47-51.
    [39]朱芮芮,李兰,王浩,等.降水量的空间变异性和空间插值方法的比较研究[J].中国农村水利水电. 2004(7): 25-28.
    [40]封志明,杨艳昭,丁晓强,等.气象要素空间插值方法优化[J].地理研究. 2004, 23(3): 357-364.
    [41]岳文泽,徐建华,徐丽华.基于地统计方法的气候要素空间插值研究[J].高原气象. 2005, 24(6): 974-980.
    [42]蔡福,于慧波,矫玲玲,等.降水要素空间插值精度的比较——以东北地区为例[J].资源科学. 2006, 28(6): 73-79.
    [43]舒守娟,喻自凤,王元,等.西藏地区复杂地形下的降水空间分布估算模型[J].地球物理学报. 2005, 48(3): 535-542.
    [44]周锁铨,薛根元,周丽峰,等.基于GIS降水空间分析的逐步插值方法[J].气象学报. 2006, 64(1): 100-111.
    [45]穆振侠,姜卉芳,刘丰,等.天山西部山区降雨量空间分布的研究[J].新疆农业大学学报. 2007, 30(1): 75-77.
    [46]尤淑撑,严秦来.基于人工神经网络面插值的方法研究[J].测绘学报. 2000, 29(1): 30-34.
    [47]于兴杰,孙金丹,张树田,等.分布式水文模型的发展、现状及前景[J].山西水利科技. 2009(2): 63-68.
    [48]陈仁升,康尔泗,杨建平,等.水文模型研究综述[J].中国沙漠. 2003, 23(3): 221-229.
    [49]王中根,刘昌明,吴险峰.基于DEM的分布式水文模型研究综述[J].自然资源学报. 2003, 18(2): 168-173.
    [50]井立阳.数字化流域水文模拟研究[D].河海大学, 2005.
    [51]芮孝芳,朱庆平.分布式流域水文模型研究中的几个问题[J].水利水电科技进展. 2002, 22(3): 56-58.
    [52]芮孝芳,黄国如.分布式水文模型的现状与未来[J].水利水电科技进展. 2004, 24(2): 55-58.
    [53] R Allan F, R L H. Blueprint for a physically based,digitally-simulated hydrologic response model[J]. Journal of Hydrology. 1969(9): 237-258.
    [54]黄平,赵吉国.流域分布型水文数学模型的研究及应用前景展望[J].水文. 1997(5): 5-9.
    [55] Abbott M B, Bathurst J C, Cunge J A, et al. Introduction to the European Hydrological System--Systeme Hydrologique Europeen," SHE". 1: History and philosophy of a physically-based, distributed modelling system.[J]. Journal of hydrology(Amsterdam). 1986, 87(1): 45-59.
    [56] Abbott M B, Bathurst J C, Cunge J A, et al. Introduction to the European Hydrological System--Systeme Hydrologique Europeen,' SHE', 2: Structure of a Physically-based, Distributed Modelling System[J]. Journal of Hydrology. 1986, 87(2): 61-77.
    [57] Refsgaard J C, Seth S M, Bathurst J C, et al. Application of the SHE to catchments in India. I: General results[J]. Journal of hydrology. 1992, 140: 1-23.
    [58] Jain S K, Storm B, Bathurst J C, et al. Application of the SHE to catchments in India Part 2. Field experiments and simulation studies with the SHE on the Kolar subcatchment of the Narmada River[J]. Journal of hydrology. 1992, 140: 25-47.
    [59] Beven K J, Kirkby M J. A physically based variable contributing model of basin hydrology[J]. Hydrological Sciences Bulletin. 1979, 24(1): 43-69.
    [60] Arnold J G. SWRRB: A basin scale simulation model for soil and water resources management[M]. University Press: Texas A & M, 1990: 1-142.
    [61] Arnold J G, Williams J R, Maidment D R. Continuous-time water and sediment-routing model for large basins[J]. Journal of Hydraulic Engineering. 1995, 121: 171-183.
    [62] Neitsch S L, Arnold J G, Kiniry J R, et al. Soil and water assessment tool theoretical documentation, version 2000[EB/OL]. http://swatmodel.tamu.edu/documentation.aspx.
    [63]张明旭. SWAT模型初步研究[J].吉林师范大学学报:自然科学版. 2006, 27(1): 13-15.
    [64]张东,张万昌,朱利,等. SWAT分布式流域水文物理模型的改进及应用研究[J].地理科学. 2005, 25(4): 434-440.
    [65]张银辉. SWAT模型及其应用研究进展[J].地理科学进展. 2005, 24(5): 121-130.
    [66] Wigmosta M S, Vail L W, Lettenmaier D P. A distributed hydrology-vegetation model for complex terrain[J]. Water Resources Research. 1994, 30(6): 1665-1680.
    [67] Wigmosta M S, Lettenmaier D P. A comparison of simplified methods for routing topographically-driven subsurface flow[J]. Water Ressource Research. 1999, 35(1): 255-264.
    [68] Nijssen B, Haddeland I, Lettenmaier D P. Point evaluation of a surface hydrology model for BOREAS[J]. Journal of Geophysical Research. D. Atmospheres. 1997, 102(29): 367-378.
    [69] Leung L R, Wigmosta M S. Potential climate change impacts on mountain watersheds in the Pacific Northwest[J]. Journal of the American Water Resources Association. 1999, 35(6): 1463-1471.
    [70] Storck P, Ken T, Blolton S. Measurement of differences in snow accumulation,melt and micrometeorology duo to forest harvesting[J]. Northwest Science. 1999, 73: 87-100.
    [71] Rasamee. GIS and hydrologic modeling for the management of small watershed[J]. ITC Journal. 1994, 4: 343-348.
    [72] Arnold J G, Srinivasan R, Muttiah R S, et al. Large area hydrologic modeling and assessment. I. Model development.[J]. Journal of the American water resource Association. 1998, 34(1): 73-89.
    [73] Yang D, Musiake K. A continental scale hydrological model using the distributed approach and its application to Asia[J]. Hydrological Processes. 2003, 17(14): 2855-2869.
    [74] Krysanova V, Müller-Wohlfeil D I, Becker A. Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds[J]. Ecological Modelling. 1998, 106: 261-289.
    [75]芮孝芳.流域水文模型研究中的若干问题[J].水科学进展. 1997, 8(1): 94-98.
    [76]王中根,刘昌明,左其亭,等.基于DEM的分布式水文模型构建方法[J].地理科学进展. 2002, 21(5): 430-439.
    [77]郭生练,熊立华,井杨,等.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报. 2000, 33(6): 1-5.
    [78]王中根,穆宏强.分布式流域水文模型的一般结构[J].水文水资源. 2001, 22(1): 12-15.
    [79]唐莉华,张思聪.小流域产汇流及产输沙分布式模型的初步研究[J].水力发电学报. 2002(1): 119-127.
    [80]夏军,王纲胜,吕爱锋,等.分布式时变增益流域水循环模拟[J].地理学报. 2003, 58(5): 789-796.
    [81]王中根,郑红星,刘昌明,等.黄河典型流域分布式水文模型及应用研究[J].中国科学: E辑. 2004, 34(A01): 49-59.
    [82]王中根,郑红星,刘昌明.基于模块的分布式水文模拟系统及其应用[J].地理科学进展. 2005, 24(6): 109-115.
    [83]刘卓颖,倪广恒,雷志栋,等.黄土高原地区中小尺度分布式水文模型[J].清华大学学报:自然科学版. 2006, 46(9): 1546-1550.
    [84]许继军,杨大文,丁金华,等.空间嵌套式流域水文模型的初步研究──以三峡水库入库洪水预报为例[J].水利学报. 2007,增刊: 365-371.
    [85]石朋,芮孝芳,瞿思敏,等.一个网格型松散结构分布式水文模型的构建[J].水科学进展. 2008, 19(5): 662-670.
    [86]朱强,孙敏,陈秀万.基于动态数字地形模型的流域产汇流模拟方法[J].北京大学学报:自然科学版. 2009(2): 83-88.
    [87]张雪松,郝芳华,杨志峰,等.基于SWAT模型的中尺度流域产流产沙模拟研究[J].水土保持研究. 2003, 10(4): 38-42.
    [88]黄清华,张万昌. SWAT分布式水文模型在黑河干流山区流域的改进及应用[J].南京林业大学学报:自然科学版. 2004, 28(2): 22-26.
    [89]胡远安,程声通,贾海峰,等.袁水上游小流域非点源污染研究——实验设计与数据初步分析[J].农业环境科学学报. 2003, 22(3): 442-445.
    [90]秦耀民,胥彦玲,李怀恩.基于SWAT模型的黑河流域不同土地利用情景的非点源污染研究[J].环境科学学报. 2009, 29(2): 440-448.
    [91]代俊峰,崔远来.基于SWAT的灌区分布式水文模型——Ⅰ.模型构建的原理与方法[J].水利学报. 2009, 40(2): 145-152.
    [92]代俊峰,崔远来.基于SWAT的灌区分布式水文模型——Ⅱ.模型应用[J].水利学报. 2009, 40(3): 311-318.
    [93]朱利,张万昌.基于径流模拟的汉江上游区水资源对气候变化响应的研究[J].资源科学. 2005, 27(2): 16-22.
    [94]王艳君,吕宏军,施雅风,等.城市化流域的土地利用变化对水文过程的影响——以秦淮河流域为例[J].自然资源学报. 2009, 24(1): 30-36.
    [95]黄志霖,田耀武,肖文发,等.三峡库区黑沟流域AnnAGNPS参数空间聚合效应[J].生态学报. 2009, 29(12): 6681-6690.
    [96]雷晓辉,贾仰文,蒋云钟,等. WEP模型参数自动优化及在汉江流域上游的应用[J].水利学报. 2009, 40(12): 1481-1488.
    [97]陈小凤,张利平.基于VIC模型与SWAT模型的白莲河流域径流模拟对比研究[J].中国农村水利水电. 2009(12): 4-6.
    [98]林峰,陈桂芳. HEC—HMS分布式水文模型的时间尺度效应研究[J].吉林师范大学学报:自然科学版. 2009, 30(3): 132-135.
    [99]冯杰,解河海,成丽婷.基于子流域的TOPMODEL模拟研究[J].长江科学院院报. 2009, 26(4): 4-8.
    [100]张洪斌,李兰,赵英虎,等. HBV模型的改进与应用[J].中国农村水利水电. 2008(12): 70-72.
    [101]康丽莉,王守荣,顾骏强.分布式水文模型DHSVM对兰江流域径流变化的模拟试验[J].热带气象学报. 2008, 24(2): 176-182.
    [102] Finsterwalder S, Schunk H. Der Suldenferner[J]. Zeitschrift des Deutschen und Oesterreichischen Alpenvereins. 1887, 18: 72-89.
    [103] Hoinkes H, Steinacker R. Hydrometeorological implications of the mass balance of Hintereisferner, 1952–53 to 1968–69[J]. IAHS Publ. 1975, 104: 144-149.
    [104] Jóhannesson T, Sigurdsson O, Laumann T, et al. Degree-day glacier mass-balance modelling with applications to glaciers in Iceland, Norway and Greenland[J]. Journal of Glaciology. 1995, 41(138): 345-358.
    [105] Oerlemans J, Anderson B, Hubbard A, et al. Modelling the response of glaciers to climate warming[J]. Climate Dynamics. 1998, 14(4): 267-274.
    [106] Braithwaite R J, Zhang Y. Sensitivity of mass balance of five glaciers to temperature changes assessed by tuning a degree day mode[J]. Journal of Glaciology. 2000, 46(152): 7-12.
    [107] Singh P, Kumar N. Determination of snowmelt factor in the Himalayan region[J]. Hydrological Sciences Journal/Journal des Sciences Hydrologiques. 1996, 41(3): 301-310.
    [108] Arendt A, Sharp M. Energy balance measurements on a Canadian high arctic glacier and their implications for mass balance modelling[J]. IAHS PUBLICATION. 1999: 165-172.
    [109] Martinec J, Rango A. Parameter values for snowmelt runoff modelling.[J]. Journal of Hydrology(Amsterdam). 1986, 84(3): 197-219.
    [110] Lang H. Relations between glacier runoff and meteorological factors observed on and outside the glacier[J]. IAHSPubl. 1968, 79: 429-439.
    [111] Zuzel J F, Cox L M. Relative importance of meteorological variables in snowmelt[J]. Water Resources Research. 1975, 11(1): 174-176.
    [112] Cazorzi F, Dalla Fontana G. Snowmelt modelling by combining air temperature and a distributed radiation index[J]. Journal of Hydrology. 1996, 181(14): 169-187.
    [113] Hock R. A distributed temperature-index ice- and snowmelt model including potential direct solar radiation[J]. Journal of Glaciology. 1999, 45(149): 101-111.
    [114] Hock R. Temperature index melt modelling in mountain areas[J]. Journal of Hydrolog. 2003, 282(1-4): 104-115.
    [115] Engineer T U S A. Snow Hydrology[M]. Plate, 1956.
    [116] Dozier J. A clear-sky spectral solar radiation model for snow-covered mountainous terrain[J]. Water Resources Research. 1980, 16: 709-718.
    [117] Marks D, Domingo J, Susong D, et al. A spatially distributed energy balance snowmelt model for application in mountain basins[J]. Hydrological Processes. 1999, 13(12): 1935-1959.
    [118] Ohara N. Numerical and Stochastic Upscaling of Snowmelt Process[D]. University of California, Davis, 2003.
    [119] Haefner H, Seidel K, Ehrler H. Applications of snow cover mapping in high mountain regions[J]. Physics and Chemistry of the Earth. 1997, 22(4): 275-278.
    [120] Andreadis K M, Lettenmaier D P. Assimilating remotely sensed snow observations into a macroscale hydrology model[J]. Advances in Water Resources. 2006, 29(6): 872-886.
    [121] Letsinger S L, Olyphant G A. Distributed energy-balance modeling of snow-cover evolution and melt in rugged terrain: Tobacco Root Mountains, Montana, USA[J]. Journal of Hydrology. 2007, 336(12): 48-60.
    [122]马虹,刘宗超.中国西部天山季节性积雪的能量平衡研究和融雪[J].科学通报. 1992, 37(21): 1978-1981.
    [123]马虹,刘一峰.天山季节性积雪的能量平衡研究和融雪速率模拟[J].地理研究. 1993, 12(1): 87-92.
    [124]刘时银.天山乌鲁木齐河源1号冰川物质平衡对气候变化的敏感性研究[J].冰川冻土. 1998, 20(1): 9-13.
    [125]何春阳,丁永建,李新.冰川变化可视化计算方法研究[J].冰川冻土. 1999, 21(2): 169-174.
    [126]冯学智,李文君,史正涛,等.卫星雪盖监测与玛纳斯河融雪径流模拟[J].遥感技术与应用. 2000, 15(1): 18-21.
    [127]张学成,可素娟,潘启民,等.黄河冰盖厚度演变数学模型[J].冰川冻土. 2002, 24(2): 203-205.
    [128]马虹,程国栋. SRM融雪径流模型在西天山巩乃斯河流域的应用实验[J].科学通报. 2003, 48(19): 2088-2093.
    [129]晋锐,车涛,李新,等.基于遥感和GIS的西藏朋曲流域冰川变化研究[J].冰川冻土. 2004, 26(3): 261-266.
    [130]韩海东,丁永建,刘时银.科奇喀尔冰川夏季表碛区热量平衡参数的估算分析[J].冰川冻土. 2005, 27(1): 88-94.
    [131]张一驰,李宝林,包安明,等.开都河流域融雪径流模拟研究[J].中国科学(D辑:地球科学). 2006, 36(S2): 24-32.
    [132]赵求东,刘志辉,房世峰,等.基于EOS/MODIS遥感数据改进式融雪模型[J].干旱区地理. 2007, 30(6): 915-920.
    [133]穆振侠.天山西部山区分布式水文模型的研究[D].乌鲁木齐:新疆农业大学, 2007.
    [134] Kummerow C, Barnes W, Kozu T, et al. The tropical rainfall measuring mission (TRMM) sensor package[J]. Journal of Atmospheric and Oceanic Technology. 1998, 15(3): 809-817.
    [135] Kawanishi T, Kuroiwa H, Ishido Y, et al. On-orbit test and calibration results of TRMM precipitation radar[A].Microwave Remote Sensing of the Atmosphere and Environment[C]. Beijing China: Proceedings of SPIE, 1998: 94-101.
    [136] Kummerow C, Simpson J, Thiele O, et al. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit[J]. Journal of Applied Meteorology. 2000, 39(12): 1965-1982.
    [137]付容,胡亮,谷国军,等.利用TRMM降水资料对华南和长江流域夏季天气尺度波的对比分析[J].中国科学(D辑). 2007, 37(9): 1252-1259.
    [138]施雅风,刘潮海,王宗太,等.简明中国冰川目录[M].上海:上海科学普及出版社, 2005: 41-48.
    [139]李江风.关于高山降水带的分布[J].气象科技. 1976(8): 23-25.
    [140]袁育枝.河北山地降水的垂直分布[J].气象. 1979(10): 34-36.
    [141]傅抱璞.山地气候[M].北京:科学出版社, 1983.
    [142]李万彪,陈勇.利用热带降雨测量卫星的微波成像仪观测资料反演陆地降水[J].气象学报. 2001, 59(5): 591-601.
    [143] Fu Y, Liu G. The variability of tropical precipitation profiles and its impact on microwave brightness temperatures as inferred from TRMM data[J]. Journal of Applied Meteorology. 2001, 40(12): 2130-2143.
    [144]吴庆梅,程明虎,苗春生.用TRMM资料研究江淮,华南降水的微波特性[J].应用气象学报.2003, 14(2): 206-214.
    [145]董新光,邓铭江,王智,等.新疆地下水资源[M].乌鲁木齐:新疆科学技术出版社, 2005: 23-45.
    [146]邓铭江,王世江,董新光.新疆水资源及可持续利用[M].北京:中国水利水电出版社, 2005: 1-14.
    [147]赵求东,刘志辉,房世峰,等.基于EOS/MODIS遥感数据改进式融雪模型[J].干旱区地理. 2007, 30(6): 915-920.
    [148]梁天刚,吴彩霞,陈全功,等.北疆牧区积雪图像分类与雪深反演模型的研究[J].冰川冻土. 2004, 26(2): 160-165.
    [149]车涛,李新,高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土. 2004, 26(3): 363-368.
    [150]刘艳,张璞,李杨,等.基于MODIS数据的雪深反演—以天山北坡经济带为例[J].地理与地理信息科学. 2005, 21(6): 41-44.
    [151]张明华.基于ETM+影像的西藏南迦巴瓦峰地区海洋性冰川信息提取[J].冰川冻土. 2005, 27(2): 226-232.
    [152]季泉,孙龙祥,王勇,等.基于MODIS数据的积雪监测[J].应用技术. 2006(3): 57-58, 68.
    [153]曹云刚,刘闯.一种简化的MODIS亚像元积雪信息提取方法[J].冰川冻土. 2006, 28(4): 562-567.
    [154]刘屹岷,钱正安.海-陆热力差异对我国气候变化的影响[M].北京:气象出版社, 2005: 1-193.
    [155]王叶堂,何勇,侯书贵. 2000-2005年青藏高原积雪时空变化分析[J].冰川冻土. 2007, 29(6): 855-861.
    [156] https://wist.echo.nasa.gov/[EB/OL].
    [157]刘闯,葛成辉.美国对地观测系统(EOS)中分辨率成像光谱仪(MOD工S)遥感数据的特点与应用[J].遥感信息. 2002(3): 45-48.
    [158]伍菲. MODIS数据的土地利用分类研究[D].北京:中国林业科学研究院, 2005: 1-5.
    [159]蒋岳新,闫厚. EOS-MODIS数据在林业上的应用前景展望[J].林业资源管理. 2003, 2(1): 62-66.
    [160]武鹏飞. EOS/MODIS植被指数在草地生物量遥感估测中的应用[D].乌鲁木齐:新疆农业大学, 2003: 16-20.
    [161]杜刚.基于EOS/MODIS的植被指数监测模型研究及应用[D].武汉:华中科技大学, 2005.
    [162]蒋耿明. MODIS数据基础处理方法研究和软件实现[D].北京:中国科学院研究生院, 2003: 5-10.
    [163]裴欢.基于MODIS数据的北疆积雪信息提取及其应用研究[D].乌鲁木齐:新疆大学, 2006: 19-25.
    [164]黄镇,崔彩霞.基于EOS/MODIS的新疆积雪监测[J].冰川冻土. 2006, 28(3): 343-347.
    [165] K H, J M. Remote Sensing on Ice and Snow[M]. Landon: Chapman andHall Ltd, 1985.
    [166]曾严,鄢俊洁. MODIS数据在积雪检测中的应用[J].测绘与空间地理信息. 2005, 28(6): 97-99.
    [167] Hall, Dk, Riggs, et al. Development of Methods for Mapping Global Snow Cover Using Moderate Resolution Imaging Spectroradiometer Data[J]. Remote Sensing of Environmen. 1995, 54(2): 127-140.
    [168]曾群柱.我国西北若干种冰、雪及水体反射光谱特性的研究[J].中国科学(B)辑. 1984(4): 370-377.
    [169]黄晓东,张学通,李霞,等.北疆牧区MODIS积雪产品MOD10A1和MOD10A2的精度分析与评价[J].冰川冻土. 2007, 29(5): 722-729.
    [170]孙红雨,王常耀,牛铮,等.中国地表植被覆盖变化及其气候因子关系[J].遥感学报. 1998, 2(3): 204-219.
    [171]李秀花,师庆东,常顺利,等. 1981-2001年中国西北干旱区NDVI变化分析[J].干旱区地理. 2008, 31(6): 940-945.
    [172]陈效逑,王恒. 1982-2003年内蒙古植被带和植被覆盖度的时空变化[J].地理学报. 2009, 64(1): 84-94.
    [173]刘蕾,刘建军,朱海涌. 2001~2007年天山南坡中段不同植被类型NDVI变化分析——以新疆和静县为例[J].中国环境监测. 2008, 24(5): 69-73.
    [174] Tucker C J. Red and photographic infrared linear combination for monitoring vegetation[J]. Remote Sensing of Environment. 1979, 8: 127-157.
    [175] Tuck C J, Fung I Y, Keeling C D, et al. Relationship between atmospheric CO2 variations and a satellite-derived vegetation index[J]. Nature. 1986, 319: 195-199.
    [176]罗修岳,郑柯.脆弱生态环境植被指数和植被盖度数字图像的编制及其应用研究—以晋陕蒙地区为例[M].北京:宇航出版社, 1994: 24-35.
    [177] Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991[J]. Nature. 1997, 386: 698-702.
    [178]田庆久,闵祥军.植被指数研究进展[J].地球科学进展. 1998, 13(4): 327-333.
    [179]杨元合,朴世龙.青藏高原草地植被覆盖变化及其与气候因子的关系[J].植物生态学报. 2006, 30(1): 1-8.
    [180]熊育久.湖南省EOS/MODIS植被指数时空变化研究[D].长沙:中南林业科技大学, 2006: 7-9.
    [181]胡汝骥.中国天山自然地理[M].北京:中国环境科学出版社, 2004.
    [182] Ipcc. Summary for Policymakers of Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007: 4-6.
    [183]陈乾金,高波,李维京,等.青藏高原冬季积雪异常和长江中下游主汛期旱涝及其与环流关系的研究[J].气象学报. 2000, 58(5): 582-595.
    [184]韦志刚.青藏高原积雪异常的持续性研究[J].冰川冻土. 2001, 23(3): 225-230.
    [185]韦志刚,黄荣辉,陈文.青藏高原冬春积雪年际振荡成因分析[J].冰川冻土. 2005, 27(4): 491-497.
    [186]王澄海,王芝兰,崔洋. 40余年来中国地区季节性积雪的空间分布及年际变化特征[J].冰川冻土. 2009, 31(2): 301-310.
    [187]陈燕丽.基于NDVI和气候信息的锡林郭勒草原植被变化监测研究[D].北京:中国农业大学, 2007.
    [188] Houghton J T, Meira Filho L G, Callander B A, et al. Climate Change 1995: The Science of Climate Change[M]. Cambridge University Press, 1996.
    [189] Mccarthy J J, Working G I. Climate Change 2001: Impacts, Adaptation, and Vulnerability[M]. Cambridge University Press New York, 2001.
    [190]符淙斌,黄燕.亚洲的全球变化问题[J].气候与环境研究. 1996, 2(1): 97-112.
    [191]中国气候变化国别研究组.中国气候变化国别研究[M].北京:清华大学出版社, 2000.
    [192]戴晓苏,石广玉,董敏,等.全球变暖[M].北京:气象出版社, 2001.
    [193] Ipcc. Climate Change 2007,Impacts,Adaptation,and Vulnerability[R]. Cambridge: Cambridge University Press, 2007.
    [194]张建云,王国庆,章四龙,等.气候变化对水文水资源影响研究[M].北京:科学出版社, 2006: 1-17.
    [195] Ipcc. Climate Change and Impacts 1990[R]. Cambridge: Cambridge University Press, 1990.
    [196] Ipcc. Climate Change 1995,Impacts,Adaptation,and Mitigation[R]. Cambridge: Cambridge University Press, 1996.
    [197] Ipcc. Climate Change 2001,Impacts,Adaptation,and Vulnerability[R]. Cambridge: Cambridge University Press, 2001.
    [198] Tianjun Z, Rucong Y. 20th century surface air temperature over China and the globe simulated by coupled climate models[J]. J.Climate. 2006, 19(22): 5843-5858.
    [199]许崇海,沈新勇,徐影. IPCC AR4模式对东亚地区气候模拟能力的分析[J].气候变化研究进展. 2007, 5(5): 287-292.
    [200] Loaiciga H A, Valdes J B, Vogel R, et al. Global warming and the hydrologic cycle[J]. Journal of Hydrology. 1996, 174: 83-127.
    [201]张光辉.全球气候变化对黄河流域天然径流量影响的情景分析[J].地理研究. 2006, 25(2): 268-275.
    [202]国家科技基础条件平台——地球系统科学数据共享平台. http://www.geodata.cn/Portal/index.jsp?isCookieChecked=true[EB/OL].
    [203] Yue S, Pilon P, Cavadias G. Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series[J]. Journal of Hydrology. 2002, 259(14): 254-271.
    [204] Yue S, Pilon P. A comparison of the power of the t test, Mann-Kendall and bootstrap tests for trend detection/Une comparaison de la puissance des tests t de Student, de Mann-Kendall et du bootstrap pour la détection de tendance[J]. Hydrological Sciences Journal/Journal des Sciences Hydrologiques.2004, 49(1): 21-37.
    [205]曹建廷,秦大河,罗勇,等.长江源区1956~2000年径流量变化分析[J].水科学进展. 2007, 18(1): 29-33.
    [206]董满宇,吴正方.近50年来东北地区气温变化时空特征分析[J].资源科学. 2008, 30(7): 1093-1099.
    [207] Xuedong L, Yili Z, Zhijun Y, et al. The trend on runoff variations in the Lhasa River Basin[J]. Science in China Press. 2008, 18: 95-106.
    [208] Crapper P F, Fleming P M, Kalma J D. Prediction of lake levels using water balance models[J]. Environmental Software. 1996, 11(4): 251-258.
    [209]沈冰,黄领梅,阮本清,等.和田绿洲水循环要素变化特征[J].水利学报. 2003(5): 78-83.
    [210]钟平安,李伟,李兴学.差积曲线径流调节计算程序设计与应用[J].水利水电技术. 2003, 34(11): 1-3.
    [211]刘明才.小波分析及其应用[M].北京:清华大学出版社, 2005: 1-6.
    [212]李弼程,罗建书.小波分析及其应用[M].北京:电子工业出版社, 2005: 1-8.
    [213]汤成友,官学文,张世明.现代中长期水文预报方法及其应用[M].北京:中国水利水电出版社, 2008: 159-186.
    [214]王文圣,丁晶,李跃清.水文小波分析[M].北京:化学工业出版社, 2005: 1-8.
    [215]林勇,刘世荣,李崇巍,等.小波变换在岷江上游杂古脑流域径流时间序列分析中的应用[J].应用生态学报. 2005, 16(9): 1645-1649.
    [216]郭文献,夏自强,王鸿翔,等.近50年来长江宜昌站水温变化的多尺度分析[J].水利学报. 2008, 39(11): 1197-1203.
    [217]王文圣,李跃清,解苗苗,等.长江上游主要河流年径流序列变化特性分析[J].四川大学学报(工程科学版). 2008, 40(3): 70-75.
    [218] Christopher T, Gilbert P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society. 1998, 79(1): 61-78.
    [219]邵晓梅,许月卿,严昌荣.黄河流域降水序列变化的小波分析[J].北京大学学报(自然科学版). 2006, 1(1): 1-7.
    [220] Nakken M. Wavelet analysis of rainfall–runoff variability isolating climatic from anthropogenic patterns[J]. Environmental Modelling and Software. 1999, 14(4): 283-295.
    [221]张少文,王文圣,丁晶,等.黄河天然年径流超长期变化特性研究[J].人民黄河. 2004, 26(8): 10-12.
    [222]刘会玉,林振山,张明阳.建国以来中国洪涝灾害成灾面积变化的小波分析[J].地理科学. 2005, 25(1): 43-48.
    [223]李秀彬.全球环境变化研究的核心领域:土地利用/土地覆被变化的国际研究动向[J].地理学报. 1996, 51(5): 553-557.
    [224]王宗明,国志兴,宋开山,等. 2000~2005年三江平原土地利用/覆被变化对植被净初级生产力的影响研究[J].自然资源学报. 2009, 24(1): 136-146.
    [225] Lambin E F, Baulies X, Bockstael N, et al. Land-Use and Land-Cover Change(LUCC):Implementation Strategy.IGBP Report No.48 and IHDP Report No.10,International Geosphere-Biosphere Programme,International Human Dimension on Global Environment Change Programme[R]. Stockholm Bonn: , 1999.
    [226] Strategy G S P A. IGBP Report No.53/IHDP Report No.19.IGBP Secretariat[R]. Stockholm: , 2005.
    [227] Turner B L I I, Lambin E F, Reenberg A. The emergence of land change science for global environmental change and sustainability[J]. 2007, 104: 20666-20671.
    [228]唐华俊,吴文斌,杨鹏,等.土地利用/土地覆被变化(LUCC)模型研究进展[J].地理学报. 2009, 64(4): 456-468.
    [229]李勉,姚文艺,陈江南,等.坡面草被覆盖对坡沟侵蚀产沙过程的影响[J].地理学报. 2005, 60(5): 725-732.
    [230] Brown A E, Zhang L, Mcmahon A W, et al. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation[J]. Journal of Hydrology. 2005, 310(1-4): 28-61.
    [231] Vorosmarty C J, Green P, Salisbury J, et al. vulnerability from climate change and population growth Science[J]. Global water resource. 2000, 289: 284-288.
    [232]邓慧平.气候与土地利用变化对水文水资源的影响研究[J].地球科学进展. 2001, 16(3): 436-441.
    [233]陈军锋,李秀彬.森林植被变化对流域水文影响的争论[J].自然资源学报. 2001, 16(5): 474-480.
    [234]刘卉芳,朱清科,孙中峰,等.黄土坡面不同土地利用与覆盖方式的产流产沙效应[J].干旱地区农业研究. 2005, 23(2): 137-141.
    [235]胡宏昌.基于植被和冻土协同影响的江河源区水循环研究[D].兰州:兰州大学, 2009: 42-52.
    [236]王礼先,张志强.干旱地区森林对流域径流的影响[J].自然资源学报. 2001, 16(5): 439-444.
    [237]张蕾娜,李秀彬.用水文特征参数变化表征人类活动的水文效应初探——以云州水库流域为例[J].资源科学. 2004, 26(2): 62-67.
    [238] Hernandez M, Miller S N, Goodrich D C, et al. Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds[J]. Environmental Monitoring and Assessment. 2000, 64(1): 285-298.
    [239]陈军锋,李秀彬,张明.模型模拟梭磨河流域气候波动和土地覆被变化对流域水文的影响[J].中国科学D辑地球科学. 2004, 34(7): 668-674.
    [240]陈军锋,李秀彬.土地覆被变化的水文响应模拟研究[J].应用生态学报. 2004, 15(5): 833-836.
    [241] Liang X, Xie Z. A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models[J]. Advances in Water Resources. 2001, 24(10): 1173-1193.
    [242] Neitsch S L, Arnold J G, Kiniry J R, et al. Soil and Water Assessment Tool Theoretical Documentation (Version 2000). Grassland, soil and Water Research Laboratory[J]. Agricultural Research Service, Temple, TX. 2002.
    [243] The Official SWAT Web Site. http://swatmodel.tamu.edu/[EB/OL].
    [244] SPAW. http://hydrolab.arsusda.gov/SPAW/Index.htm[EB/OL].
    [245]李致家,张珂,姚成.基于GIS的DEM和分布式水文模型的应用比较[J].水利学报. 2006, 37(8): 1022-1028.
    [246]穆振侠,姜卉芳,彭亮.天山西部山区流域信息的提取[J].水利水电技术. 2007, 38(6): 12-14, 23.
    [247] GDAL- Geospatial Data Abstraction Library. http://www.gdal.org/index.html[EB/OL].
    [248] Raghavan V, A D. Potential of Free and open Source Software for Development and Sharing of Spatial Data[J]. Asian Journal of Geoinformatics. 2003, 4(3): 13-21.
    [249]汤泉,牛铮.基于IDL与ENVI二次开发的遥感系统开发方法[J].计算机应用. 2008, 28(S1): 270-272.
    [250] Building GDAL From Source. http://www.remotesensing.org/gdal/gdal_building.html[EB/OL].
    [251] MapWindow GIS. http://www.mapwindow.org/[EB/OL].
    [252] Sample Code. http://www.mapwindow.org/[EB/OL].
    [253] Mackay D S. Extraction and representation of nested catchment areas from digital elevation models in lake-dominated topography[J]. Water Resources Research. 1998, 34(4): 897-901.
    [254] Planchon O, Darboux F D R. A fast, simple and versatile algorithm to fill the depressions of digital elevation models[J]. Elsevier Science. 2001, 46: 159-176.
    [255]熊立华,郭生练.基于DEM的数字河网生成方法的探讨[J].长江科学院院报. 2003, 20(4): 14-17.
    [256] Vogt J R V, Colombo R, Bertolo F. Deriving drainage networks and catchment boundaries: a new methodology combining digital elevation data and environmental characteristics[J]. Geomorphology. 2003, 53: 281-298.
    [257]张珂,郭毅,李致家,等.基于DEM的流域信息提取方法及应用实例[J].水力发电. 2005, 31(2): 18-21.
    [258]李志林,朱庆平.数字高程模型[M].武汉:武汉大学出版社, 2003: 216-220.
    [259]刘学军.基于规则格网数字高程模型解译算法误差分析与评价[D].武汉:武汉大学, 2002.
    [260] Bolstad P V, Stowe T. An evaluation of DEM accuracy- Elevation, slope, and aspect[J]. PE and RS Photogrammetric Engineering and Remote Sensing. 1994, 60(11): 1327-1332.
    [261]汤国安,杨勤科,张勇,等.不同比例尺DEM提取地面坡度的精度研究——以在黄土丘陵沟壑区的试验为例[J].水土保持通报. 2001, 21(1): 53-56.
    [262] O'Callaghanjf, Markom. The extraction of drainage networks from digital elevation data[J]. Computer vision, graphics, and image processing. 1984, 28(8): 323-344.
    [263] Turcotte R, Portin J, Rousseau A N, et al. Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network[J]. Journal of Hydrology. 2001,24(3): 225-242.
    [264] Chorowicz J, Ichoku C, Riazanoff S, et al. A combined algorithm for automated drainage network extraction[J]. Water Resource Ress. 1992, 28(5): 1293-1302.
    [265] Martz W, Garbrecht J. Numerical definition of drainage network and subcatchment areas from digital elevation models[J]. Computer & Geosciences. 1992, 18(6): 747-761.
    [266]周贵云,刘瑜,邬伦.基于数字高程模型的水系提取算法[M]. 2000: 16, 77-81.
    [267] Willian K, Saunders David R, Maidment. A GIS assessment of nonpoint source pollution in the San Antonio-Nueces Coastal Basin[D]. Center for Research in Water Resource: The Universiyt of Texas at Ausin, 1996.
    [268] Fairfield J, Leymarie P. Drainage Networks from Grid Digital Elevation Models[J]. Water Resources Research. 1991, 27(5): 709-717.
    [269] Costa-Cabral M C, Burges S J. Digital elevation model networks(DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas[J]. Water Resources Research. 1994, 30(6): 1681-1692.
    [270] Tarboton D G. A new method for the determination of flow directions and upslope areas in grid digital elevation models[J]. Water Resources Research. 1997, 33(2): 309-319.
    [271] Quinn P, Beven K, Chevallier P, et al. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models[J]. Hydrological Processes. 1991, 5(1): 59-79.
    [272]孙友波,宫辉力,赵文吉,等.基于DEM的数字河网生成方法的浅议[J].首都师范大学学报(自然科学版). 2005, 26(2): 106-111.
    [273]孙艳玲,刘洪斌,谢德体,等.基于DEM流域河网水系的提取研究[J].资源调查与环境. 2004, 25(1): 18-22.
    [274] Tribe A. Automated Recognition of Valley Lines and Drainage Networks from Grid Digital Elevation Models: A Review and a New Method[J]. Journal of Hydrology. 1992, 139: 263-293.
    [275] Pilgrim D H. Travel times and nonlinearity of flood runoff from tracor measurements on a small watershed[J]. Water Resources Research. 1976, 12: 487-496.
    [276]石鹏.网格型松散结构分布式水文模型及地貌瞬时单位线研究[D].南京:河海大学, 2006.
    [277]邱秀云.水力学[M].乌鲁木齐:新疆电子出版社, 2004: 121-124.
    [278] Ramirez M P, A J. Energy dissipation theories and optimal channel characteristics of river networks[J]. Water Resour. 1998, 34: 1809-1818.
    [279] De Smedt F, Yongbo L, Gebremeskel S. Hydrologic modelling on a catchment scale using GIS and remote sensed land use information[J]. Risk Analysis II, WIT press. 2000: 295-304.
    [280]吴险峰,刘昌明,王中根.栅格DEM的水平分辨率对流域特征的影响分析[J].自然资源学报. 2003, 18(2): 148-154.
    [281]郝振纯,池宸星.空间分辨率与取样方式对DEM流域特征提取的影响[J].冰川冻土. 2004, 26(5): 610-616.
    [282] http://srtm.csi.cgiar.org/[EB/OL].
    [283]林三益.水文预报[M].北京:中国水利水电出版社, 2001.
    [284]刘金涛.雷达估测降雨技术在实时洪水预报中的应用研究[D].南京:河海大学, 2003.
    [285]赵人俊.流域水文模型—新安江模型与陕北模型[M].北京:水利电力出版社, 1984.
    [286]王佩兰.三水源新安江模型的应用经验[J].水文. 1982, 5: 24-31.
    [287]赵人俊,王佩兰.新安江模型参数分析[J].水文. 1988, 6: 2-9.
    [288] Zhao R J. The Xinanjiang Model Applied in China[J]. Journal of Hydrology. 1992, 135: 371-381.
    [289]张伟.新安江三水源模型在韩江三角洲的应用[J].水利科学与经济. 2005, 11(7): 420-423.
    [290]武新宇,程春田,赵鸣雁.基于并行遗传算法的新安江模型参数优化率定方法[J].水利学报. 2004, 11: 85-90.
    [291]李胜,梁忠民. GLUE方法分析新安江模型参数不确定性的应用研究[J].东北水利水电. 2006, 24(259): 32-33, 47.
    [292]丁义.基于粒子群算法的大盈江流域洪水预报模型参数优化及应用研究[D].成都:四川大学, 2006.
    [293] Hapuaraebehi H. A. P.,李致家,王寿辉. SCE-UA方法在新安江模型参数优化中的应用[J].湖泊科学. 2001, 13(4): 304-314.
    [294]包为民.黄土地区流域水沙模拟概念模型与应用[M].南京:河海大学出版社, 1995.
    [295]李致家,孔祥光,张初旺.对新安江模型的改进[J].水文. 1998, 4: 19-23.
    [296]姜卉芳,姜毅,陈亮.新疆河流径流模拟[J].新疆农业大学学报. 1998, 21(3): 176-183.
    [297]姜卉芳.融雪径流模拟及其在切德克流域的应用[J].新疆农业大学学报. 1987(1): 67-75.
    [298]杨力行,姜卉芳,黄昌荣,等.融雪型新安江模型在开都河流域的应用研究[J].新疆农业大学学报. 1987(4): 82-90.
    [299]万洪涛,周成虎,万庆.流域水文模型计算域离散方法[J].地理科学进展. 2001, 20(4): 347-354.
    [300]李硕,曾志远,张运生.数字地形分析技术在分布式水文建模中的应用[J].地球科学进展. 2002, 17(5): 769-775.
    [301]舒栋才.基于DEM的山地森林流域分布式水文模型研究[D].成都:四川大学, 2005: 96-98.
    [302]贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实践[M].北京:中国水利水电出版社, 2005: 61-68.
    [303] Chow V T, Maidment D R, Mays L W. Applied Hydrology[M]. New York: Mcraw-Hill, 1988.
    [304]傅抱璞.山地蒸发的计算[J].气象科学. 1996, 16(4): 328-335.
    [305]王顺久,张欣莉,倪长键,等.水资源优化配置原理及方法[M].北京:中国水利水电出版社, 2007: 270-275.
    [306]穆振侠,彭亮,姜卉芳.气象数据缺测条件下山区水面蒸发量的确定[J].新疆农业大学学报. 2009, 32(4): 46-49.
    [307] Allen R G, Pereira L S, Raes D, et al. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements[M]. FAO, 1998.
    [308]许迪,蔡林根,王少丽,等.农业持续发展的农田水土管理研究[M].北京:中国水利水电出版社, 2000: 112-126.
    [309]周金龙,吐马尔白虎胆,董新光,等.新疆平原区大气降雨、灌溉水、土壤水与地下水水量转化关系实验研究[M].乌鲁木齐:新疆科技卫生出版社, 2002: 26-56.
    [310] Hargreaves G H, Samani Z A. Reference crop evapotranspiration from temperature[J]. Applied Engineering in Agriculture. 1985, 1(2): 96-99.
    [311]彭世彰,徐俊增.参考作物蒸发蒸腾量计算方法的应用比较[J].灌溉排水学报. 2004, 23(6): 5-9.
    [312]邓聚龙.灰色系统基础方法[M].武汉:华中理工大学出版社, 1987: 10-45.
    [313]邓依萍,刘涛.基于灰色关联分析和层次分析法的水利工程方案优选[J].节水灌溉. 2009(9): 42-45.
    [314]孙菽芬.陆面过程的物理、生化机理和参数化模型[M].北京:气象出版社, 2006: 102-122.
    [315]胡方荣,侯宇光.水文学原理(一)[M].北京:水利电力出版社, 1988.
    [316] Braithwaite R J, Zhang Y. Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model[J]. Journal of Glaciology. 2000, 46(152): 7-14.
    [317]邱国庆,周幼吾,程国栋,等.中国冻土[M].北京:科学出版社, 2000: 1-8.
    [318]杨针娘,刘新仁,曾群柱,等.中国寒区水文[M].北京:科学出版社, 2000: 90-124.
    [319]陈仁升,吕世华,康尔泗,等.内陆河高寒山区流域分布式水热耦合模型(Ⅰ) :模型原理[J].冰川冻土. 2006, 8(21): 806-818.
    [320]徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社, 2001.
    [321]袁作新,罗伯昆,胡煦华,等.流域水文模型[M].水利电力出版社:北京, 1990: 99-117.
    [322]李根.基于Web的融雪地区水库预报调度研究[D].乌鲁木齐:新疆农业大学, 2006: 11-22.
    [323]程银才,欣左.基于混沌模拟退火法的非线性马斯京根模型参数率定方法[J].山东农业大学学报(自然科学版). 2006, 37(2): 235-239.
    [324]俞鑫颖,刘新仁.分布式冰雪融水雨水混合水文模型[J].河海大学学报:自然科学版. 2002, 30(5): 23-27.
    [325]穆振侠,姜卉芳,何英.基于RS与GIS的水库蓄水期起始时间的判定[J].水文. 2009, 29(4): 10-12.
    [326]仇家琪,孙希华.天山积雪初步研究[J].干旱区地理. 1992, 15(3): 9-21.
    [327]水文情报预报规范(SL250-2000)[S].北京, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700